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Abstract

This paper evaluates the dynamic impact of weather shocks on economic ac-
tivity within the three main European countries. To consolidate meaningful
variation in weather patterns, we propose a novel monthly composite weather
index (CWI). This index captures relevant information on severe cold and
heat conditions, drought, heavy precipitation, and intense wind events. We
estimate a series of country-specific Bayesian Structural Vector Autoregressive
models to assess the effects of weather shocks on distinct production sectors,
namely energy, construction, manufacturing, and services. The findings reveal
evidence of a significant impact of weather shocks on economic activity in Eu-
rope, with each component of the CWI exerting heterogeneous effects across
different countries and production sectors.

Keywords : Weather shocks, European production, Bayesian SVAR
JEL classification: C32, E23, Q54.

1London Business School. Email: dcolombo@london.edu
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1 Introduction

The intricate relationship between economic activity and climate events has been
widely recognized, with a consensus among experts that economic activity con-
tributes to long-term negative effects on the climate. Nevertheless, until recently,
empirical evidence of reverse causality from climate shocks to aggregate economic
activity, has been relatively scarce. In recent months, there has been a notable in-
crease in research efforts seeking to identify the distinct impact of severe climate
events on the business cycle. Noteworthy examples include Kim et al. (2021) for
the U.S. and Billio et al. (2020) for European countries. In the context of this lit-
erature, the term “climate” denotes the joint probability distribution of outcomes
describing the state of the atmosphere, oceans, and fresh water, encompassing ice.
Throughout the remainder of this paper, we will refer to the empirical realization of
climate: weather conditions and their variations over time. Against this background,
the literature suggests that weather shocks tend to have adverse effects on short-run
aggregate activity, as measured by industrial manufacturing production, but with
a large country-specific heterogeneity. Other economic sectors, with the exception
of agriculture (Gallic & Vermandel, 2020), are generally neglected when assessing
short-run effects. It is important to distinguish this literature on the macroeco-
nomic effects of weather shocks from research focusing on the impacts of extreme
weather events commonly classified as natural disasters (e.g., hurricanes or major
earthquakes). We refer for example to Strobl (2011) or Felbermayr and Gröschl
(2014) for economic impacts of natural disasters on economic activity or to Kruttli
et al. (2023) and Ferriani et al. (2023) on the financial system.

As temperature time series are easily available over a long historical sample, it
is more common to find studies that try to identify economic responses to changes
in temperature, rather than to other aspects of climate. This is the approach taken
by Natoli (2022) for the U.S. economy, Lucidi et al. (2022) for several European
economies, or by Burke et al. (2005) and Acevedo et al. (2020) for a large panel of
high- and low-income countries. Some research also focuses on severe precipitation
events and droughts, such as Billio et al. (2020) for several European economies.
The latter study the interplay of weather shocks with business and financial cycles,
and differentiates across countries and weather shocks. The authors mainly focus
on the effects of weather shocks on industrial production growth and find evidence
of an uneven impact across the different phases of the business cycle and across the
considered countries. Kim et al. (2021) investigated potential time-varying effects
of extreme weather on the U.S. economy over the past 60 years using the Actuaries
Climate Index (ACI, provided by the American Academy of Actuaries and Canadian
Institute of Actuaries). The monthly ACI consolidates physical and meteorological
observations of high and low temperatures, rainfall, drought, wind speed and sea
level, into a unique measure of severe weather. By estimating a SVAR model ac-
counting for standard macroeconomic variables, the authors show evidence of an
adverse aggregate macroeconomic impact of weather shocks that significantly reduce
output and increase inflation. In contrast, Lucidi et al. (2022) focus on European
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economies and find that higher temperatures tend to reduce inflation through the
energy prices channel.

Our objective in this paper is to assess short- to medium-run sectoral production
effects of several types of weather shocks in Germany, France and Italy, the three
largest European economies. Inspired by the new database of European Extreme
Events Climate Index (E3CI),1 we construct five different weather series, which can
be interpreted as “shocks”: cold and heat shocks, droughts, heavy precipitation and
intense wind. We combine all five weather series to obtain the Composite Weather
Index (CWI hereafter). This rich database allows us to contribute to the literature
by studying the impact of several aspects of weather on the economy, beyond tem-
peratures. Using daily weather data, we can identify large deviations from historical
calendar-specific averages. In addition, while most papers focus on the effects on in-
dustrial production as a proxy for monthly economic activity (Billio et al., 2020; Kim
et al., 2021), we add an additional layer by considering various production sectors:
energy, construction, manufacturing, and services. Our methodology relies on the
estimation of a Bayesian SVAR model for each country, each production sector and
each of weather shock. Across each of these three dimensions, we estimate impulse
response functions (IRFs) of sectoral production to a given weather shock. Finally,
we explore some non-linearities by estimating IRFs through non-linear Local Pro-
jections (Jordà, 2005).

The results of our study unveil that weather shocks have significant yet varied im-
pacts across both countries and production sectors. Notably, France emerges as the
most resilient among the studied countries, with relatively muted responses, while
Italy shows significant reactions to weather shocks. Specifically, Italian production
appears to be responsive to variations in rainfall, exhibiting notable sensitivity to
both excess and deficit conditions. Our findings for energy production indicate a
commonality across all countries, specifically related to a demand-for-heating chan-
nel. A heat shock results in a substantial reduction in energy production, whereas the
opposite holds true in response to a cold shock. Regarding construction, an outdoor
activity, our results suggest that the impact of a positive temperature shock varies
based on a country’s latitude, and consequently, its temperature. For example, in
a Northern European country like Germany, characterized by colder climates com-
pared to other European nations, a heat shock tends to positively affect construction
activity. In contrast, Southern European countries such as Italy react negatively to
such heat shocks. To the best of our knowledge, this is the first study that also
considers the effects of weather conditions on the production of services. Although
the analysis is limited to France due to data constraints, our results suggest that
services generally respond positively and modestly to heat and drought shocks while
exhibiting a negative reaction to cold and precipitation shocks. Finally, we obtain
only mixed evidence regarding non-linearity in responses to weather shocks across

1The E3CI is published by the International Foundation Big Data and Artificial Intelligence for
Human Development (IFAB), and aims at creating for a panel of European and Mediterranean
countries an index similar to the Actuaries Climate Index (ACI) available for North America.
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business cycle phases, which contrasts with the results obtained by Billio et al. (2020).

The rest of this paper is structured as follows. Section 2 presents a selected re-
view of the literature on the macroeconomic impacts of weather shocks. Section 3 
introduces our empirical strategy, by describing the data and the econometric meth-
ods. Section 4 presents the main results expressed in terms of impulse response 
functions to various weather shocks. Section 5 contains additional results on service 
production, non-linear effects o f  w e ather s h ocks a n d c r oss-country s  p illovers. Fi-
nally, Section 6 concludes. Additional figures a nd t echnical d etails a re p resented in 
the Appendix.

2 Selected literature review
There is a large macroeconometric literature trying to assess the aggregate macroe-

conomic dynamic effects of various structural shocks. Seminal papers include Romer 
and Romer (2004) for monetary policy shocks, Ramey (2011) for government 
spending and fiscal shocks, as well as Bloom ( 2009) for uncertainty shocks. However, 
in recent years, growing attention has been devoted to the role of weather 
shocks, as there is empirical evidence that climate hazards are more frequent, more 
intense, and present long-lasting consequences, especially on health, agriculture and 
aggregate macroeconomic activity (see e.g. Tol, 2009, Dell et al., 2012, Vicedo-
Cabrera et al., 2021, or Ballester et al., 2023). Several theoretical models have been 
proposed to analyse the impact of climate events on economic activities, such as 
integrated assessment models (Nordhaus, 1993, or Hassler and Krusell, 2018), which 
focus mostly on long-term effects. Recent reviews on the economic effects of  weather 
and climate-related shocks include Hsiang (2016) and Giglio et al. (2021).

Empirically, econometric models allow to quantitatively assess the effects of 
weather shocks on business cycles as well as their transmission channels (Kamber 
et al., 2013, or Mumtaz and Alessandri, 2021). However, most of these studies have 
focused on agriculture. For example, Ciscar et al. (2011), quantify the potential con-
sequences of weather change in Europe’s agricultural sector. In a more recent paper, 
Gallic and Vermandel (2020), study the effects o f  d r oughts o n  a g ricultural produc-
tion and macroeconomic fluctuations i n  N ew Z e aland, fi nd ing th at  dr ought shocks 
explain more than a third of GDP and agricultural output fluctuations. Beyond 
the agricultural sector, less attention has so far been given to other sectors of the 
economy, such as production (Arent et al., 2015, offer a  r eview o f the implications of 
weather change on key economic sectors and services). Only few comparative stud-
ies are available and they highlight a strong heterogeneity of effects across countries, 
especially in Europe (Acevedo et al., 2020, or Billio et al., 2020).

In this paper, we provide new evidence by studying the impact of various types 
of severe weather events on several production sectors, namely energy, construction,
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manufacturing and services. In this respect, we focus on European countries and use
data on the three main European economies: Germany, France and Italy. To the
best of our knowledge, there is no study that considers as many production sectors
for European countries. Importantly, our paper is situated within the literature on
business cycle effects of weather shocks, which differs from research focusing on the
economic impact of natural disasters. The latter typically focus on extreme weather
events such as hurricanes, cyclones or very large earthquakes with significant ad-
verse local consequences on impact. We refer for example to Strobl (2011), Hsiang
and Jina (2014) or Felbermayr and Gröschl (2014) for economic impact of natural
disasters on economic activity or to Kruttli et al. (2023) on the financial system.
Interestingly, some results sometimes point to positive economic effects in the long-
run, in particular for income per capita and wages (see Roth Tran and Wilson, 2021).

A topic that has been highly debated among economists relates to the possible
transmission channels of severe weather conditions to the business cycle. On the
one hand, many papers tend to emphasize that factors of production are adversely
affected by weather shocks. For example, using a standard SVAR model, Donadelli
et al. (2017) show that a temperature shock has a sizable, negative and statistically
significant impact on TFP, output and labor productivity. Negative effects of in-
creases in temperature on labour productivity have been found in various empirical
studies, such as Burke et al. (2005), Graff Zivin and Neidell (2014) or Deryugina
and Hsiang (2014), among others. Kim et al. (2021) document a simultaneous drop
in industrial production and an increase in inflation following a composite weather
shock, suggesting that the latter acts as a negative supply shock. Supply drivers also
tend to impact some sectors largely exposed to weather conditions, such as construc-
tion (Graff Zivin & Neidell, 2014). On the other hand, demand factors have been
highlighted in some papers trying to identify channels of transmission. For example
Ciccarelli and Marotta (2021) consider a panel of 24 OECD countries and estimate
that climate events have a significant, albeit not sizeable, macroeconomic effect over
the business cycle. They point out that physical risks work as negative demand shock
by depressing both output and inflation. As far as energy production, Lucidi et al.
(2022) show that energy demand is the main transmission channel of temperature
shocks. In some specific sectors, as retail trade, it seems that weather shocks are
transmitted through shifts in consumer demand. (Roth Tran, 2022). In the present
paper, we do not provide a structural model able to disentangle supply and demand
factors. However, whenever possible, we explore the economic channels for each pro-
duction sector considered, based on our empirical results and recent published works.

The recent papers by Kim et al. (2021) and Billio et al. (2020) are strongly re-
lated to our work. Kim et al. (2021) propose a Smooth-Transition VAR (ST-VAR)
model with standard macroeconomic variables to investigate potential time-varying
effects of severe weather shocks on the U.S. economy over the past 60 years. Their
weather data stem from the Actuaries Climate Index (ACI) developed by the Amer-
ican Academy of Actuaries and Canadian Institute of Actuaries, which consolidates
observations of temperatures, rainfall, drought, wind speed, and sea level. By es-
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timating impulse response functions (IRFs) to various shocks, they find that an
increase in the ACI causes adverse long-lasting effects on industrial production, an
increase in the unemployment rate, as well as upward inflationary pressures. Instead
of exploring the heterogeneity of effects across the time dimension, Billio et al. (2020)
focus on the interplay of weather shocks with the business and financial cycles, and
differentiate between countries and weather shocks. They estimate a panel Markov-
Switching model for thirteen European countries and three types of weather shocks:
high temperatures, drought and very heavy rainfall. They mainly focus on the effects
of weather shocks on industrial production growth and find evidence of an uneven
impact across the different phases of the business cycle and across the considered
countries. Most of the economies of Southern Europe are found to be negatively
impacted by exposure to a lengthy spell of high temperatures, while Central and
Northern countries respond asymmetrically over the business cycle (positively dur-
ing recessions and negatively during expansions). Furthermore, severe drought seems
to negatively impact most of the countries in Northern Europe, while, overall, France
is found to be the most resilient economy to all weather shocks, in particular during
recessions. Finally, they find that the impact of weather shocks on the economy is
mostly felt through the manufacturing sector, which also contributes to explain the
asymmetric impact of severe weather events on industrial production, more sensitive
to business cycles.

3 Methodology

In this section we present the methodology used in this paper. We first describe
the monthly data involved in the analysis, then discuss our approach to econometric
modelling that relies on Bayesian SVAR models and Local Projections.

3.1 Data

To carry out the empirical analysis, we construct monthly weather indexes for
France, Germany and Italy by using daily data. We then add data on production by
sector, as well as macro aggregate variables (unemployment, inflation and short-term
ECB interest rates). The dataset covers the period from January 1990 to December
2019.2

3.1.1 Weather data

We use daily weather data to construct five different monthly weather shocks:
cold and heat stress, droughts, precipitation and wind. The daily weather data are
taken from ERA5’s single levels dataset, the fifth-generation atmospheric reanalysis
produced by the European Centre for Medium-Range Weather Forecasts. It covers

2All data are available after 2019, but given the large volatility of macroeconomic data during
the Covid pandemic, we decided not to include this period in the sample.
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the entire globe on regular latitude-longitude grids at 0.25 x 0.25 degree resolution
from 1940 to the present, and is conveniently updated at daily frequency with a
latency of about 5 days allowing for a constant update of the components (Hersbach
et al., 2020). To aggregate the grid-level data to the country level we use the GADM
dataset (Database of Global Administrative Areas).

The computation of the monthly shocks differs slightly for each weather compo-
nent, but broadly speaking they can be thought of as large deviations from historical
climate realizations. For illustration, we provide an example of our approach for pre-
cipitation. For each calendar day (across all years), we compute the 95th percentile
of daily precipitation P95,i,j (day i, month j), which we use as threshold to calculate
the monthly exceedance value:

PSj,k =

nj∑
i=1

max [0; Pi,j,k − P95,i,j]

where Pi,j,k is total daily precipitation (year k) and nj is the number of days in the
month. Then, for each month j, we standardize the series via month-specific means
and standard deviations:

PSstdj,k =
PSj,k − µPSj

σPSj

All the technical details for precipitation and the other components are given in
Appendix 1. We then average the five components to obtain an aggregated index
that we label the Composite Weather Index (CWI).

Constructing weather shocks in this way has several advantages. First, seasonal
adjustment, a key aspect when working with weather variables, is obtained by con-
struction. Second, we obtain series that are effectively standardized and hence easier
to interpret.3 Furthermore, the components do not exhibit strong auto-correlations,
and unit-root tests do not reveal changes in trends, making them close to white noise
processes. On the economic side, we argue that measuring deviations from calendar-
specific historical averages is an advantage since it allows to look at impacts of
“abnormal” weather conditions (in many ways similar to the notion of deviations
from a “steady state”). Furthermore, looking at large deviations is important since
it makes it more unlikely for economic agents to be able to forecast these events and
to incorporate them in their economic decisions before the actual climate realization.4

The monthly frequency at which we construct our shocks is crucial in this respect,
and also allows us to claim exogeneity of the weather components with respect to
the aggregate economic variables that we consider (see Section 3.2). We can thus
interpret our weather indexes, both composite and components, as “shocks” (V. A.
Ramey, 2016). Furthermore, these components have the desirable feature highlighted
in Natoli (2022) that they not only measure isolated large weather events but also

3Note that performing such a month-specific standardization delivers a series that is 0-mean and
1-standard deviation, in the same way as a traditional standardization would.

4Temperature and other weather forecasts typically drop in accuracy as the horizon increases,
quickly becoming relatively unreliable, even when the most advanced forecasting methods are em-
ployed. See for example Lopez-Gomez et al. (2023).
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take into account the accumulation of several smaller abnormal events within the
same month. Indeed, while economic agents might be able to workaround isolated
large weather events (hence without hinging economic output), this might not be
possible when the abnormal events are frequent within a short time span.

The components that make up our CWIs are heavily based on the European Ex-
treme Events Climate Index5, which is a new dataset of indexes aimed at providing
information about the areas affected by different types of weather-induced hazards
and the severity of such events (Giugliano et al., 2023)6. It also aims to provide an
index equivalent to the ACI available for North America, which has been used re-
cently by Kim et al. (2021).7 The main differences lie in the ERA5 variables that we
use, the fact that we compute calendar-day instead of calendar-month thresholds,
and, most importantly, that we compute the month-specific means and standard
deviations over the effective estimation sample. This way, we obtain variables that
are indeed mean-zero and unit-standard deviation. Instead, the E3CI indices are
computed relative to the fixed 1981-2010 reference period, so that the series outside
of this interval are not effectively standardized. Moreover, this might introduce time
trends and time-varying sample variance in the presence of long-run trends, due for
example to climate change. Finally, to measure drought we use the Standardised
Precipitation-Evapotranspiration Index (SPEI) (Begueŕıa et al., 2023), which ac-
counts for both precipitation and potential evapotranspiration, while E3CI uses the
Standardised Precipitation Index (SPI), which only accounts for precipitation. As a
robustness check, we also run the full analysis using the E3CI indices “off-the-shelf”,
and do not find notable differences in the core results.

As we have discussed, weather shocks constructed in this way broadly measure
large deviations from historical calendar-specific averages. We believe that we should
think of these as capturing weather events that lead to rescheduling of economic ac-
tivity and have effects via other economic channels such as shifts in sectoral demand
and supply. This differs from the impacts of natural disasters leading to destruction
of human and physical capital often studied in the literature (see Kruttli et al. (2023)
and Ferriani et al. (2023) among others). Note that in the European countries that
we study, natural disasters are relatively rare when compared to other areas of the
globe. For example, many studies focus on the United States (Kim et al., 2021),
where larger and more frequent natural disasters are observed. To further back
this argument, we use the EM-DAT International Disaster Database (Guha-Sapir
et al., 2016) to identify months when documented natural disasters are observed in
Germany, France and Italy and set to zero the relevant weather shock observation
corresponding to the month when the natural disaster occurred.8 When we perform
this robustness exercise our results are virtually unchanged, suggesting that natural

5This dataset is made available by the International Foundation Big Data and Artificial Intelli-
gence for Human Development (IFAB): www.ifabfoundation.org.

6https://e3ci.dataclime.com/.
7https://actuariesclimateindex.org.
8Using EM-DAT, we classify as natural disasters weather-related events that implied either at

least 100 deaths, at least 1000 affected people or at least a total estimated damage of 1000000 US
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disasters are not the main force driving our results.

Figure 1 shows the three country-specific CWIs, in addition to their smoothed
versions, a 5-year window moving-average. The single weather components of the
CWIs for Germany, France and Italy are presented in Appendix 1 in Figures 12, 13
and 14, respectively.

3.1.2 Aggregate and sectoral economic data

The aggregate macroeconomic data that we use in the empirical analysis are un-
employment rate (in level), inflation (annual growth rate of harmonized consumer
price index) and the ECB main refinancing interest rate (3-month Euribor, in level).
These are standard macroeconomic series that are often included in small-scale SVAR
models to assess the dynamic impact of shocks on aggregate macroeconomic activity
(see for example Caggiano et al., 2014).

Instead of proxying output by industrial production like is often done (Kim et al.,
2021), we use various sectoral production series for each country. We use Eurostat’s
NACE Rev.2 sectoral classification. We consider sectors from section B to section
N (with the exception of section K, financial and insurance activities). As reported
in Table 1, these are: Manufacturing (C); Electricity , gas, steam and air condi-
tioning supply (D); Construction (F); Wholesale and retail trade, repair of motor
vehicles and motorcycles (G); Transportation and storage (H); Accommodation and
food service activities (I); Information and communication (J); Real estate activities
(L); Administrative and support service activities (N). Unfortunately, the services
sections G to N are only available for France on a monthly basis. We do not include
section A, Agricultural production (which we could expect to be one of the most im-
pacted by weather shocks and has been extensively studied by previous literature),
because most of the series are aggregated at a yearly frequency and very few data
are available at a monthly frequency. Also note that large seasonal effects are likely
in this sector.

Section

C MANUFACTURING
D ELECTRICITY, GAS, STEAM AND AIR CONDITIONING SUPPLY
F CONSTRUCTION
G WHOLESALE AND RETAIL TRADE; REPAIR OF MOTOR VEHICLES AND MOTORCYCLES
H TRANSPORTATION AND STORAGE
I ACCOMMODATION AND FOOD SERVICE ACTIVITIES
J INFORMATION AND COMMUNICATION
L REAL ESTATE ACTIVITIES
N ADMINISTRATIVE AND SUPPORT SERVICE ACTIVITIES

Table 1: Sections from NACE Rev.2

dollars. Such events occurred over our 1990-2019 sample during 22 different months in Germany,
42 months in France and 22 months in Italy, and are mostly related to abundant precipitation.
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Figure 1: Composite Weather Indexes for Germany, France and Italy
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3.2 Econometric modelling

The objective of our econometric modelling is to estimate impulse response func-
tions (IRFs) to a given weather shock, in a given country. In this respect, we use
two approaches, namely SVAR models and Local Projections (LPs) as put forward
by Jordà (2005). Recently, Plagborg-Møller and Wolf (2021) have shown that the
two approaches lead to similar results asymptotically when the lag structure is un-
restricted.

3.2.1 SVAR modelling

We estimate a small-scale SVAR model for each of the 3 countries. The reduced-
form model is summarized by the equation

yt = A0 + A1yt−1 + · · ·+ Apyt−p + ut, (1)

where yt contains all the variables of the system in the following order: weather index,
production, unemployment rate, inflation and short-term interest rates. As regards
weather indexes, both the CWI and its components, they are sequentially introduced
into the SVAR model. Thus, matrices Aj for j = 1, . . . , p are 5 × 5 coefficients
matrices. The reduced-form residuals ut from this model are assumed to be such
that ut ∼ N(0,Σ) where Σ is the covariance matrix. In order to get the underlying
structural shocks εt of the system, we impose a linear relationship between εt and
ut such that εt = Γut where Γ is the matrix of contemporaneous relationships, that
is within the month. Identification of Γ is obtained via the Cholesky decomposition
of Σ, using the predefined ordering, and we adopt the customary unit standard
deviation normalization. By imposing this ordering, we assume that any unexpected
change in economic variables does not have any influence on severe weather events
within the same month. However, medium-run evolution of economic variables can
in turn influence severe weather realizations.

Parameter estimation of the SVAR model is performed within a Bayesian frame-
work in the spirit of Giannone et al. (2015). The priors for the SVAR coefficients
are taken from the Normal-Inverse-Wishart family and are of the following form:

β|Σ ∼ N(b,Σ⊗ Ω),

Σ ∼ IW(Ψ,d),

where b, Ω, Ψ and d can be expressed as function of the lower-dimensional vector
of hyper-parameters γ. Here, β is the vector of listed coefficients of the Aj matrices.
This class has two advantages: it includes the priors most commonly used in the
literature and, since the priors are conjugate with respect to the likelihood function,
the marginal likelihood is available in closed form. Giannone et al. (2015) set the
degrees of freedom of the inverse-Wishart distribution to d = n + 2, where n is the
number of variables included in the model, which is the minimum value that guar-
antees the existence of the mean of the IW distribution of Σ, given by Φ

d−n−1
. The

matrix Φ is diagonal with the vector ϕ on the main diagonal. We refer to Appendix
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2 for additional details.

3.2.2 Local Projections

As an alternative to VAR models, Jordà (2005), introduced the Local Projection
(LP) approach to estimate IRFs. This approach has the advantage of being simple to
implement and extremely flexible for the integration of non-linearities in the analysis,
as we do in Section 5. In addition, recent theoretical research has proved that IRFs
stemming from a LP approach converge to those obtained through a SVAR model
(Plagborg-Møller and Wolf, 2021). LPs allow to directly estimate IRFs for a given
variable of interest xt in a simple way through the horizon-specific equation

xt+h = ch + βhνt + Γh(B)yt−1 + uht+h for h = 0, 1, · · · , H (2)

where νt is the weather shock, and yt a set of control variables similar to those
included in the SVAR model in equation (1). It can be shown that βh is the response
of x at t+ h after a shock at t and the IRF is estimated by the sequence of βh.

The LP equation (2) can be easily adapted to a non-linear framework by assuming
that there exist two regimes in nature, for which the parameters are not equal.
To estimate these different parameters, we simply interact the right hand side of
equation (2) once with (1 − F (s)), interpreted as the probability of the economy
being in the first regime, and once with F (s), the probability of being in the second.
This non-linear pattern is integrated into the previous horizon-dependent equation
as follows:

xt+h = (1−F (st−1))[c
h
1+β1,hνt+Γ1,h(B)yt−1]+F (st−1)[c

h
2+β2,hνt+Γ2,h(B)yt−1]+u

h
t+h.
(3)

The F (.) function maps real values to the interval [0, 1] and a customary choice
is the logistic function:

F (st) =
e−γŝt

1 + e−γŝt
, ŝt =

st − µ

σs
(4)

where st is the transition variable taken as indicative of the regime with respect
to which potential non-linear effects are estimated, and µ and σs are its mean and
standard deviation. For example, if we take st as an indicator of the business cycle,
F (st) will be close to 0 during the low phases of the business cycle (regime 1) and
close to 1 during the high phases of the cycle (regime 2). This is what we do to test
the hypothesis put forward by Billio et al. (2020). As output, we get IRFs to various
weather shocks in each regime.
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4 Main empirical results

This section presents the main results stemming from our empirical analysis. We
start by evaluating the macroeconomic impact of various types of weather shocks
on energy production, followed by construction and manufacturing. For each sector,
we assess the dynamic responses to the composite weather shock, as well as sequen-
tially to weather-specific shocks (heat, cold, drought, heavy precipitation, and intense
winds). We compare results across our panel of three European countries—Germany,
France, and Italy. Therefore, our results span three dimensions: production sector,
weather shock, and country. To obtain dynamic responses to weather shocks in
each country, we estimate SVAR models as described by equation (1). We maintain
a standard ordering of variables throughout, namely weather index, sectoral pro-
duction, unemployment rate, inflation and short-term interest rates. The recursive
identification scheme and the estimation technique are described in Section 3. Addi-
tional results are presented in Section 5, including results related to the production
of services in France.

Note that we adopt the one standard deviation normalization so that all the
impulses responses presented in the two following sections are relative to an im-
pulse of one standard deviation in the weather variable.9 All the aggregate and sec-
toral macroeconomic variables used to assess the dynamic responses are expressed
in growth rates (in percentage). Except where explicitly noted, whiskers represent
68% confidence intervals.

4.1 Dynamic effects on the energy production

We first focus on production in the energy sector. For each economic variable
included in the SVAR model, IRFs of energy production to a one standard deviation
shock on the composite weather index, are presented in Figure 2.10 Detailed results
for all variables are presented in the Appendix 3 in Figure 15 for Germany, Figure
16 for France and Figure 17 for Italy.

We observe that a composite aggregate weather shock initially results in a sig-

9To correctly interpret the results presented in this section, it is useful to clarify the meaning of
a standard deviation in the weather variable. Indeed, this is not straightforward given the nature
of the weather components (see Appendix 1), as the interpretation changes across different months
and different countries. For example, a one standard deviation in the heat shock in Germany
corresponds to approximately four to five days (depending on the month) in which the maximum
daily temperature exceeds the corresponding calendar-day threshold. Such threshold is calendar-
day specific and ranges from around 10oC/50oF in January to around 30oC/86oF in July. Similarly,
a standard deviation in the cold shock corresponds to three to five days per month in which the
minimum daily temperature is below the threshold (around -11oC/12oF in January and 10oC/50oF
in July).

10Note that by convention, the IRFs start at date t = 1 which is the date of the initial impact.
Consequently they stop at date t = 41, that is 40 months after the impact.
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Figure 2: Impulse responses of energy production to CWI shocks for Ger-
many, France and Italy.

nificant drop in energy production in all countries, returning to zero after only a
few months (3 to 5 months). Notably, France exhibits a short-lived bounce-back
following the initial negative impact. In Germany, this shock tends to push inflation
slightly higher, although not significantly, and unemployment decreases by about
-0.04 percentage points (pp hereafter) after one year in a statistically significant
way. Conversely, in France, this composite weather shock leads to an increase in the
unemployment rate, while inflation significantly decreases. In Italy, the same shock
generates a persistent and significant rise in unemployment.

A concern that might arise when using the composite CWI is its consolidation
of all types of severe weather events into a single index. Indeed, different types of
weather events may impact production differently and potentially offset each other,
contributing to the observed heterogeneity across countries. To address this, we now
examine the impact of the individual components of the CWI on energy production.
For each of the three countries, we sequentially assess the dynamic effects of the
five weather-specific shocks—heat, cold, drought, heavy precipitation, and intense
winds—on the energy production sector.

To efficiently summarize the results in graphs, we only consider cumulated IRFs to
individual weather shocks at 6 months (red bars) and 12 months (green bars). Results
are presented in Figure 3. We initially observe that energy production exhibits
some comovement across countries. Specifically, a cold shock generates a positive
cumulated response of energy production in all countries, while a heat shock leads to a
significant decline in production across the board. This finding aligns with the results
presented by Lucidi et al. (2022), which provide evidence suggesting energy demand
as a major transmission channel for temperature shocks. The authors argue that a
positive temperature shock reduces the demand for heating, subsequently leading to
a decline in energy production and energy prices, while the opposite occurs following
a negative temperature shock. Extending this perspective, Colombo and Toni (2022)
go a step further by demonstrating that the main driver of this channel is the price
of gas, which serves as the primary source of heating in Europe as a whole.

For our results to be consistent with the demand for energy channel, we would
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Figure 3: Cumulated responses of energy production to the five weather-
specific shocks.

expect the effect of temperatures on energy production to be short-lived. This is
demonstrated in Figure 4, where we present the full IRFs in response to both cold
and heat shocks.11 Most of the impact occurs within the first two months, with
France being the most strongly affected country upon impact (around 1% variation
in year-on-year energy production).

When examining responses to other weather-specific shocks in Figure 3, we con-

11Note that confidence bands are narrower in this case due to the strong contemporaneous cor-
relation of cold and heat shocks with energy production (around 0.3 and -0.3 respectively). This
correlation is much higher than what we observe with the other shocks.

Figure 4: Impulse responses of energy production to cold and heat shocks.
The whiskers represent 90% confidence intervals.
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firm that Italy is the most sensitive country, exhibiting a strongly significant reaction
to drought and precipitation shocks on energy production. Indeed, an excess of pre-
cipitation leads to a substantial decline in energy production, while, in contrast, a
sequence of days of drought results in an increase in energy production. Therefore,
we find that the overall rather weak response to the composite weather shock hides
large positive and negative responses to various weather-specific shocks (positive for
cold shock and droughts, negative for heat shock and precipitation).

4.2 Dynamic effects on the construction sector

This sub-section presents results related to the construction sector. For each eco-
nomic variable included in the SVAR model, IRFs of production in the construction
sector to a one standard error shock on the composite weather index are presented in
Figure 5. Detailed results for all variables are available in Appendix 3, with Figure
18 for Germany, Figure 19 for France, and Figure 20 for Italy. By eyeballing these
figures, we note that the dynamic effects of weather shocks are more pronounced on
the construction sector than on other sectors and also exhibit much more persistence.

Figure 5: Impulse responses of construction production to CWI shocks
for Germany, France and Italy.

When comparing countries, the dynamic responses of production in the construc-
tion sector reveal a dichotomy between Germany, on the one hand, and France/Italy
on the other. Following an initial drop upon impact, a composite weather shock
tends to increase activity in the German construction sector over the 15 months
after the shock, leading to a significant drop of -0.025pp in the unemployment rate
about 2 years after the impact.In contrast, both French and Italian construction sec-
tors show a persistent and significant drop in activity, up to 2 years after the initial
month of the shock. This decline is associated with a significantly negative response
of inflation and a rise in unemployment. In particular, the unemployment rate in
Italy reaches a peak at 0.05pp after 20 months.

Figure 6 reports the cumulated IRFs of production in the construction sector to
the five weather-specific shocks. Those results provide some insights on the diver-
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gence between Germany and France / Italy. We find that that the positive reaction
of the German construction sector is mostly driven by a heat shock that generates a
cumulated response of more than 2% after 6 and 12 months. Interestingly, a similar
shock leads to a large dive in production in Italy, while France does not show any
significant reaction to this shock.

Regarding possible channels of transmission to the construction sector, it is evi-
dent that weather shocks are known to primarily affect the labor supply of workers
exposed to outdoor conditions. For instance, using U.S. data, Graff Zivin and Neidell
(2014) demonstrate that high daily temperatures reduce labor supply among workers
exposed to outdoor temperatures, a significant factor for those in the construction
industry. They suggest that higher temperatures can lead to changes in the time
allocated to work by altering the marginal productivity of labor or the marginal cost
of supplying labor. They find that at daily maximum temperatures above 85oF,
workers in industries with high exposure to climate reduce their daily time allocated
to labor by as much as one hour.

Our results suggest that a positive temperature shock is likely to have a differ-
entiated impact on a country, depending on its latitude. For instance, a country
located in the North of Europe, such as Germany, with colder temperatures rela-
tive to other European countries, tends to see its construction activity positively
affected by a heat shock. Conversely, a Southern European country like Italy, con-
sidered a hot country in Europe, negatively reacts to a heat shock. Construction is
indeed an outdoor economic activity with strong sensitivity to high temperatures,
positively or negatively depending on the latitude. We also note that almost all the
climate-specific shocks in Italy contribute significantly to the construction sector, ei-
ther positively or negatively, making the country the most responsive to the diversity
of severe weather shocks in this specific sector.

Figure 6: Cumulated responses of construction production to the five
weather shocks.
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4.3 Dynamic effects on the manufacturing production

We now shift our focus to the overall effects of the composite CWI on manufac-
turing production in the three countries involved in the analysis. For each economic
variable included in the SVAR model, IRFs of manufacturing production to a one
standard deviation shock on the composite weather index, are presented in Figure
7. Detailed results for all variables are presented in the Appendix 3 in Figure 21 for
Germany, Figure 22 for France and Figure 23 for Italy.

Figure 7: Impulse responses of manufaturing production to CWI shocks
for Germany, France and Italy.

We find that a composite weather shock leads to a similar reaction in Germany
and France, as initially manufacturing production drops following the impact. How-
ever, inflation and unemployment react in opposite ways in both countries. In France,
after a short-lived increase upon impact, inflation tends to drop before rapidly return-
ing to zero, while there is a persistent increase in the unemployment rate. Conversely,
inflation is significantly pushed upward in Germany, while the unemployment rate
is significantly reduced by 0.04pp after 20 months. Overall, it turns out that a com-
posite weather shock in France appears to resemble an aggregate negative demand
shock in the medium run, while a similar shock in Germany translates into a positive
demand shock in the short run.

Manufacturing production reacts in a different way in Italy as an aggregate
weather shock generates a surge in manufacturing production lasting about 1.5 years.
On impact, the one standard error shock leads to a 0.30pp increase in production
of manufactured goods, which then progressively vanishes. Cumulated responses are
shown in Figure 8. This highlights the usefulness of splitting the composite index,
as responses to some specific weather shocks now appear significant for France and
Germany, while the manufacturing impact of the composite index was weak and non-
significant for h = 6 and h = 12 months (see Figures 21 and 22). Again, we note the
overall resilience of France to the various weather shocks compared to the other two
countries. In Germany, responses to shocks are slightly and significantly positive,
except for the response to a drought shock, which we find to be largely negative. In
contrast, a drought shock tends to generate a cumulated positive response in Italian
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manufacturing production of about 4% after one year. Symmetrically, an excess of
precipitation results in a significant drop in manufacturing production of about 3%
after one year. This high sensitivity of the Italian manufacturing sector to an excess
or deficit of rainfall is a salient finding in our results. Overall, this significantly con-
tributes to the strong positive response of the manufacturing sector to a composite
weather shock, as illustrated in Figure 23.

From our empirical results, it is not clear whether a weather shock to manufac-
turing production constitutes a demand or a supply shock. The literature also tends
to provide mixed results. For example, Ciccarelli and Marotta (2021) argue that
weather shocks leading to physical consequences work as negative demand shocks
by depressing both output and inflation in a panel of countries. Kim et al. (2021)
show evidence that U.S. industrial production and inflation go in opposite directions
in the wake of a composite weather shock, thus suggesting that it acts as a supply
shock. Similarly, Deryugina and Hsiang (2014) present evidence that temperature
matters as it reduces the productivity of workers, thus highlighting a supply channel.

Figure 8: Cumulated responses of manufaturing production to the five
weather shocks.
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5 Additional results

In this section, we present additional empirical results, focusing first on ser-
vice production, then on non-linear patterns in the responses to composite weather
shocks, and finally on the potential presence of cross-country spillovers.

5.1 Dynamic effects of weather shocks on services

As for the production of services, unfortunately, we only have access to French
data on a monthly basis.12 We compute IRFs from various weather-specific shocks
by integrating service production into a Structural Vector Autoregressive (SVAR)
model, following the same approach as used for the other sectors in the previous
section. Figure 9 presents the cumulated responses of various sub-sectors in the pro-
duction of services, ranging from G (Wholesale and retail trade) to N (Administrative
and support service activities) (refer to Table 1).

Compared to other sectors considered previously, the response of service produc-
tion to various weather-specific shocks is relatively muted, though generally positive.
Periods of heat and cold temperatures tend to be associated with slightly positive
responses of service production, though most of them are not statistically signifi-
cant. Excessive rainfall leads to negative responses in three sub-sectors: Wholesale
and retail trade, Transportation and storage, and Accommodation and food services.
Notably, a drought shock implies a positive response after 12 months of production
in the Transportation and storage activity. Finally, it is observed that a wind inten-
sity shock does not seem to significantly affect service production, as all the IRFs lie
within the confidence bands after 6 and 12 months.

12According to Eurostat, detailed data on production in services are only available from 2016
onwards for Germany and are not available for Italy.

Figure 9: Cumulated responses of services production in France to the
five weather shocks.
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Overall, caution is warranted when interpreting these results for services, given
our earlier observation that France exhibits a generally lower responsiveness to
weather shocks compared to the other two countries. For some countries, exist-
ing literature has identified significant effects of weather shocks on certain services.
Notably, Roth Tran (2022) found significant and persistent effects of weather on re-
tail sales in the U.S. Interestingly, the paper also observed that the immediate effects
of weather are only minimally offset by sales shifting between store types (indoor vs.
outdoor) or over time. Shifts in demand are likely the primary drivers of the per-
sistent response of sales to weather shocks. Highlighting the psychological channel,
she suggests that weather can have psychological impacts on mood, subsequently
influencing purchasing behavior.

5.2 Non-linearity to the business cycle

We address a result presented by Billio et al. (2020), which suggests evidence
of non-linearity with respect to the business cycle. This implies a stronger impact
of weather shocks on production during recessions than during expansions. To test
this, we estimate non-linear IRFs to a composite weather shock on manufacturing
production for the three countries. Our approach relies on the estimation of non-
linear Local Projections given by equation (3). We allow for two regimes of economic
growth using the European Sentiment Index (ESI) - a composite sentiment index of
various surveys released by the European Commission - as the transition variable.
The ESI reflects business cycle conditions, reaching low values during phases of low
economic growth and high values during phases of high economic growth. Widely
used by practitioners, this index tracks euro area business cycles in real-time. IRFs
of manufacturing production in both regimes of growth for the three countries are
presented in Figure 10. Blue lines correspond to IRFs within the high-growth regime,
and black lines to IRFs within the low-growth regime.

Overall, we do not find large differences for any country between the IRFs of
manufacturing production in the two alternative regimes of growth, suggesting that
the hypothesis from Billio et al. (2020) does not hold against our background. This
discrepancy could possibly be due to differences in the definition of business cycle
phases. France is the country for which a short-run significant difference exists
in the two phases of the cycle. Indeed, manufacturing production appears to be
enhanced after a composite weather shock when the economy is in the low-growth
regime. In contrast, this shock depresses manufacturing production in the high-
growth regime. In comparison to France, the reaction of manufacturing production
and macroeconomic variables to a composite weather shock in Italy and Germany
appears to be less sensitive to the business cycle.
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Figure 10: Non-linear responses with respect to the business cycle of man-
ufacturing production to the composite weather shock CWI. Blue lines
correspond to the high-growth regime and black lines to the low-growth
regime.

5.3 Cross-country spillovers

A concern that could be raised when estimating separate SVAR models for each
country is the potential presence of cross-country spillovers, in particular when the
shocks are correlated across countries. Indeed, the contemporaneous correlation
between CWI indexes is equal to 0.43 for Germany and France, 0.22 for Germany
and Italy, and 0.38. for France and Italy.

To check for the presence of potential spillovers, we run the same analysis as in
the previous section, but substitute the domestic CWI shock with the residual part
of the foreign CWI shock not explained by the domestic shock. In practice, we first
estimate a regression of the foreign CWI on the domestic CWI and then use the
residuals stemming from this regression in our benchmark SVAR model to compute
IRFs. Results are presented in Figure 11, where we show that cumulated impulse
responses are non-significant at both the 6 and 12 months horizons. This result
suggests that cross-country spillovers are not a concern in our application.
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Figure 11: Cumulated responses to a shock in the residual foreign CWI
on domestic sectors. The whiskers represent 90% confidence intervals.
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6 Conclusions

This paper evaluates the short- to medium-term dynamic impact of weather
shocks on sectoral production and aggregate macroeconomic variables within the
three largest European countries: Germany, France, and Italy. We introduce a novel
monthly composite weather index (CWI), constructed for each country from daily
weather data. This index comprehensively encapsulates information on severe cold
and heat conditions, drought occurrences, heavy precipitation, and intense winds.
Using Structural Vector Autoregression (SVAR) models, we estimate impulse re-
sponse functions to weather shocks for each country. This study contributes to the
existing literature by assessing the distinct responses of various production sectors
within the economy, including manufacturing, energy, construction, and services.

The empirical findings collectively demonstrate a significant impact of weather
shocks on both sectoral production and broader macroeconomic variables. However,
pronounced heterogeneity is evident across countries and sectors. Notably, France
emerges as the less responsive country to weather shocks, with amplitude of responses
comparatively lower than those observed in Germany or Italy. Conversely, Italy
exhibits a more pronounced and varied reaction to weather shocks, showing both
positive and negative impacts. These observations align with the empirical findings
reported by Olper et al. (2021) for Italy .

The energy sector exhibits a strong comovement across countries, with a heat
shock causing a substantial decline in energy production, while the opposite holds
for a cold shock. The construction sector, inherently reliant on outdoor conditions,
is more vulnerable to the impact of weather variations compared to other sectors.
Notably, a heat shock tends to enhance production in Northern European countries
such as Germany but has detrimental effects on production in Southern European
countries like France and Italy. In Italy, manufacturing production exhibits a posi-
tive response to droughts, while an excess of rainfall leads to a significant reduction.
Moreover, our findings indicate that weather shocks tend to correspond to demand
shocks in the energy sector and supply shocks in the construction sector. The out-
comes for manufacturing production, however, display a more nuanced and mixed
pattern. Finally, we check for the presence of non-linear patterns with respect to the
business cycle. There is weak evidence of non-linearity to the business cycle phases
for manufacturing production, except for France.

This paper extends several dimensions of empirical findings from the existing
literature on the effects of weather shocks on business cycles. Specifically, our con-
tributions are as follows: (i) we demonstrate that European economies are vulnerable
to the effects of weather conditions, broadening the geographical scope of impact be-
yond regions previously studied; (ii) in contrast to the predominant focus on the
agricultural sector in the literature, we show that other sectors of the economy can
also be significantly impacted by weather conditions; (iii) by examining a range of
weather shocks, not limited solely to temperatures, we show that various meteoro-
logical factors play a significant role in shaping the impact on business cycles. This
diversified perspective contributes to a more comprehensive understanding of the
multifaceted consequences of weather shocks on business cycles.
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Felbermayr, G., & Gröschl, J. (2014). Naturally negative: The growth effects of
natural disasters. Journal of development economics, 111, 92–106.

Ferriani, F., Gazzani, A. G., & Natoli, F. (2023). Flight to climatic safety: Local
natural disasters and global portfolio flows. Available at SSRN 4497865.

Gallic, E., & Vermandel, G. (2020). Weather shocks. European Economic Review,
124, 103409.

Giannone, D., Lenza, M., & Primiceri, G. E. (2015). Prior selection for vector au-
toregressions. Review of Economics and Statistics, 97 (2), 436–451.

Giglio, S., Kelly, B., & Stroebel, J. (2021). Climate finance. Annual Review of Fi-
nancial Economics, 13, 15–36.

Giugliano, G., Rianna, G., Pugliese, A., Barbato, G., Ellena, M., Mercogliano, P.,
Tirri, A., & LoConti, F. (2023). European extreme events climate index (e3ci)
(tech. rep.). Copernicus Meetings.

Graff Zivin, J., & Neidell, M. (2014). Temperature and the Allocation of Time:
Implications for Climate Change. Journal of Labor Economics, 32 (1), 1–26.

Guha-Sapir, D., Below, R., & Hoyois, P. (2016). Em-dat: The cred/ofda international
disaster database.

Hassler, J., & Krusell, P. (2018). Environmental macroeconomics: The case of climate
change. In Handbook of environmental economics (pp. 333–394). Elsevier.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J.,
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Appendices

Appendix 1: Weather data

Weather data from ERA5 (Hersbach et al., 2020) at a regular latitude-longitude
grid of 0.25 is taken from the reanalysis era5 single levels dataset. In particular,
minimum daily temperature corresponds to the 2m temperature (daily minimum)
variable; maximum daily temperature corresponds to 2m temperature (daily maxi-
mum); daily total precipitation corresponds to total precipitation; maximum daily
wind corresponds to 10m wind gust since previous post processing. To aggregate the
grid-level data to the country level we employ the Database of Global Administrative
Areas (GADM), using the first level of resolution GADM0.13 To measure drought
we instead use the SPEIbase dataset v.2.9 (Begueŕıa et al., 2023).14

We construct the weather shocks as follows. The composite climate index (CWI)
is the average of all five weather shocks:

1. Cold shock: over the estimation sample 1990-2019, for each calendar day, the
minimum daily temperatures of a five-days centered window are considered.
The 5th percentile T05,i,j,k of the 150 values (5 days × 30 years) is calculated
and taken as threshold. For each month j and year k, CSj,k is computed as
the monthly exceedance value:

CSj,k =

{∑nj

i=1 |Tmin,i,j,k − T05,i,j,k| if Tmin,i,j,k < T05,i,j,k

0 if Tmin,i,j,k ≥ T05,i,j,k

Where Tmin,i,j,k represents the daily minimum temperature (day i, month j,
year k). Then, for each month j, the mean value µCSj and the standard devia-
tion σCSj of CSj,k of the exceedance value are calculated. Finally, the index is
obtained by standardizing CSj,k for each month j and year k, via the month-
specific means and standard deviations:

CSstdj,k =
CSj,k − µCSj

σCSj

An alternative definition of the cold shock is given by counting the number
of days in which the minimum daily temperature is below the corresponding
threshold, instead of computing the monthly exceedance value.

2. Heat shock: over the estimation sample, for each calendar day, the maximum
daily temperatures of a five-days centered window are considered. The 95th

percentile T95,i,j,k among the 150 values (5 days × 30 years) is calculated and
taken as threshold. For each month j and year k, HSj,k is computed as the

13https://gadm.org/.
14http://hdl.handle.net/10261/332007.
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monthly exceedance value:

WSj,k =

nj∑
i=1

max [0; Tmax,i,j,k − T95,i,j]

Where Tmax,i,j,k represents the daily maximum temperature (day i, month j,
year k). For each month j, the mean value µWS

j and the standard deviation
σWS
j of WSj,k are calculated. Finally, the index is obtained by standardizing
WSj,k for each month j and year k, via the month-specific means and standard
deviations:

WSstdj,k =
WSj,k − µWS

j

σWS
j

An alternative definition of the heat shock is given by counting the number
of days in which the maximum daily temperature is above the corresponding
threshold, instead of computing the monthly exceedance value.

3. Drought shock: we consider the monthly Standard Precipitation Index with
a 3 months accumulation period SPEI3j,k. For each month j, the mean value
µSPEI3j and the standard deviation σSPEI3j are calculated. Then, the index is
obtained by standardizing the SPEI3 for each month j and year k, via the
month-specific means and standard deviations:

SPEI3stdj,k = −
SPEI3j,k − µSPEI3j

σSPEI3j

According to the canonical approach, positive SPEI values represent large val-
ues of precipitation and negative values represent small values of precipitation.
To maintain the consistency with the other components, we consider the oppo-
site of the standardized SPEI3j,k, as we want large positive values of SPEI3

std
j,k

to represent drought months.

4. Precipitation shock: over the sample, for each calendar-day (across all
years), the 95th percentile of daily precipitation P95,i,j is computed. Then,
the monthly exceedance value is calculated as:

PSj,k =

nj∑
i=1

max [0; Pi,j,k − P95,i,j]

where Pi,j,krepresents the daily total precipitation (day i, month j, year k) and
nj is the number of days in the month. Then, for each month j, the mean value
µPSj and the standard deviation σPSj of the exceedance value are calculated.
Finally, the index is obtained by standardizing the exceedance value for each
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month j and year k, via the month-specific means and standard deviations:

PSstdj,k =
PSj,k − µPSj

σPSj

5. Wind shock: over the sample, for each calendar-day (across all years), the
95th percentile of daily maximum wind speed W95,i,j is computed. Then, the
monthly Local Loss Index (Donat et al., 2011) is calculated as:

LLIj,k =

nj∑
i=1

max

[
0;

(
Wi,j,k

W95,j

− 1

)3
]

where Wi,j,k is maximum daily wind speed. Then, for each month j, the mean
value µLLIj and the standard deviation σLLIj are calculated. Finally, the index
is obtained by standardizing the exceedance value for each month j and year
k, via the month-specific means and standard deviations:

LLIstdj,k =
LLIj,k − µLLIj

σLLIj

Finally, we get the monthly composite climate index as:

CWI =
CSstdj,k +WSstdj,k + SPEI3stdj,k + PSstdj,k + LLIstdj,k

5
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Figure 12: CWI and its 5 components for Germany
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Figure 13: CWI and its 5 components for France
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Figure 14: CWI and its 5 components for Italy
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Appendix 2: Bayesian estimation

Giannone et al. (2015) propose to use three priors pertaining to the normal-
inverse-Wishart family. The Minnesota (Doan et al., 1984), formalizes the idea that,
ex ante, all the individual variables are expected to follow random walk processes.
We specify it as follows. The conditional mean of the prior distribution is given by:

E[(As)ij|Σ] =

{
1 if i = j and s = 1

0 otherwise
,

so that an impact on a given variable only affects that variable at the next period in
time, without affecting any variable at different lags. The conditional covariance of
the prior distribution is given by:

cov[(As)ij, (Ar)kl|Σ] =

{
λ2 1

sα
Σik

ψj/(d−n−1)
if l = j and r = s

0 otherwise
,

where λ is the main hyperparameter and it controls the relative importance of prior
and data (that is, the variance associated to the prior, in other words, the degree of
confidence attributed to the prior). When λ→ 0, no weight is given to the data and
vice versa for λ→ ∞. α is an hyperparameter that controls how fast this covariance
should decrease with the number of lags and ψj is the j

th entry of ψ, which controls
the variance associated to each variable. Some refinements of the Minnesota prior
have been proposed in order to favour unit roots and cointegration, grounded on the
common practices of many applied works. These take the form of additional priors
that try to reduce the importance of the deterministic component of the VAR model.

The sum-of-coefficients prior is based on the idea that a “no-change” forecast is
a good forecast at the beginning of the period. It is implemented by adding at the
beginning of the sample artificial data constructed in the following way:

y+
n×n

= diag

(
ȳ0
µ

)
=


ȳ1
µ

0 · · · 0

0 ȳ2
µ

· · · 0
...

...
. . . 0

0 0 0 ȳn
µ


x+

n×(1+np)
=

[
0

n×1
, y+, · · · , y+

]
,

where ȳj denotes the average of the first p observations for each variable j = 1, · · · , n.
This prior implies that the sum of the coefficients of each variable on its lags is 1
and that the sum of the coefficients of each variable on the other variables’ lags
is 0. It also introduces correlation among the coefficients of the same variable in
that variable’s equation. The hyperparameter µ controls the variance of these prior
beliefs: as µ → ∞, the prior becomes uninformative, while µ → 0 implies the
presence of a unit root in each equation and rules out cointegration.

Since in the limit this prior does not allow for cointegration, the single-unit-
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root (also called dummy initial observation) prior can be implemented to push the
variables towards the presence of cointegration. This is designed to remove the
bias of the sum-of-coefficients prior against cointegration, while still addressing the
overfitting of the deterministic component issue. It is implemented by adding one
artificial data point at the beginning of the sample:

y++

1×n
=

( ȳ0
δ

)′
=

[ ȳ1
δ
, · · · , ȳn

δ

]
x++

1×(1+np)
=

[
1
δ
, y++, · · · , y++

]
,

The hyperparameter δ controls the tightness of the prior implied by this artificial
observation. As δ → ∞, the prior becomes uninformative. As δ → 0, the model
tends to a form in which either all variables are stationary with means equal to the
sample averages of the initial conditions, or there are unit root components without
drift terms.

The three priors illustrated depend on the hyperparameters λ (the tightness of the
Minnesota prior), µ (the tightness of the sum-of-coefficients prior), δ (the tightness of
the single-unit root prior) ψ (which specifies the prior variance associated with each
variable) and α (which relates to the decay of the covariance of coefficients relative
to more lagged variables). We use the following parametrization: λ ∼ Γ with mode
equal to 0.2 and standard deviation equal to 0.4; , µ ∼ Γ with mode equal to 1 and
standard deviation equal to 1; δ ∼ Γ with mode equal to 1 and standard deviation
equal to 1; α ∼ Γ with mode equal to 2 and stadard deviation equal to 0.25. The
hyperprior for the elements in ψ is set to an inverse-Gamma with scale and shape
equal to 0.0004. Note that these are not flat hyperpriors. This guarantees the
tractability of the posterior and it helps to stabilize inference when the marginal
likelihood happens to show little curvature with respect to some hyperparameters.
Please refer to the original paper for additional technical details.
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Appendix 3: IRFs to composite weather shock of energy pro-
duction, construction and manufacturing production, as well
as other macro variables, for Germany, France and Italy

Figure 15: Germany: IRFs to CWI shock for Energy production

Figure 16: France: IRFs to CWI shock for Energy production.

Figure 17: Italy: IRFs to CWI shock for Energy production.
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Figure 18: Germany: IRFs to CWI shock for Construction production.

Figure 19: France: IRFs to CWI shock for Construction production.

Figure 20: Italy: IRFs to CWI shock for Construction production.
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Figure 21: Germany: IRFs to CWI shock for Manufacturing production.

Figure 22: France: IRFs to CWI shock for Manufacturing production.

Figure 23: Italy: IRFs to CWI shock for Manufacturing production.
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