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1 Introduction

The European Union Emission Trading System (EU ETS) was established in January

2005, to reduce greenhouse gas (GHG) emissions within the region. At its inception, the

EU ETS was the world’s first carbon market and covered 4.4% of global GHG emissions

(World Bank, 2022). In essence, the EU ETS is a cap and trade system that primarily

requires the emission-intensive industries to acquire tradeable permits for each emitted

ton of GHGs. These permits, known as European Union Allowances (EUAs), are either

auctioned or distributed for free to the industry and can be traded in the open market.

Since the introduction of the EU ETS, emissions have decreased by just over 50%. This

raises the question of what has caused these emission reductions. Were they driven by

the EU ETS regulation, or by other factors, such as industrial economic activity and

shifting preferences towards low-carbon products? Answers to these questions are not

only relevant for the design of the ETS, but also for market participants, private investors,

and policymakers, who are involved in international policy debates.

The standard approach in empirical studies that quantify the causes of these emission

reductions is to model demand and supply-side factors in isolation. On the one hand,

numerous scholars have investigated the effects of the EU ETS supply-side restrictions on

emissions (Ellerman and Buchner, 2008; Ellerman and McGuinness, 2008; Anderson and

Di Maria, 2011; Abrell et al., 2011; Declercq et al., 2011; Gloaguen and Alberola, 2013;

Petrick and Wagner, 2014; Wagner et al., 2014; Bel and Joseph, 2015; Jaraite-Kažukauske

and Di Maria, 2016; Dechezleprêtre et al., 2023; Bayer and Aklin, 2020; Best et al., 2020;

Colmer et al., 2022; Känzig, 2023). On the other hand, only two papers have examined

how demand-side factors affect emissions. Specifically, Declercq et al. (2011) and Bel

and Joseph (2015) investigate how the reduced economic activity during the 2008 Global

Financial Crisis impacted emissions.

In this paper, we present a unified framework for jointly identifying simultaneous

supply and demand shocks in the EU ETS emissions market. Our framework quantifies

the impact of both demand and supply factors on emission prices and quantities, and

assesses their relative contributions to emissions reductions. To be best of our knowledge,

this is the first paper that investigates demand factors other than economic activity, such

as decreased demand for emissions resulting from the transition to a low-carbon economy.

This is accomplished through two steps.
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In the first instance, we present evidence indicating that the EUA cap in the emissions

market, as imposed by the EU ETS, has often been non-binding in the short- and medium-

term. Several factors contribute to this situation. Most notably, allowances not used

for emitting GHGs can be saved, utilized, or (re)sold in the future. Consequently, the

quantity of acquired yet unused EUAs steadily increased from zero at the inception of the

cap-and-trade system to a peak of nearly two billion in 2013. This cumulative surplus

suggests that the effective quantity of EUAs available in the carbon market exceeds the

cap set by EU ETS policymakers for a given year. Therefore, the effective supply schedule

in the emissions market is not perfectly inelastic, as often assumed; instead, the market

typically operates on the upward-sloping portion of the supply curve. Recognizing that

the supply of EUAs is price-sensitive has significant implications, as it implies that short-

and medium-term emission reductions can result from shifts in both emission supply and

emission demand within the carbon market.

In a second instance, we address this question by proposing a structural vector

autoregressive (SVAR) model of the EU ETS carbon market that, for the first time,

facilitates the joint identification of the simultaneous forces of demand and supply

underlying the market for emissions. By accounting for possible reverse causality between

the price and quantity of emissions and industrial economic activity, our framework

also reflects the views of policymakers when deciding whether to revise EU ETS given

the current state of the physical and economic climates. To address concerns relating

to imperfect identifying information about the true values of the underlying structural

(semi-)elasticities, we formally represent our identifying assumptions using Bayesian prior

distributions. This strategy builds on the state-of-the-art framework for estimating SVAR

models with the Bayesian methods of Baumeister and Hamilton (2015) and subsequent

work that argues for the merits of this explicit approach to model identification over

traditional methods (Baumeister and Hamilton, 2020, 2022a). It also avoids common

errors when estimating elasticities using SVAR models (Baumeister and Hamilton, 2022b),

thereby facilitating reliable estimates of the short-run (semi-)elasticities of the supply

and demand curves in the market for emissions, and quantifying the drivers of emission

reductions since the EU ETS’s inception.

The model framework allows us to provide the first historical account of the relative

contributions of demand and supply side factors in driving emissions covered by EU ETS.
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Our main result is that emission supply restrictions set out by the EU ETS framework

were the most important factor, reducing emissions by 46% between the introduction of

the carbon market in January 2005 and December 2021. However, our results reveal that

two distinct emission demand factors have also played a key role. In particular, demand

from higher industrial economic activity increased emissions by 15% in the same period.

However, this increase was more than offset by an emission reduction of 21% driven by

other demand factors, which, we argue, primarily reflect the demand to transition to a

low-carbon economy facilitated by firms reducing their dependence on fossil fuels due

to behavioural changes and climate policies other than the EU ETS. Finally, we show

that the results are robust to different model specifications, and that our preferred model

framework, separating between supply, transition demand and industrial activity demand,

gives more realistic results than a model aggregating the two demand shocks into one.

The rest of the paper is structured as follows. Section 2 presents the data used in our

empirical study, reviews the history of the EU ETS and describes the prevailing emission

supply and demand forces. Section 3 describes the empirical framework used to model

these simultaneous market forces. Section 4 presents and discusses the results, and section

5 concludes.

2 The EU ETS

The EU ETS was introduced in 2005 with the objective of reducing GHGs emissions

of carbon-intensive industries such as electricity and heat generation, petroleum refining

and the production of metals, cement, paper or bulk chemicals. In this paper, we focus

on verified industrial emissions under the current scope of the EU ETS, and disregard

emissions from inner-European aviation due to its special treatment and introduction at

a later stage. Other sectors, such as agriculture and transportation (apart from inner-

European aviation), are currently not covered by the EU ETS. We also restrict our

attention to the 19 Eurozone countries, which form a close economic entity and have

been part of the EU ETS from its introduction in January 2005 until the end of our

sample in December 2021. Overall, the cap and trade system covered between 38% and

47% of the total carbon emissions in the Eurozone throughout the sample period.
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2.1 A Brief Chronology of the EU ETS

The real price of EUAs and the quantity of emissions produced in this period are shown

in the top panel of Figure 1.1 We observe that emissions have steadily declined over the

sample period, with substantial drops during the 2008 Global Financial Crisis (GFC) and

the more recent COVID-19 pandemic period. This suggests that demand-side factors play

a key role in driving emissions over the sample period.

Figure 1 also highlights the four phases that the EU ETS has undergone since its

inception (European Commission, 2022a). Phase 1 (2005-07) was a pilot phase that

was primarily designed to establish a carbon market and an associated price for carbon.

During this phase, only CO2 emissions were covered by the EU ETS, while further GHGs

were added in subsequent phases. In the first months after the introduction of the carbon

market, emissions slightly declined and the carbon price reached its first peak of around

30e per tonne of CO2-equivalent in 2006. However, the market collapsed subsequently

and the EUA price reverted back to zero since the quantity of supplied emission allowances

outstripped demand (Ellerman and Buchner, 2008). Consequently, market participants

saved the acquired but unused EUAs for future use or resale. The build-up of the allowance

surplus can be seen in the bottom panel of Figure 1, where we plot the cumulative quantity

of unused EUAs over the sample period. As an exemption from the rule, the unused EUAs

of the pilot phase could not be transferred to Phase 2, which strongly contributed to the

collapse of the carbon price.

Phase 2 (2008-12) can be viewed as a policy correction phase in which the oversupply

issues of Phase 1 were addressed by tightening the cap on emissions and allowing again for

EUAs to be saved for future use or resale across the phases. The adjustments lifted the

carbon price back up to the 30e price observed in 2006, and emissions strongly declined.

In 2008, the total number of unused allowances was even negative. This can only happen

if companies receive their allocation of allowances for the subsequent year before they have

1Emissions covered by the EU ETS are only reported since its start in 2005. To initialize our model
and maximize the sample coverage we therefore backcast emissions to 2003. This is done through a
counterfactual in which we compute the quantity of emissions that would have fallen under the EU ETS
in 2003 and 2004 based on the share of total emissions covered by the EU ETS across the years 2005-
2007. We also follow Känzig (2023) and temporally disaggregate the annual frequency emissions data
to a monthly frequency using the Chow and Lin (1976) method. Since no EUA price for emissions is
readily available for the whole period, we proxy the price with spot prices and short-term futures, which
tend to co-move very closely. The nominal price was then deflated by the Euro area harmonised index
of consumer prices (HICP). Details of all data sources and transformations are provided in the Online
Appendix.
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Figure 1: Data depicting the EU ETS.
Note: The upper panel shows GHG emissions in the Eurozone countries that are covered by
the European emission trading system (black line, left axis) and the real EUA price (red line,
right axis). The lower panel shows the industrial production index of the Eurozone countries
(seasonally and calendar-adjusted with the base year 2015, left axis) and the total amount of
unused EUAs in the carbon market between 2005 and 2020 (right axis). The phases are reflective
of major policy changes in the EU ETS legislation (European Commission, 2022a).

to submit EUAs covering their emissions of the past year. Hence, companies can borrow

from future EUA allocations. Two defining episodes of this period were the GFC and

the associated European Debt Crisis (EDC). Both events led to a substantial fall in the

EUA price and emissions as the demand for emissions collapsed due to lower industrial

production (as shown by the black line in the bottom panel of Figure 1). This collapse

in economic activity led to a hoarding of EUAs from near zero at the end of 2008 to

around two billion by 2013. A further reason for the accumulation of allowances was the

possibility for firms to offset emissions by buying a limited amount of international credits

(certified removals of atmospheric GHGs) instead of using EUAs.

Phase 3 (2013-2020) covers the aftermath of the GFC and EDC, during which EU

policymakers attempted to deal with the excessive surplus of unused EUAs. In this period,

international credits must be exchanged for EUAs to avoid additional emission supply.

The distribution of a large share of allowances was also postponed between 2014 and 2016

in an effort to reduce the back-loading of allowances and stabilise the carbon price. The
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retention resulted in a slight gradual increase in the price of allowances and a reduction

in the quantity of emissions and unused EUAs. Nevertheless, the carbon price remained

low until 2017 despite the reduced supply of allowances. In 2019, the EU established the

Market Stability Reserve to adjust the total amount of auctioned allowances based on

pre-defined rules to increase the carbon price and provide more stable incentives for green

investments (European Commission, 2022b).

Finally, Phase 4 (2021-2030) has, so far, been limited to the aftermath of the most

recent pandemic period. As shown in Figure 1, the Covid-19 crisis at the beginning of 2020

led to a massive drop in economic activity, which reduced emissions enormously. However,

while emissions collapsed by one-third, the EUA price dipped only slightly, presumably

due to the option of saving unused allowances for the future. Perhaps most stark is the fact

that the aftermath of the Covid-19 pandemic has seen the EUA price surge to a historical

high of just over 70e, despite the quantity of emissions stabilising at its pre-pandemic

level. The soaring carbon price might be explained by several factors, including a faster

reduction of the EU ETS cap relative to the previous phases, an increased intervention

by the Market Stability Reserve by preserving a greater quantity of EUAs (see Revision

for Phase 4 by the EU Commission), an increased electricity generation by coal due to

high natural gas prices, and an increased energy demand due to the economic recovery

after the Covid-19 crisis.

This brief chronology of the European carbon market highlights four key reasons why

its supplied quantity of emissions is not bound to the cap on allowances set by the EU ETS:

First, EUAs that are not redeemed in a given year can be saved for future use or resale.

Second, firms might receive the next period’s allocation of EUAs before they must balance

their emissions, allowing them to borrow EUAs from the future. Third, international

credits were temporarily used in addition to EUAs. Fourth, the Market Stability Reserve

allows policymakers to adjust the quantity of EUAs for price stabilization purposes.

2.2 The Market for Emissions: Supply and demand shocks

Conventional wisdom might suggest that the observed emission reductions under the EU

ETS are entirely driven by the supply constraints set out by the ETS’s cap on the quantity

of EUAs. Indeed, if all EUAs were used in the period in which they were issued, then

the quantity of emissions would equal the quantity of supplied EUAs. In such a case, the
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perfectly inelastic supply constraint set in the market for EUAs would map one-to-one

into a perfectly inelastic supply schedule in the associated market for emissions. However,

the brief chronology presented in the previous subsection provides strong evidence that, in

practice, the market generally emits well under or above the cap set by the EU ETS. This

wedge between the actual quantity of emissions and the cap of the EU ETS framework

points towards flexibility in the supply of emissions. Specifically, the maximum possible

quantity of emissions in a given period is not determined by the emissions cap, but instead

driven by an effective cap, which consists of the aggregated quantity of allowances provided

by the ETS’s cap, the surplus of unused EUAs from previous periods, the Market Stability

Reserve’s intervention, the possibility of borrowing from future periods, and international

credits. Furthermore, the previous supply factors are likely price-sensitive. For example,

market participants will sell more of their stocked EUAs if the EUA price is high, and

the Market Stability Reserve will retain more allowances if the EUA price is low. Thus,

the supply schedule is not perfectly inelastic, suggesting the market operates along the

upward-sloping portion of the supply curve. This implies that the market price and

quantity of emissions are determined by both the supply and demand of emissions.

While emission supply in the European carbon market is solely governed by the setup

of the EU ETS, emission demand depends on several factors. As previously indicated,

the main contributor to emissions is industrial economic activity as the EU ETS covers

primarily the carbon-intensive industry. If economic activity unexpectedly collapses as,

for example, during the GFC, then emissions decline substantially (Declercq et al., 2011;

Bel and Joseph, 2015). However, other demand-side factors could also lead to lower

emissions even if industrial economic activity remained constant.

For instance, consumers, producers and investors might change their behaviour as they

become increasingly aware of the detrimental effects of emissions. Investors might direct

more capital to green investments, consumers might voluntarily pay a premium for low-

carbon products and producers might voluntarily replace high-carbon products with low-

carbon alternatives. Furthermore, governments might implement climate policies other

than carbon pricing for the industrial sector to support the transition to a low-carbon

economy. Such climate policies include subsidies for the development and implementation

of green technologies and the regulation and prohibition of certain fossil fuels or emission

levels. Both behavioural changes and climate policies other than the EU ETS decrease
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the demand for emission, but do not necessarily impair industrial economic activity.

On the contrary, investors reducing the capital costs for green investments, consumers

paying voluntarily a green premium for products and subsidies for the development and

implementation of green technology might even increase industrial economic activity.

With this in mind, we focus on two distinct demand factors that can shift emissions

in the European carbon market: industrial economic activity and transition demand

– encompassing behavioural changes, climate policies other than the EU ETS, and

potentially further unaccounted factors. Next, we discuss the identification strategy to

disentangle these two emission demand shocks and the emission supply shocks.

3 Empirical Framework

3.1 Modelling the European Emission Market

The discussion in Section 2 suggests that the EU ETS carbon market can be described

with n = 3 monthly variables: the log-growth of verified emissions qt, the first-difference

of the EUA price pt and the log-growth of the industrial production index yt. The effective

sample period begins with the start of the EU ETS in January 2005 and ends with the

latest available data in December 2021. All data sources and details on transformations

are provided in the Online Appendix. The structural relationships of demand and supply

in the EU ETS carbon market are mapped with the following three equations:

qt = α+
12pt + b′1xt−1 + u1t (1)

qt = α−22pt + α+
23yt + b′2xt−1 + u2t (2)

yt = α−32pt + b′3xt−1 + u3t (3)

in which xt−1 contains an intercept and twelve lags of the three variables of interest.

Equation (1) represents the supply of emissions, which increases with the EUA price

as indicated by the positive sign above the supply semi-price elasticity coefficient α+
12. If

the supply curve is perfectly inelastic then α12 = 0, while α12 > 0 suggests an upward-

sloping supply curve. As discussed in Section 2, the positive semi-price elasticity is a

consequence of the mechanism through which an increase in the EUA price stimulates the

sales of saved allowances, the provision of international credits and the release of more
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allowances through the Market Stability Reserve. The average reduction in the supply of

emission allowances, that is, the decreasing cap set by the EU ETS, is primarily captured

by the constant of this equation, which is embedded in xt−1. Any variation in emissions

that is not covered by the described structural relationships or the lags is captured by the

emission supply shock u1t.

Equation (2) describes the demand for emissions, which is downward sloping, as

indicated by the negative semi-price elasticity α−22. The negative sign captures the idea

that a higher EUA price causes firms to reduce emission intensive production, which is

reflected in a lower demand for emissions. The coefficients α+
12 and α−22 allow emission

demand and supply to react simultaneously on EUA price changes. To allow for the fact

that increased industrial economic activity necessarily generates emission demand (see

Section 2), we introduce the production elasticity α+
23 that is restricted to be positive.

The structural error u2t of equation (2) therefore captures shocks to emissions demand

that are orthogonal to the EUA price and industrial economic activity. Later on, when

discussing the results, we present evidence suggesting that this shock primarily captures

variation in emissions caused by the replacement of fossil fuel-based energy by renewable

energy, thereby reflecting the demand to transition to a low-carbon economy. Hence, we

refer to u2t as a transition demand shock.2 The transition to a low-carbon economy is

expected to occur rather slowly and steadily instead of abruptly. Therefore, much of the

transition is likely determined by its average speed, which is captured by the constant of

this equation that is embedded in xt−1.

Finally, equation (3) models industrial economic activity, which decreases with

the EUA price due to increased input costs for the industry as indicated by the

semi-price elasticity of industrial production α−32. Industrial activity does not depend

contemporaneously on emissions as they are not relevant input factor for production.

Still, changes in emissions can affect industrial production, but only indirectly through

the carbon price. All unaccounted changes in equation (3) form the shock to industrial

economic activity u3t. This shock changes the demand for emissions in the context of our

model, and therefore, we refer to it as industrial activity demand shock.

The model setup implies that the emission supply shock u1t is the only source shifting

2While this shock could also reflect other factors related to emission demand, such as a changes in
consumer/firm behavior that are not related to the transition to a low-carbon economy, in Section 4 we
provide strong evidence that it primarily reflects transition demand.
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the emission supply curve, whereas the emission demand curve can be shifted by two

shocks, the transition demand shock u2t and the industrial activity demand shock u3t. All

three shocks can change the quantity and price of emissions so long as α+
12, α

−
22 and α−23

are not equal to zero.

3.2 SVAR Representation

For estimation purposes, it is important to note that the system of equations (1)-(3) has

the following structural vector autoregressive (SVAR) representation

Ayt = Bxt−1 + ut, with ut ∼ i.i.d. N(0,D), (4)

where yt = (qt, pt, yt)
′, A is the structural impact matrix, B is the coefficient matrix

on elements of xt−1, and ut = (u1t, u2t, u3t)
′ is a vector of independent and identically

distributed Gaussian shocks with mean zero and a diagonal covariance matrix D. The

structural relationships of yt are summarised by

A =


1 −(α+

12) 0

1 −(α−22) −(α+
23)

0 −(α−32) 1

 . (5)

It is well known that the contemporaneous impact of the structural shocks is also linked

to the inverse of the impact matrix H = A−1, which is determined by

H =
1

α12 − α22 − α23α32


−α22 − α23α32 α12 α12α23

−1 1 α23

−α32 α32 α12 − α22

 .
Given the imposed sign restrictions on the four coefficients, α+

12, α
−
22, α

+
23 and α−32, we

can infer the pre-determined signs of the elements of H to evaluate if they align with our

theoretical reflections about the three shocks.
+ + +

− + +

+ − +

 (6)
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The signs of matrix H indeed match the theoretical presumptions of how the supply,

transition demand and industrial activity demand shocks (sorted by column) affect

emissions, the EUA price and industrial production (sorted by row). For example, the

first column shows that a positive emission supply shock - an unexpected provision of

more EUAs on the market - increases emissions and decreases the EUA price, which, in

turn, increases industrial production due to lower input costs for firms.

In choosing a VAR system to model the European carbon market, our approach relates

to the recent paper by Känzig (2023). Two important dimensions differ, however. First,

we investigate supply- and demand-side factors that drove the observed reduction in

emissions, while Känzig (2023) examines the effect of the carbon price shock. Second,

we propose a combination of sign and exclusion restrictions to identify both supply and

demand shocks underlying the emissions market, while Känzig (2023) uses an instrument

to identify the sole impact of a supply-side driven carbon price shock. The two studies

can therefore be viewed as complementary since they address different questions but refer

to the same carbon market.

3.3 Priors

The conventional approach to structural identification required scholars to treat some

selected parameter values as known with absolute certainty while treating the remaining

parameter values as being completely unknown. However, this approach eliminates

the incorporation of foundational economic theory into the analysis. For instance, in

most markets, it is typically “known” a priori (or at least strongly believed) that the

supply curve is upward-sloping and the demand curve is downward-sloping. Here we

follow a recent trend in the literature and make our identifying assumptions explicit by

specifying them through Bayesian priors (Baumeister and Hamilton, 2015, 2020, 2022a).

Importantly, this approach also avoids common errors when estimating elasticities using

SVAR models (Baumeister and Hamilton, 2022b), thereby facilitating reliable estimates

of the (semi-)elasticities of the supply and demand curves in the emissions market.

To the best of our knowledge, there are no microeconometric estimates of the (semi-)

elasticities in (5). Hence, we express our identifying assumptions through a prior p(A),

which consists of truncated Student’s t-distributions that are independently imposed on

each element of A. The sign restrictions are motivated by the aforementioned theoretical
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considerations in the emissions market: an upward-sloping supply curve (α12 ≥ 0), a

downward-sloping demand curve (α22 ≤ 0), higher industrial economic activity increases

emissions (α23 ≥ 0), and higher carbon prices depress industrial economic activity (α32 ≤

0). Information about the shape of the distribution is expressed through the location, scale

and degrees of freedom (df) parameters. To accommodate the conventional perspective

of a perfectly inelastic supply curve, we take a conservative stance and locate mass of the

prior p(α12) at zero while leaving sufficient probability mass between 0 and 1 to allow for

a (non-perfectly) inelastic supply of emissions (shape of 0.2 and df of 3). Since emission

demand may react contemporaneously to variations in the EUA price, we locate the prior

p(α22) at -0.1 while allowing for higher or lower elasticity (shape of 0.2 and df of 3).

This means that, on average, a 1e increase in the EUA price leads to a 0.1 percentage

point (pp) decrease in emissions demand on impact. A similar rationale is used for the

remaining two elasticities. For the case of p(α23), we specify a unitary elastic relationship

(location at 1.0) while allowing for possible deviations (scale of 0.3 and df of 3). This is

motivated by the reflection that a 1% increase in industrial economic activity will likely

lead to a similarly large increase in emissions. Lastly, we set the location of the prior for

the semi-price elasticity of industrial production p(α32) to -0.1 with a shape of 0.2 and 3

df.

The priors for the remaining model parameters are in line with those used elsewhere

in the literature on estimating VAR models with Bayesian methods (e.g., Baumeister

and Hamilton, 2019; Aastveit et al., 2021). Specifically, independent Gamma priors are

placed on the diagonal elements of the structural variance matrix D, and independent

Minnesota-type Normal priors on the rows bi of the lagged coefficient matrix B.

4 Results

The SVAR model is estimated using the state-of-the-art Metropolis-within-Gibbs Monte

Carlo Markov Chain (MCMC) algorithm of Baumeister and Hamilton (2015). We use a

total of one million draws from the posterior distribution. The first half of these draws is

discarded as a burn-in period, while the second half is used for inference. In the following,

we present our main results on structural parameter estimates, impulse response functions
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and a historical decomposition of the observed emission reductions under the EU ETS.3

4.1 Structural Parameter Estimates

Figure 2 displays the previously described prior distributions for the four structural

parameters of A in red and the estimated posterior distributions in gray.
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Figure 2: Prior and posterior distributions.

Note: Prior (red) and posterior (gray) distributions of the elements of A after discarding the

burn-in.

In all four cases, the posterior distributions clearly differ from the prior distributions,

indicating that the data is informative about these values. Despite centering the prior

for the semi-price elasticity of emission supply α12 at zero, the posterior distribution has

a location of around 0.6, suggesting that the supply curve is inelastic, but not perfectly

inelastic as often assumed. The posterior of the semi-price elasticity of emission demand

α22 is tightly concentrated around the location of -0.2, which is lower than the prior

location of -0.1. The industrial activity elasticity of emission demand α23 is much more

centered around the location of 1.0 than presumed in the prior. The decreased variance

suggests that the data increases the confidence around this parameter value relative to the

prior. Finally, the semi-price elasticity of industrial activity is, with a location of about

3In the Online Appendix we provide additional results on convergence diagnostics, a historical
decomposition of the EUA Price, and the structural shocks series. There we also provide robustness
checks on alternative lag lengths and the impact of the Covid-19 period. We find that results are mainly
similar to those presented here, and that our conclusions from the paper remain unchanged.
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-0.3, lower than the prior location of -0.1.

4.2 The Dynamics of Emission Supply and Demand

Figure 3 shows the cumulated impulse responses of emissions, the EUA price and industrial

production (sorted by row) during the 18 months after an emission supply shock, a

transition demand shock and an industrial activity demand shock (sorted by column).

As policymakers are primarily interested in the causes and consequences of emission

reductions, we re-scale all three shocks to cause a 1% decrease in emissions on impact.

The response is given by the posterior median, while the dark and light gray areas denote

the 68% and 90% credible intervals.

The first column shows that an unexpected tightening of emission supply by 1%

increases the EUA price by 1.35e on impact and 1.86e after one and a half years. This

increase in the carbon price leads to higher input costs for firms and dampens industrial

production by 0.68% in the short run and 0.54% in the long run. This finding is in line

with the results of Känzig (2023).

The second column suggests a transition demand shock that reduces emissions by 1%,

elicits a 1.21e decrease in the EUA price on impact and 2.11e in the long term. This effect

could result from, for example, increased energy generation from renewables, technological

progress or a change in consumers and firm behavior. For instance, an unexpectedly large

amount of sun, wind or rain or technological progress in harvesting their power would

increase energy production from renewable sources, which can be employed at almost

zero marginal cost. This results in a substitution away from fossil fuels since they have

marginal costs larger than zero, thereby reducing emissions and decreasing the carbon

price. At the same time, lower energy and carbon prices significantly increase industrial

economic activity in the short run. Similarly, a sudden shift in preferences or unexpected

subsidies accelerating the green transition reduces the demand for emissions and the EUA

price. Consumers and producers paying voluntarily a premium for low-carbon goods and

services and subsidies for low-carbon investments are also positive for producers and will

increase industrial production, as depicted in the bottom graph of the second column.

The third column shows that an industrial activity demand shock, which reduces

industrial production by 1.18% and emissions by 1% on impact, decreases the EUA price

by 1.21e. This result is in line with the observation that emissions and carbon prices under
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Figure 3: Cumulated impulse responses.
Note: Median cumulated impulse responses are shown in black with the 68% and 90% credible
intervals in dark and light gray.

the EU ETS decreased during times of economic crises, such as the GFC, or shutdowns

of the industry, as in the recent Covid-19 crisis.

4.3 The Drivers of Carbon Emissions

We now turn to our primary research question and identify the proportion of emission

reductions in the European carbon market driven by the supply and two distinct demand

factors. Figure 4 shows the median historical decomposition of the cumulated change in

emissions compared to December 2004, the month before the start of the EU ETS. The

black line shows the percentage change in emissions over this period, whereas the bars

depict the relative contribution of each factor in driving emissions. Note that we include

the constants of the equations (1)-(3) in the historical decomposition since they play an

important role in our model (see section 3.1), possess a structural interpretation, and

facilitate an investigation into what drives the entire path of the emission reductions.

In essence, the entire emission supply is directly or indirectly regulated by the EU

ETS framework, which allows interpreting the contribution of emission supply as the

contribution of the EU ETS. The cap and trade system reduced emissions strongly right
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Figure 4: Historical decomposition of the accumulated change in emissions.

after its introduction. However, the oversupply of emission allowances towards the end

of the first phase nearly canceled the initial effect of the ETS. During 2007, supply

restrictions were essentially not binding, and excess allowances could not be transferred

to the following period, which is also reflected in the near-zero carbon price at this time.

At the beginning of the second phase in 2008, restrictions from the EU ETS were effective

again as the EU decreased the cap strongly based on the experience from the pilot phase.

Between 2008 and 2017, the EU ETS steadily decreased emissions, totaling to a reduction

of 18% in this period. In the following years, the cap and trade system reduced emissions

even faster. Until the end of 2021, the EU ETS alone reduced emissions by 46% (in terms

of log-growth).

Focusing on each phase of the EU ETS, c.f., Figure 1, we find, on average, supply

shocks contributed to emissions reductions of around 2% in phase one, 14% in phase two,

25% in phase three, and 7% so far in phase four. While the results for phases three and

four are new to the literature, our estimates for the first and second phases are close to

those reported in a recent study by Dechezleprêtre et al. (2023). The finding that the

second phase had a relatively larger impact on emissions reductions compared to the first

phase is also in line with other microeconometric studies (e.g., Colmer et al. (2022) and

Petrick and Wagner (2014)). Overall, these results suggest that the EU ETS has achieved

substantial emission reductions in its covered industrial sectors. Hence, we confirm the

presumptions of Stiglitz et al. (2017) that carbon pricing is “an indispensable part of a

strategy for reducing emissions”. However, it is not the only driver of emission reductions.
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The contribution of emission demand to the development of emissions is a two-sided

story. First, the contribution of emission demand from industrial economic activity

depends strongly on the business cycle. During times of economic boom, industrial

activity increases emissions as more fossil fuel-based energy is demanded and more carbon-

emitting goods are produced. Conversely, industrial activity reduces emissions during

times of crisis due to decreased production and demand for energy. For example, similarly

to Declercq et al. (2011) and Bel and Joseph (2015), we find that economic activity

strongly reduced emissions during the GFC. We also find that this result holds for the

EDC and the more recent Covid-19 crisis. Moreover, we find that the magnitude of

emission reductions also depends on the severity of the crisis. Overall, demand from

industrial activity has increased emissions by 15% since the introduction of the EU ETS.

Second, the historical contribution of transition demand is entirely different as it

reduced emissions steadily over time. This observation aligns well with the narrative of

capturing factors such as the increased deployment and usage of renewable energy sources

and changes in the behavior of consumers, which are expected to evolve relatively slowly

and rather steadily over time. Interestingly, the years following the two well-known United

Nations Climate Change Conferences, the Copenhagen Summit in December 2009 and the

Paris Climate Accords in December 2015, are characterized by large emission reductions

from transition demand. Throughout the considered horizon, transition demand reduced

the EU ETS-covered emission by 21%, which is slightly more than the emission demand

from industrial economic activity increased emission.

4.4 Transition Demand

To examine the validity of our interpretation of the transition demand factor, we

investigate whether its contribution to emission reductions co-varies with the annual

share of fossil fuels in the primary energy consumption across the Euro area countries.

If our interpretation is valid, the fossil fuel share should correlate closely with emission

reductions from transition demand over the sample period. This is exactly what we see

in Figure 5. Thus, while we cannot entirely exclude the possibility that other factors may

drive transition demand to some extent, we conclude that the shock primarily reflects the

transition to a low-carbon economy via a reduction of fossil fuels in the energy mix.

Finally, to examine the importance of transmission demand further, we provide an
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Figure 5: Corroborative evidence for transition demand interpretation.
Contribution of transition demand to emission reductions (gray) and the share of fossil fuels in
primary energy consumption (black). The data on energy consumption is obtained from the BP
Statistical Review of World Energy 2022 for the Eurozone countries except Malta, which was
not available.

extension where we use a simplified two-equation version of the model where we collapse

transition demand and industrial activity demand into a single emission demand factor.

Doing so, we find that now emission demand plays a relatively larger role than our

main results. This difference likely stems from the missing differentiation between the

more price-elastic responses of industrial activity and the less price-elastic responses of

transition demand. We therefore conclude by considering our three variable setup as the

superior model, implying that all three shocks: emission supply shocks, transition demand

shocks, and industrial activity demand shocks, matter. Results are reported in the Online

Appendix.

5 Conclusion

In this paper, we introduce an integrated modeling framework for the European carbon

market that disentangles the simultaneous forces of emission supply and demand. We

begin by showing that the supply curve in the market for emissions is not perfectly

inelastic but upward-sloping. This price-sensitivity of emission supply results from several

features of the EU ETS regulation, which include the possibility of saving allowances

for use or sale in the future, the use of international credits, borrowing allowances from

future allocations, and price stabilization mechanisms. As a result, the price and quantity

of emissions can be shifted by both emission demand- and supply-side forces. After
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establishing this fact, we provide a new structural vector autoregressive framework for

modeling the simultaneous supply and demand forces in the emissions market. We find

that emission supply restrictions set out by the EU ETS have been responsible for the

vast majority of emissions reductions. However, we also show that two distinct emission

demand factors have played a crucial role. Demand from industrial economic activity

has generally increased emissions since the introduction of the EU ETS. However, this

increase has been outweighed by other demand factors that reflect primarily the transition

to a low-carbon economy.
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Jaraite-Kažukauske, J. and Di Maria, C. (2016). Did the EU ETS make a difference? an
empirical assessment using Lithuanian firm-level data. The Energy Journal, 37(1).

Känzig, D. R. (2023). The unequal economic consequences of carbon pricing. Technical
report, National Bureau of Economic Research.

Petrick, S. and Wagner, U. J. (2014). The impact of carbon trading on industry: Evidence
from german manufacturing firms. Available at SSRN 2389800.

Quilis, E. M. (2021). Temporal disaggregation, https://www.mathworks.com/

matlabcentral/fileexchange/69800-temporal-disaggregation. MATLAB
Central File Exchange (Accessed on 12 November 2021).

Stiglitz, J. E., Stern, N., Duan, M., Edenhofer, O., Giraud, G., Heal, G. M., La Rovere,
E. L., Morris, A., Moyer, E., Pangestu, M., et al. (2017). Report of the high-level
commission on carbon prices.
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—Online Appendix—
Not for publication

A Data Sources and Analysis

A.1 Sources

Variable Source Sample

Emissions

Verified industrial EU ETS emissions (EA19) European Environment Agency 2005-2021

Total net emission (UNFCCC, EA19) European Environment Agency 2003-2020

Unused EUA allowances of (EU ETS area) European Environment Agency 2005-2020

Subsectoral emissions (NACE2, EA19) Eurostat 2008-2020

Gross value added

Gross value added (EA19) Eurostat 2019

EUA prices

Various EUA spot and future prices European Environment Agency M1/2005-M7/2011

EUA future (ICE-ECX CFI TRc1) Datastream M4/2005-M12/2021

EEX primary auction spot prices European Energy Exchange M1/2012-M12/2021

Industrial production

Industrial production index (seasonally and

calendar-adjusted, 2015=100, EA19)

Eurostat M1/2003-M12/2021

Subsectoral industrial production indices

(NACE2, seasonally and calendar-adjusted,

2015=100, EA19)

Eurostat M12/2002-M12/2021

Consumer prices

HICP for all item (2015=100, EA19) Eurostat M1/2003-M12/2021

HICP for energy items (2015=100, EA19) Eurostat M1/2003-M12/2021

Fossil fuel consumption

Oil, natural gas and coal and total primary

energy consumption (EA19 without Malta)

BP Statistical Review of World

Energy 2022

2005-2021
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A.2 Temporal Disaggregation of Emissions

In this Appendix we provide details on the temporal disaggregation procedure used to

convert the annual greenhouse gas emissions data to a monthly frequency.
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Figure 6: Temporal disaggregation of emissions.
Note: Annual greenhouse gas emissions (gray) and monthly temporally disaggregated greenhouse
gas emissions (black).

Temporal Disaggregation. Figure 6 shows the annual series of verified EU ETS

emissions of the industry (under the current scope) in gray. To obtain a monthly

series of emissions, we follow Känzig (2023) in temporally disaggregating the annual

series with the Chow-Lin method provided by the code package of Quilis (2021). By

construction, the low-frequency variation of emissions is determined by the annual series.

In contrast, the latent high-frequency variation of the temporally disaggregated series is

estimated with two monthly indicators that are highly relevant for the development of

emissions - the harmonised index of consumer prices for energy items and the industrial

production index. While Känzig (2023) uses the usual gross value added-weighted

industrial production index, we suggest using an emission-weighted industrial production

index for EU ETS-covered sectors to add more precision. The construction of this index

is described below.

Emission-weighted industrial production index. The emission-weighted

industrial production index is constructed using six subsectors that are covered by the

EU ETS. Together, these six subsectors account for 89.2% of the industry’s emissions but

only for 24.5% of the industry’s gross value added in 2019. The emission weights for the

index construction are based on the average share of emissions of the subsectors across

the years 2008 to 2020, the years for which data on subsectoral emissions was available.
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Subsector NACE Code Share of

industry

emissions in

2019

Share of

industry

gross value

added in

2019

Index

emission

weight

Manuf. of paper and paper products C17 2.2% 1.9% 2.3%

Manuf. of coke and refined petroleum products C19 8.8% 0.9% 8.6%

Manuf. of chemicals and chemical products C20 9.6% 5.9% 9.6%

Manuf. of other non-metallic mineral products C23 11.8% 2.9% 12.2%

Manuf. of basic metals C24 10.6% 2.7% 10.7%

Electr., gas, steam and air cond. supply D or D35 46.2% 10.2% 56.5%

Total - 89.2% 24.5% 100%

Table 1: Subsectors and index weights.

Note: Considered industrial subsectors used to construct emission-weighted industrial

production index for the EU ETS.

Figure 7 provides a comparison of the original gross value added-weighted industrial

production index and our emission-weighted industrial production index for the EU ETS-

covered sectors.
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Figure 7: Comparison of the two industrial production indices.
Note: While Känzig (2023) uses the original gross value added-weighted industrial production
index, we use our constructed emission-weighted industrial production index to temporally
disaggregate the annual verified industrial emissions.
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A.3 EUA Spot and Future Prices
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Figure 8: Constructed EUA price in comparison to available spot and future prices.

Figure 8 displays our constructed EUA price (thick red line) in comparison to EUA

(auction) spot and future prices. Ideally, we would use end-of-month spot prices to

represent the current price of EUAs in each month. Unfortunately, spot prices (dashed-

dotted lines) are not available for the whole period. Moreover, spot prices from auctions

(yellow dashed-dotted line, obtained from European Energy Exchange) are not auctioned

every day. Hence, some end-of-month spot prices are rather mid-month prices. For

example, auctions in December end roughly one week before Christmas. Hence, we rely

on the Intercontinental Exchange’s (ICE) Futures 1-month ahead from the second phase

on as they are frequently traded and hence, they provide reliable end-of-month EUA

prices.

In general, EUA (auction) spot and 1-month ahead or current-year future prices co-

vary closely. Future prices several years ahead are typically slightly above future prices

for the current years, which represents the markup for future price certainty. Moreover,

EUA futures for the second phase of the EU ETS (green lines, Futures 2008-2011) differ

from EUA prices of the first phase (turquoise lines, Futures 2005-2007) as EUAs of the

first phase could not be transferred to the second phase.
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B Additional Results

B.1 Prior Distributions

Parameter Description Restriction LocationScale df

α12 semi-price elasticity of emission supply ≥ 0 0 0.2 3

α22 semi-price elasticity of emission demand ≤ 0 -0.1 0.2 3

α23 industrial activity elasticity of emission demand ≥ 0 1.0 0.3 3

α32 semi-price elasticity of industrial activity ≤ 0 -0.1 0.2 3

Table 2: Prior distributions on the elements of matrix A.

Note: In each case we specify Student’s t(µ, σ, ν) distributions in which µ is the location

parameter, σ is the scale parameter, and ν is the degree of freedom parameter.

B.2 Convergence Diagnostics

We present evidence for the convergence of the parameter draws with the help of two

diagnostic tools. Figure 9 shows the trace for the sample draws of the four structural

parameters α12, α22, α23 and α32 of matrix A, suggesting that the algorithm sufficiently

explores the parameter space with a high degree of statistical efficiency.
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Figure 9: Trace of the sample draws.
Note: Shows the sample draws of the structural parameters of matrix A after discarding the
burn-in.

Table 3 shows the results for the convergence diagnostic test of Geweke (1992) using

the first 10% and last 50% of the sample parameter draws that are used for inference.

The results suggest that the posterior means of all four parameters are stable across the

draws.
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χ2 probability for equality of means

Decay in autocov. function α12 α22 α23 α32

4% taper 0.615 0.908 0.441 0.638

8% taper 0.624 0.912 0.473 0.663

15% taper 0.611 0.911 0.461 0.650

Table 3: Convergence diagnostics following Geweke (1992).

B.3 Historical Decomposition of the EUA Price Development
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Figure 10: Historical decomposition of the accumulated change in the EUA price.
Note: Accumulated change is denoted in Euro per EUA.

Figure 10 shows the historical contribution of emission supply (red), transition demand

(light gray) and industrial economic activity (dark gray) to the development of the EUA

price (black line). It shows that the EU ETS limiting emission supply is by far the largest

contributor, but emission demand also plays a substantial role. Emission demand due to

increased industrial economic activity has driven up the EUA price. For example, it built

up pressure on the EUA price during the boom before the financial crisis, but reduced

pressure on the EUA price during the financial crisis and during the following Euro crisis.

In contrast, transition demand has decreased the EUA price slowly and continuously over

time. The latter finding is also in line with the interpretation of a rather slow and steady

deployment of renewables and slow changes in consumer behavior.
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B.4 Shock Series
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Figure 11: Shock series.
Note: Each graph reports the median shock series (black line) and their credible intervals (gray
area).
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C Robustness checks

C.1 Robustness to Lag Length

We check for robustness with regard to the number of lags included in the equations (1)-

(3). Instead of twelve lags, we control for six or eighteen lags. All other settings remain

as in the main analysis. Overall, we find that the lag length influences neither our results

nor their interpretation.

C.1.1 Six Lags

Figure 12 shows the posterior distributions of the structural parameters, which are very

close in location and shape to the posterior distributions of the main results.
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Figure 12: Robustness test with six lags: prior and posterior distributions.

Figure 13 shows the trace of the draws of the structural parameters after discarding

the burn-in, indicating that the MH MCMC sufficiently explores the parameter space

with a high degree of statistical efficiency.

Figure 14 displays the median impulse responses and the credible intervals, which are

very similar in shape and magnitude to those of the main results.

Figure 15 shows the historical decomposition of emissions, which is similar to main

results.
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Figure 13: Robustness test with six lags: Trace of the sample draws.
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Figure 14: Robustness test with six lags: Accumulated impulse responses.
Note: Graphs display the median accumulated impulse responses (black) and their 68% and
90% credible intervals (dark and light gray).
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Figure 15: Robustness test with six lags: Historical decomposition of the
accumulated change in emissions.
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C.1.2 Eighteen Lags

Figure 16 shows the posterior distributions of the structural parameters, which are very

close in location and shape to the posterior distributions of the main results.
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Figure 16: Robustness test with eighteen lags: prior and posterior distributions.
Note: Posterior distributions of the elements of A are shown after discarding the burn-in.

Figure 17 shows the trace of the draws of the structural parameters after discarding

the burn-in, suggesting that the algorithm sufficiently explores the parameter space with

a high degree of statistical efficiency.
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Figure 17: Robustness test with eighteen lags: Trace of the sample draws.
Note: Sample draws for the matrices A after discarding the burn-in.
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Figure 18 displays the median impulse responses and the credible intervals, which are

very similar in shape and magnitude to the main results.

0 6 12 18

-1

0

1

E
m

is
si

o
n
s

(%
)

Emission supply shock

0 6 12 18

-1

0

1
Transition demand shock

0 6 12 18

-1

0

1
Industrial activity demand shock

0 6 12 18

-5

0

5

E
U

A
p
ri

c
e

(E
U

R
)

0 6 12 18

-5

0

5

0 6 12 18

-5

0

5

0 6 12 18

Months

-2

-1

0

1

IP
(%

)

0 6 12 18

Months

-2

0

2

4

0 6 12 18

Months

-2

-1

0

1

Figure 18: Robustness test with eighteen lags: Accumulated impulse responses.
Note: Graphs display the median accumulated impulse responses (black) and their 68% and
90% credible intervals (dark and light gray).

Figure 19 shows the historical decomposition of emissions, which is very similar to

main results.
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Figure 19: Robustness test with eighteen lags: Historical decomposition of the
accumulated change in emissions.
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C.2 Robustness to the Covid-19 Period

To check for robustness regarding the recent Covid-19 crisis, we end the sample in

December 2019 and repeat the empirical analysis with otherwise same settings. All of our

drawn conclusions again remain.

Figure 20 shows the posterior distributions of the structural parameters, which are

similar to those found with the full sample.
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Figure 20: Robustness test excluding Covid-19 period: prior and posterior
distributions.
Note: Posterior distributions of the elements of A are shown after discarding the burn-in.

Figure 21 shows the trace of the draws of the structural parameters after discarding

the burn-in, suggesting that the algorithm sufficiently explores the parameter space with

a high degree of statistical efficiency.
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Figure 21: Robustness test excluding Covid-19 period: Trace of the sample draws.
Note: Sample draws for the matrices A after discarding the burn-in.
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Figure 22 displays the median impulse responses and the credible intervals. While

some minor differences in magnitude can be observed, the overall inference is in line with

our main results.
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Figure 22: Robustness test excluding Covid-19 period: Accumulated impulse
responses.
Note: Graphs display the median accumulated impulse responses (black) and their 68% and
90% credible intervals (dark and light gray).

Figure 23 shows the historical decomposition of emissions, suggesting the contribution

of the EU ETS was more significant in the pre-Covid-19 sample than in the full sample.
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Figure 23: Robustness test excluding the Covid-19 period: Historical decomposition
of the accumulated change in emissions.
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C.3 A Two-Variable System Without Industrial Production

To provide an impression of how the results would look like if we collapsed industrial

activity demand and transition demand to only one demand factor, emission demand, we

leave out industrial production from the model by removing equation (3) from the system

of equations and removing yt from equation (2). This changes the interpretation of the

shock in equation (2), which now captures unexpected changes of all emission demand

factors. The two variable setup therefore provides an impression of the additional insights

that we gain from splitting general emission demand into two main emission demand

factors.

Figure 24 shows the posterior distributions of the structural parameters. While the

posterior of α12 is similar in location to the main results of the three-variable system

but has a slightly larger shape, α22 changes considerably and is rather similar to α32 of

the three-variable system. This is little surprising as we expect that most of the price

elasticity in emission demand is due to price adjustments in industrial economic activity.
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Figure 24: Robustness test for two-variable system: prior and posterior
distributions.
Note: Posterior distributions of the elements of A are shown after discarding the burn-in.

Figure 25 shows the trace of the draws of the structural parameters after discarding

the burn-in, suggesting that the algorithm sufficiently explores the parameter space with

a high degree of statistical efficiency.
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Figure 25: Robustness test for two-variable system: Trace of the sample draws.
Note: Sample draws for the matrices A after discarding the burn-in.

Figure 26 displays the median impulse responses and the credible intervals. The

impulse responses of the emission supply shock are similar in magnitude to those of the
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three-variable system, but uncertainty around the median response increased considerably.

The impulse responses of the emission demand shock are mostly similar to those of the

industrial activity demand shock from the three-variable system, which confirms the idea

that industrial activity shocks are the most important emission demand shocks.
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Figure 26: Robustness test for two-variable system: Accumulated impulse
responses.
Note: Graphs display the median accumulated impulse responses (black) and their 68% and
90% credible intervals (dark and light gray).

Figure 27 shows the historical decomposition of the development of emissions, which

suggests that emission demand plays a more important role than in the three-variable

system. Moreover, note that emission demand in the two-variable system reflects the

variation of transition demand plus industrial activity demand. Thus, this difference

likely stems from the missing differentiation between the more price-elastic responses of

industrial activity and the less price-elastic responses of transition demand. We therefore

consider our three variable setup as the more accurate and informative choice.
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Figure 27: Robustness test for two-variable system: Historical decomposition of the
accumulated change in emissions.
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