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Abstract

This paper applies the common stochastic trends representation approach to the time series

of total factor productivity and the relative price of investment to investigate the relationship

between neutral technology and investment-specific technology. The permanent and transitory

movements in both series are estimated efficiently via MCMC methods using band matrix algo-

rithms. The results indicate that total factor productivity and the relative price of investment

are, each, well-represented by an integrated process of order one. In addition, their time series

share a common trend component that we interpret as reflecting changes in General Purpose

Technology. These results suggest that (1) the traditional view of assuming that neutral tech-

nology and investment-specific technology follow independent processes is not supported by the

features of the time series and (2) advances in information and communication technologies are

general purpose technological progress that drive the trend in aggregate TFP in the United

States.
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1 Introduction

Real Business Cycle (RBC) models and their modern versions in Dynamic Stochastic General Equi-

librium (DSGE) models have enjoyed a great success since they were first introduced to the literature

by Kydland and Prescott (1982). These models are the standard framework used by academics and

policymakers to investigate macroeconomic questions and analyze the effects of monetary and fiscal

policies. Despite their popularity in academic and policy circles, these models have also had their

fair share of criticism. They typically have a weak amplification and internal propagation mech-

anism to match some crucial characteristics that we observe in the time series of macroeconomic

variables. These features include, but are not limited to, the positive serial correlation in the growth

of output for instance, and the bell-shaped responses of the macro variables to exogenous shocks.

Early studies like Cogley and Nason (1995) extend the standard RBC model with an integrated

process of technology and adjustment costs and lags, and show that the model rely largely on the

exogenous process of technology to improve its fit of the time series characteristics. Modern and

more advanced DSGE model include various sources of short-run rigidities as habits in consumption,

investment adjustment costs, and costly factor utilization. Also, it is quite common to incorporate

in these models non-stationary components identified as uncorrelated and integrated or uncorrelated

and integrated smooth trend processes of neutral technology and/or investment-specific technology.

While these latter additions appear rather suitable, they are quite arbitrary, driven by convenience

and tractability, and most importantly not supported by existing time series evidence.

This paper aims to contribute two points. The first point is that the non-stationary component

of neutral technology and investment-specific technology should be modelled each as following an

integrated process of order one or ARIMA(0,1,0) process. In fact, the choice of such specification in

the DSGE literature is quite dispersed. While several papers like Justiniano et al. (2011), Schmitt-

Grohé and Uribè (2011), and Kaihatsu and Kurozumi (2014) adopt an ARIMA(1,1,0) specification,

other notable studies as Smets and Wouters (2007) and Fisher (2006) impose either a trend sta-

tionary ARMA (1,0) process or an integrated ARIMA(0,1,0) process, respectively. Through our

exploration of the literature, we find that this disconnected practice might be facilitated by the lack

of guidance from time series evidence, and we hope to fill in this gap. Our second point is that these

non-stationary components are not orthogonal to each other. While this orthogonality assumption is
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conventional in most DSGE models, there appears to exist some evidence pointing otherwise. Basu

et al. (2013) question the basis of this assumption by demonstrating that consumption-specific pro-

ductivity shocks (which may be interpreted as neutral technology shocks) and investment-specific

productivity shocks are correlated. Chen and Wemy (2015) arrive at the same conclusion using

results from a structural VAR.

To make these two points, we use an Unobserved Component (UC) framework to decompose the

time series for the Relative Price of Investment (RPI) and Total Factor Productivity (TFP) into two

unobserved components: one unobserved component that reflects permanent or trend movements in

the series, and the other that captures transitory movements in the series. Then, given the stock of

evidence from Basu et al. (2013) and Chen and Wemy (2015) that appears to indicate that these two

series might be related in the long-run, we specify that RPI and TFP share a common unobserved

trend component. We label this component as General Purpose Technology (GPT), and we argue

that it reflects spillover effects from innovations in Information and Communication Technologies

(ICT) to aggregate productivity.

These two points are not entirely new in the literature. In particular, the relationship between

neutral technology and investment-specific technology has been explored in Schmitt-Grohé and

Uribè (2011) and Benati (2013) through the lenses of statistical tests of units root and co-integration.

Using quarterly U.S. data over the period from 1948.I to 2004.IV , Schmitt-Grohé and Uribè (2011)

find that RPI and TFP contain a non-stationary stochastic component which is common to both

series. In other words, TFP and RPI are co-integrated, which implies that neutral technology

and investment-specific technology should be modeled as containing a common stochastic trend.

Therefore, Schmitt-Grohé and Uribè (2011) estimate a DSGE model that imposes this result and

identify shocks to the common stochastic trend in neutral and investment specific productivity.

They find that the shocks play a sizable role in driving business cycle fluctuations. Specifically,

the common shocks explain three fourth of the variances of output and investment growth and

about one third of the predicted variances of consumption growth and hours worked. However,

Benati (2013) expresses some doubt about the co-integration results in Schmitt-Grohé and Uribè

(2011). He claims that TFP and RPI are most likely not co-integrated, and he traces the origin

of this finding of co-integration to the use of an inconsistent criteria for lag order selection in

the Johansen procedure. When he uses the SIC or HQ criterion, the Johansen test points to no
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co-integration. Yet, he establishes that although the two series may not be co-integrated, they

may still share a common stochastic non-stationary component. Specifically, Benati (2013) uses an

approach proposed by Cochrane and Sbordone (1988) that searches for a statistically significant

extent of co-variation between the two series’ long-horizon differences. The basis of this approach

is that whatever may happen at short-to-medium run horizons for the two non-stationary series

that are suspected to be related in the long-run but are not co-integrated, the two series’ long-

horizon differences should exhibit a statistically significant extent of co-variation. Therefore, Benati

(2013) suggests that evidence points towards a common I(1) component inducing a negative co-

variation between TFP and RPI at long horizons. While the UC framework that we propose in

this study complements the investigation in Schmitt-Grohé and Uribè (2011) and Benati (2013),

it distances itself from statistical tests and their associated issues of lag order and low power,

and offers more flexibility and greater benefits. First, our framework nests all competing theories

of the univariate and bivariate properties of RPI and TFP. In fact, the framework incorporates

Schmitt-Grohé and Uribè (2011)’s result of co-integration and Benati (2013)’s findings of the long-

run positive comovement as special cases. In that sense, we are able to evaluate the validity of all

the proposed specifications of neutral technology and investment-specific technology in the DSGE

literature. In addition, it is grounded on economic theory. In particular, we demonstrate that our

UC framework may be derived from the neoclassical growth model used by studies in the growth

accounting literature, e.g Greenwood et al. (1997), Oulton (2007), and Greenwood and Krusell

(2007), to investigate the contribution of embodiment in the growth of aggregate productivity. As

such, we may easily interpret the idiosyncratic unobserved component of RPI and TFP, and their

potential interaction from the lenses of a well-defined economic structure.

Using the time series of the logarithm of (the inverse of) RPI and TFP from 1959.II to 2019.II

in the United States, we estimate our model through Markov chain Monte Carlo (MCMC) methods

developed by Chan and Jeliazkov (2009) and Grant and Chan (2017). A novel feature of this

approach is that it builds upon the band and sparse matrix algorithms for state space models,

which are shown to be more efficient than the conventional Kalman filter-based algorithms. The

results indicate that the trend component in (the inverse of) RPI and TFP is better captured by

an integrated process of order one. While the trend component is not common to both series, it

appears that (the inverse of) RPI and TFP share a common stochastic trend component which
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captures a positive long-run covariation between the series. We argue that the common stochastic

trend component is a reflection of General Purpose Technological (GPT) progress from innovations

in information and communications technologies. In fact, using industry-level and aggregate-level

data, several studies, such as Cummins and Violante (2002), Basu et al. (2004), and Jorgenson et

al. (2007), document that improvements in information communication technologies contributed to

productivity growth in the 1990s and the 2000s in essentially every industry in the United States.

Through our results, we are also able to confirm that changes in the trend of RPI have lasting

impact on the long-run developments of TFP.

These findings have important implications for the modelling and estimation of DSGE models.

They suggest that researchers may need to re-evaluate the approach of specifying and identifying

the underlying processes of technology in DSGE models. DSGE models are typically built to

explain the cyclical movements in the data. Therefore, preliminary data transformation are required

before the model is estimated. As we discussed above, one alternative entails arbitrarily building

into the models unit root non-cyclical components of neutral technology and investment-specific

technology and filtering the raw data using these model-based transformation. Nonetheless, this

requires some knowledge of the number, and nature of the exogenous processes driving the non-

cyclical components. As discussed in Ferroni (2011) and Canova (2014), specification errors may

plague the estimation of the structural parameters. In regards to business cycle fluctuations, a

group of parameters of great interest are those related to the exogenous processes (persistence

and volatility). Significant differences in their estimates imply that impulse responses, and the

contribution of the structural shocks to the volatility of the observable variables, may vary and

lead to erroneous conclusions about the sources of fluctuations. Through our findings on the time

series characteristics of RPI and TFP, we hope to provide some clarification and direction on the

specification of such model-based trend specifications.

2 Model

Fundamentally, there are multiple potential representations of the relationship between the trend

components and the transitory components in RPI and TFP. A plausible representation is based on

the concept that investment-specific technology may be interpreted as General Purpose Technology
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(GPT). Simply put, GPT can be defined as a new method that leads to fundamental changes in the

production process of industries using it, and it is important enough to have a protracted aggregate

impact on the economy. As discussed extensively in Jovanovic and Rousseau (2005), electrifica-

tion and information technology (IT) are probably the most recent GPTs so far. In fact, using

industry-level data , Cummins and Violante (2002), and Basu et al. (2004) find that improvements

in information communication technologies contributed to productivity growth in the 1990s in es-

sentially every industry in the United States. Moreover, Jorgenson et al. (2007) show that much of

the TFP gain in the United States in the 2000s originated in industries that are the most intensive

users of information technology. Specifically, the authors look at the contribution to the growth

rate of value added and aggregate TFP in the United States in 85 industries. They find that the

four IT-producing industries (computer and office equipment, communication equipment, electronic

components, and computer services) accounted for nearly all of the acceleration of aggregate TFP

in 1995-2000. Furthermore, IT-using industries, which engaged in great IT-investment in the period

1995-2000, picked up the momentum and contributed almost half of the aggregate acceleration in

2000-2005. Overall, the authors assert that IT-related industries made significant contributions to

the growth rate of TFP in the period 1960-2005. Similarly, Gordon (1990), and Cummins and

Violante (2002) have argued that technological progress in areas such as equipment and software

have contributed to a faster rate of decline in RPI; a fact that has also been documented in Fisher

(2006) and Justiniano et al. (2011).

Given this empirical evidence, we propose that RPI and TFP can each be represented as the

sum of a permanent component, an idiosyncratic component, and a transitory component in the

following fashion:

zt = τt + cz,t, (1)

xt = γτt + τx,t + cx,t, (2)

where zt is the logarithm of RPI, xt is the logarithm of TFP, τt is the common trend component

in RPI and TFP, τx,t is the idiosyncratic trend component in TFP, and cz,t and cx,t are the corre-

sponding idiosyncratic transitory components. The parameter γ captures the relationship between

the trends in RPI and TFP, and symbolizes the GPT argument.
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We assume that the first differences of the trend components are modeled as following stationary

processes,

∆τt = (1− ϕµ)ζ11(t < TB) + (1− ϕµ)ζ21(t ≥ TB) + ϕµ∆τt−1 + ηt, (3)

∆τx,t = (1− ϕµx)ζx,11(t < TB) + (1− ϕµx)ζx,21(t ≥ t0) + ϕµx∆τx,t−1 + ηx,t, (4)

where 1(A) is the indicator function for the event A, and TB is the index corresponding to the time

of the break at 1982.I.

Finally, following Morley et al. (2003) and Grant and Chan (2017), the transitory components

are assumed to follow AR(2) processes:

cz,t = φz,1cz,t + φz,2cz,t + εz,t, (5)

cx,t = φx,1cx,t + φx,2cx,t + εx,t. (6)

The presence of the common stochastic trend component in RPI and TFP captures the argument

that innovations in information technologies have been the main driver of the trend in RPI and have

also been a major source of the growth in productivity in the United States. The addition of the

idiosyncratic trend component in TFP is meant to capture the potential effect of other factors,

besides innovations in IT, on the growth in TFP. As mentioned in Jorgenson et al. (2007), non-IT

industries (examples of such industries are farms, agricultural services and forestry, fishing) also

showed a continuous acceleration in their contribution to the growth rate of aggregate TFP, from

a net contribution of 0.23 percent for 1960-1995 to 0.37 percent for 1995-2000 and 0.66 percent for

2000-2005.

A complementary interpretation of the framework originates from the growth accounting lit-

erature associated with the relative importance of embodiment in the growth of technology. In

particular, Greenwood et al. (1997), Greenwood and Krusell (2007) and Oulton (2007) show that

the non-stationary component in TFP is a combination of the trend in neutral technology and the

trend in investment specific technology. In that case, we may interpret the common component,

τt, as the trend in investment-specific technology, τx,t as the trend in neutral technology, and the

parameter γ as the current price share of investment in the value of output. In Appendix A.1, we
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show that our UC framework may be derived from a simple neoclassical growth model.

We argue that this UC framework offers more flexibility as its nests all the univariate and

bivariate representations of RPI and TFP in the theoretical and empirical literature. Specifically,

consider the following cases:

1. If γ = 0, then trends in RPI and TFP are independent of each other, and this amounts to

the specifications adopted in Justiniano et al. (2011), Schmitt-Grohé and Uribè (2011), and

Kaihatsu and Kurozumi (2014).

2. If γ = 0, ϕµ = 0 and ϕµx = 0, then the trend components follow a random walk plus drift,

and the resulting specification is equivalent to the assumptions found in Fisher (2006).

3. If γ 6= 0, ϕµx = 0 and σηx = 0, then RPI and TFP are co-integrated as argued in Schmitt-

Grohé and Uribè (2011):

(a) If ζx 6= 0, then the idiosyncratic trend in TFP is a linear deterministic trend, and RPI

and TFP are co-integrated around a linear deterministic trend.

(b) If ζx = 0, the RPI and TFP are co-integrated around a constant term.

4. If γ > 0 (γ < 0), then the common trend component has a positive effect on both RPI and

TFP (a positive effect on RPI and a negative effect on TFP), which would imply a positive

(negative) covariation between the two series. This is essentially the argument in Benati

(2013)

5. If ϕµ = 1 and ϕµx = 1. This gives rise to the following smooth evolving processes for the

trend:

∆τt = ζ11(t < TB) + ζ21(t ≥ TB) + ϕµ∆τt−1 + ηt, (7)

∆τx,t = ζx,11(t < TB) + ζx,21(t ≥ t0) + ϕµx∆τx,t−1 + ηx,t. (8)

Through model comparisons, we are able to properly assess the validity of each of these competing

assumptions and shed light on the appropriate representation between RPI and TFP.
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3 Bayesian Estimation

In this section we provide the details of the priors and outline the Bayesian estimation of the unob-

served components model in (1)–(6). In particular, we highlight how the model can be estimated

efficiently using band matrix algorithms instead of conventional Kalman filter based methods.

We assume proper but relatively noninformative priors for the model parameters γ, φ =

(φz,1, φz,2, φx,1, φx,2)
′,ϕ = (ϕµ, ϕµx)′, ζ = (ζ1, ζ2, ζx,1, ζx,2)

′, σ2 = (σ2η, σ
2
ηx , σ

2
z , σ

2
x)′ and τ0. In par-

ticular, we adopt a normal prior for γ: γ ∼ N (γ0, Vγ) with γ0 = 0 and Vγ = 1. These values imply

a weakly informative prior centered at 0. Moreover, we assume independent priors for φ, ϕ, ζ and

τ0:

φ ∼ N (φ0,Vφ)1(φ ∈ R), ϕ ∼ N (ϕ0,Vϕ)1(ϕ ∈ R), ζ ∼ N (ζ0,Vζ), τ0 ∼ N (τ00,Vτ0),

where R denotes the stationarity region. The prior on the AR coefficients φ affects how persistent

the cyclical components are. We assume relatively large prior variances, Vφ = I4, so that a priori

φ can take on a wide range of values. The prior mean is assumed to be φ0 = (1.3,−0.7, 1.3,−0.7)′,

which implies that each of the two AR(2) processes has two complex roots, and they are relatively

persistent. Similarly, for the prior on ϕ, we set Vϕ = I2 with prior mean ϕ0 = (0.9, 0.9)′, which

implies that the two AR(1) processes are fairly persistent. Next, we assume that the priors on

σ2η, σ
2
ηx , σ

2
z and σ2x are inverse-gamma:

σ2i ∼ IG(νi, Si),

where i = η, ηx, z, x.

Next, we outline the posterior simulator to estimate the model in (1)–(6) with the priors de-

scribed above. To that end, let τ = (τ1, τx,1, τ2, τx,2, . . . , τT , τx,T )′ and y = (z1, x1, . . . , zT , xT )′.

Then, posterior draws can be obtained by sequentially sampling from the following conditional

distributions:

1. p(τ , γ |y,φ,ϕ, ζ,σ2, τ0) = p(γ |y,φ,ϕ, ζ,σ2, τ0)p(τ |y, γ,φ,ϕ, ζ,σ2, τ0);

2. p(φ |y, τ , γ,ϕ, ζ,σ2, τ0);
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3. p(ϕ |y, τ , γ,φ, ζ,σ2, τ0);

4. p(σ2 |y, τ , γ,φ,ϕ, ζ, τ0);

5. p(ζ, τ0 |y, τ , γ,φ,ϕ,σ2);

Below we provide details of implementing Step 1. Other steps are relatively standard and the

technical details are given in Appendix A.5.

Step 1. Since τ and γ enter the likelihood multiplicatively, we sample them jointly to improve

efficiency of the posterior sampler. In particular, we first sample γ marginally of τ , followed by

drawing τ conditional on the sampled γ. The latter step is straightforward as the model specified

in (1)–(6) defines a linear state space model for τ . In what follows we derive the full conditional dis-

tribution of p(τ |y, γ,φ,ϕ, ζ,σ2, τ0). Then, we outline a Metropolis-Hastings algorithm to sample

γ marginally of τ .

To derive the conditional distribution p(τ |y, γ,φ,ϕ, ζ,σ2, τ0), note that by Bayes’ theorem we

have

p(τ |y, γ,φ,ϕ, ζ,σ2, τ0) ∝ p(y | τ , γ,φ,σ2)p(τ |ϕ, ζ,σ2, τ0),

where the conditional likelihood p(y | τ , γ,φ,σ2) and the prior p(τ |ϕ, ζ,σ2, τ0) are, respectively,

defined by the observation equations (1), (2), (5) and (6) and the state equations (3)-(4).

First, we derive the conditional likelihood p(y | τ , γ,φ,σ2). Letting c = (cz,1, cx,1, . . . , cz,T , cx,T )’

we can stack the observation equations (1)–(2) over t = 1, . . . , T to get

y = Πγτ + c,

where Πγ = IT ⊗

1 0

γ 1

. Here IT is the T -dimensional identity matrix and ⊗ is the Kronecker

product. Next, we stack (5)–(6) over t = 1, . . . , T to get

Hφc = ε,
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where ε = (εz,1, εx,1, . . . , εz,T , εx,T )′ and

Hφ =



I2 0 0 0 · · · 0

A1 I2 0 0 · · · 0

A2 A1 I2 0 · · · 0

0 A2 A1 I2 · · · 0

...
. . .

. . .
. . .

...

0 · · · 0 A2 A1 I2



with A1 =

−φz,1 0

0 −φx,1

 and A2 =

−φz,2 0

0 −φx,2

. Since the determinant of Hφ is one for

any φ, it is invertible. It follows that (c |φ,σ2) ∼ N (0, (H′φΣ−1ε Hφ)−1), where Σε = diag(σ2z , σ
2
x, . . . , σ

2
z , σ

2
x).

It then follows that

(y | τ , γ,φ,σ2) ∼ N (Πγτ , (H
′
φΣ−1ε Hφ)−1). (9)

Next, we derive the prior p(τ |ϕ, ζ,σ2, τ0). To that end, construct the T ×1 vector of indicators

d0 = (1(1 < TB), 1(2 < TB), . . . , 1(T < TB))′, and similarly define d1. Moreover, let

µ̃τ = d0 ⊗

 (1− ϕµ)ζ1

(1− ϕµx)ζx,1

+ d1 ⊗

 (1− ϕµ)ζ2

(1− ϕµx)ζx,2

+



(1 + ϕµ)τ0 − ϕµτ−1

(1 + ϕµx)τx,0 − ϕµxτx,−1

−ϕµτ0

−ϕµxτx,0

0

...

0



.

Then, we can stack the state equations (A.5)–(A.6) over t = 1, . . . , T to get

Hϕτ = µ̃τ + η,
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where η = (η1, ηx,1, . . . , ηT , ηx,T )′ and

Hϕ =



I2 0 0 0 · · · 0

B1 I2 0 0 · · · 0

B2 B1 I2 0 · · · 0

0 B2 B1 I2 · · · 0

...
. . .

. . .
. . .

...

0 · · · 0 B2 B1 I2



with B1 =

−(1 + ϕµ) 0

0 −(1 + ϕµx)

 and B2 =

ϕµ 0

0 ϕµx

. Since the determinant of Hϕ is one

for any ϕ, it is invertible. It then follows that

(τ |ϕ, ζ,σ2, τ0) ∼ N (µτ , (H
′
ϕΣ−1η Hϕ)−1), (10)

where µτ = H−1ϕ µ̃τ and Ση = diag(σ2η, σ
2
ηx , . . . , σ

2
η, σ

2
ηx). Combining (9) and (10) and using stan-

dard regression results (see, e.g., Chan et al. 2019, pp.217-219), we have

(τ |y, γ,φ,ϕ, ζ,σ2, τ0) ∼ N (τ̂ ,K−1τ ),

where

Kτ = H′ϕΣ−1η Hϕ + Π′γH
′
φΣ−1ε HφΠγ , τ̂ = K−1τ

(
H′ϕΣ−1η Hϕµτ + Π′γH

′
φΣ−1ε Hφy

)
.

Since the precision matrix Kτ is banded — i.e., it is sparse and its nonzero elements are arranged

along the main diagonal — one can sample from p(τ |y, γ,φ,ϕ, ζ,σ2, τ0) efficiently using the pre-

cision sampler in Chan and Jeliazkov (2009).

Next, we outline a Metropolis-Hastings algorithm to sample γ marginally of τ . For that we need

to evaluate the integrated likelihood

p(y | γ,φ,ϕ, ζ,σ2, τ0) =

∫
R2T

p(y | τ , γ,φ,σ2)p(τ |ϕ, ζ,σ2, τ0)dτ .
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Traditionally, this is done by using the Kalman filter. However, it turns out that we can obtain

an analytical expression of the integrated likelihood and evaluate it efficiently using band matrix

routines. Using a similar derivation in Chan and Grant (2016), one can show that

p(y | γ,φ,ϕ, ζ,σ2, τ0)

= (2π)−T |Σε|−
1
2 |Ση|−

1
2 |Kτ |−

1
2 e−

1
2(y′H′φΣ−1

ε Hφy+µ′τH′ϕΣ−1
η Hϕµτ−τ̂ ′Kτ τ̂).

(11)

The above expression involves a few large matrices, but they are all banded. Consequently, it can be

evaluated efficiently using band matrix algorithms; see Chan and Grant (2016) for technical details.

Finally, we implement a Metropolis-Hastings step to sample γ with the Gaussian proposal

N (γ̂,K−1γ ), where γ̂ is the mode of log p(y | γ,φ,ϕ, ζ,σ2, τ0) and Kγ is the negative Hessian eval-

uated at the mode.

We refer the readers to Appendix A.5 for implementation detail of other steps of the posterior

sampler.

4 Empirical Results

In this section we report parameter estimates of the bivariate unobserved components model defined

in (1)–(6). The data set consists of the time-series of the logarithm of (the inverse of) RPI and TFP

from 1959.II to 2019.II. RPI is computed as the investment deflator divided by the consumption

deflator, and it is easily accessible from the Federal Reserve Economic Database (FRED). While the

complete description of the deflators along with the accompanying details of the computation of the

series are found in DiCecio (2009), it is worth emphasizing that the investment deflator corresponds

to the quality-adjusted investment deflator calculated following the approaches in Gordon (1990),

Cummins and Violante (2002), and Fisher (2006). On the other hand, we compute TFP based on the

aggregate TFP growth, which is measured as the growth rate of the business-sector TFP corrected

for capital utilization. The capital utilization adjusted aggregate TFP growth series is produced by

Fernald (2014), and is widely regarded as the best available measure of neutral technology.1

First, we perform statistical break tests to verify, as has been established in the empirical liter-

1The data is updated on John Fernald’s webpage http://www.frbsf.org/economic-research/economists/john-
fernald/
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ature, that RPI experienced a break in its trend around the early 1982’s. Following the recommen-

dations in Bai and Perron (2003), we find a break date at 1982.I in the mean of the log difference

of RPI as documented in Fisher (2006), Justiniano et al. (2011), and Benati (2013). In addition,

a consequence of our specification is that RPI and TFP must share a common structural break.

Consequently, we follow the methodology outlined in Qu and Perron (2007) to test whether or not

the trends in the series are orthogonal2. The estimation results suggest that RPI and TFP might

share a common structural break at 1980.I. This break date falls within the confidence interval

of the estimated break date between the same two time series, [1973.I, 1982.III], documented in

Benati (2013). Therefore, the evidence from structural break tests does not rule out the presence

of a single break at 1982.I in the common stochastic trend component of RPI and TFP.

To jumpstart the discussion of the estimation results, we provide a graphical representation of

the fit our model as illustrated by the fitted values of the two series in Figure 1. It is clear from the

graph that the bivariate unobserved components model is able to fit both series quite well.

[Figure 1 about here.]

We report the estimates of model parameters in Table 1 and organize the discussion of our

findings around the following two points: (1) the cross-series relationship, and (2) the within-series

relationship.

4.1 The cross-series relationship between (the inverse of) RPI and TFP

We can evaluate the cross-series relationship through the estimated value of the parameter that

captures the extent of the relationship between the trends in RPI and TFP, namely, γ.

The estimated value of the parameter γ, (γ̂ = 0.592), is significantly different from zero. This

suggests that (the inverse of) RPI and TFP share a common stochastic component, and the tra-

ditional approach in macroeconomic theory of assuming that neutral and investment specific tech-

nology follow independent processes is clearly invalid. In addition, the size of γ̂ is quite large, and

it indicates that trends in (the inverse of) RPI and TFP are closely related such that permanent

2First, we test for the presence of a structural break in TFP following the recommendations in Bai and Perron
(2003). We find that the mean of the log difference in TFP exhibits a break at 1968.I; a date that is similar to
that documented in Benati (2013) who estimates the break date at 1968.II. Next, following the approach in Qu and
Perron (2007), we regress a vector of both, a series of RPI and a series of TFP, on a vector of constant, linear trends
and random errors. We use a trimming value ε = 0.20 and allow up to 3 breaks.
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changes in RPI have a strong long-run effect on TFP. These results are consistent with the view that

permanent changes in RPI might be representation of innovations in General Purpose Technology.

In fact, in the context of a DSGE framework, Schmitt-Grohé and Uribè (2011) identify two common

trend shocks via the assumption that RPI and TFP are co-integrated, and use impulse response

functions analysis to argue that one of the shocks possesses one of the crucial characteristics of

GPT: technological diffusion. Specifically, they find that the shocks generate an increase in both

investment-specific productivity (which is exactly identified with the inverse of RPI) and TFP in

the long-run, but a decline in both types of productivity during the initial transition. A similar

argument is made in Chen and Wemy (2015) who identify investment-specific technological shocks

and neutral technological shocks sequentially, and show that both shocks (1) induce almost identi-

cal dynamics to macro variables, (2) are highly correlated, (3) explain more than 50 percent of the

forecast error variance in TFP, and (4) generate a small initial decrease in TFP but a permanent

increase in TFP in the long-run. Hence, they interpret the response of TFP as an indication that

capital-embodied technology is a form on General purpose technology. Last, but not least, the fact

that the estimated value is positive implies a positive long-run co-variation between (the inverse of)

RPI and TFP as argued in Benati (2013).

4.2 The within-series relationship in RPI and TFP

The within-series relationship is concerned with the relative importance of the permanent component

and the transitory component in (the inverse of) RPI and TFP. This relationship is captured via

the estimated values of (i) the drift parameters, ζ and ζx, (ii) the autoregressive parameters of the

permanent components in RPI and TFP, ϕµ and ϕµx , (iii) the autoregressive parameters of the

transitory components in RPI and TFP, φz,1, φz,2, φx,1 and φx,2, (iii) and the standard deviation

of the permanent and transitory components, ση, σηx , σz, and σx.

First, it is evident from Figure 2 that the estimated trend in RPI, τt, is strongly trending upward,

especially after the break at 1982.I. In fact, the growth rate of τt has more than doubled after

1982.I: as reported in Table 1, the posterior means of ζ1 and ζ2 are 0.004 and 0.009, respectively.

This is consistent with the narrative that the decline in the mean growth of RPI has accelerated

in the period after 1982.I, and this acceleration has been facilitated by the rapid price decline in

information processing equipment and software. In contrast, the estimated trend τx,t shows gradual
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decline after 1982.I — its growth rate decreases from 0.001 before the break to −0.003 after the

break, although both figures are not statistically different from zero. Overall, it appears that trends

in both series are captured completely by the stochastic trend component in RPI, and this piece

of evidence provides additional support that GPT might be an important driver of the growth in

TFP in the United States.

Moving on to the estimated autoregressive parameters of the permanent component, ϕ̂µ = 0.109

and ϕ̂µx = −0.053, we note that growths in RPI and TFP do not appear to be as serially correlated as

reported in the empirical literature. For instance, Justiniano et al. (2011) report a posterior median

value of 0.287 for the investment-specific technological process and 0.163 for neutral technology.

With regards to the AR(2) processes that describes the transitory components in RPI and TFP, the

estimated autoregressive parameters indicate that these components are relatively more persistent

than the growth components of the series.

Furthermore, the estimated values of the variance of the innovations lead to some interesting

observations. The variance of the idiosyncratic growth rate in TFP, σ2ηx = 5.04×10−5, is larger than

its counterpart for the transitory component, σ2x = 7.84× 10−6. On the other hand, the variance of

the growth rate in RPI, σ2η = 5.34× 10−6, is smaller than the variance of its transitory component,

σ2z = 1.79× 10−5.

Overall, these results seem to indicate that (i) transitory shocks are more persistent than growth

shocks, (ii) TFP growth shocks generate more variability than shocks to the growth rate of RPI,

and (iii) shocks to the transitory component of RPI are more volatile than shocks to the growth rate

of RPI. While these findings are qualitatively similar to results from estimated DSGE models, the

magnitude of the estimates differ quite significantly. Justiniano et al. (2010) is one notable study

which considers both growth and stationary neutral technology shocks and investment shocks, and

the authors report a standard deviation for the IST growth shock and the stationary marginal

efficiency of investment (MEI) shock of 0.6229 and 5.786, respectively. Since the autocorrelation

parameters of the underlying processes of technology and the standard deviation of their innovations

play a crucial role in the persistence and volatility of economic fluctuations, larger than necessary

estimated values may mistakenly attribute a relatively important portion of such fluctuations to

these shocks.
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[Figure 2 about here.]

[Table 1 about here.]

5 Model Comparison

In this section, we explore the fit of our bivariate unobserved components model defined in (1)–(6)

to alternative restricted specifications that encompass the various assumptions in the theoretical

and empirical literature. Therefore, our model constitutes a complete laboratory that may be used

to evaluate the plausibility of competing specifications.

We adopt the Bayesian model comparison framework to compare various specifications via the

Bayes factor. More specifically, suppose we wish to compare model M0 against model M1. Each

model Mi, i = 0, 1, is formally defined by a likelihood function p(y |θi,Mi) and a prior distribution

on the model-specific parameter vector θi denoted by p(θi |Mi). Then, the Bayes factor in favor of

M0 against M1 is defined as

BF01 =
p(y |M0)

p(y |M1)
,

where p(y |Mi) =
∫
p(y |θi,Mi)p(θi |Mi)dθi is the marginal likelihood under model Mi, i = 0, 1.

Note that the marginal likelihood is the marginal data density (unconditional on the prior distribu-

tion) implied by model Mi evaluated at the observed data y. Since the marginal likelihood can be

interpreted as a joint density forecast evaluated at the observed data, it has a built-in penalty for

model complexity. If the observed data is likely under the model, the associated marginal likelihood

would be “large” and vice versa. It follows that BF01 > 1 indicates evidence in favor of model

M0 against M1, and the weight of evidence is proportional to the value of the Bayes factor. For a

textbook treatment of the Bayes factor and the computation of the marginal likelihood, see, Chan

et al. (2019).

5.1 Testing γ = 0

In the first modified model, we impose the restriction that γ = 0, which essentially amounts to

testing the GPT theory. If the restricted model were preferred over the unrestricted model, then

the trends in RPI and TFP would be orthogonal, and the traditional view of specifying neutral
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technology and investment-specific technology would be well founded.

The posterior mean of γ is estimated to be about 0.59, and the posterior standard deviation is

0.5. Most of the mass of the posterior distribution is on positive values — the posterior probability

that γ > 0 is 0.9. To formally test if γ = 0, we compute the Bayes factor in favor of the baseline

model in (1)–(6) against the unrestricted version with γ = 0 imposed. In this case the Bayes factor

can be obtained by using the Savage-Dickey density ratio p(γ = 0)/p(γ = 0 |y).

The Bayes factor in favor of the baseline model is about 1.2, suggesting that even though there

is some evidence against the hypothesis γ = 0, the evidence is not strong. To better understand

this result, we plot the prior and posterior distributions of γ in Figure 3. As is clear from the figure,

the prior and posterior densities at γ = 0 have similar values. However, it is also apparent that

the data moves the prior distribution to the right, making larger values of γ more likely under the

posterior distribution. Hence, there seems to be some support for the hypothesis that γ > 0.

[Figure 3 about here.]

5.2 Testing ϕµ = ϕµx = 0

Next, we test the joint hypothesis that ϕµ = ϕµx = 0. In this case, the restricted model would allow

the trend component to follow a random walk plus drift process such that the growths in RPI and

TFP are constant. This would capture the assumptions in Fisher (2006).

Again the Bayes factor in favor of the baseline model against the restricted model with ϕµ =

ϕµx = 0 imposed can be obtained by computing the Savage-Dickey density ratio p(ϕµ = 0, ϕµx =

0)/p(ϕµ = 0, ϕµx = 0 |y). The Bayes factor in favor of the restricted model with ϕµ = ϕµx = 0 is

about 14. This indicates that there is strong evidence in favor the hypothesis ϕµ = ϕµx = 0. This is

consistent with the estimation results reported in Table 1 — the estimates of ϕµ and ϕµx are both

small in magnitude with relatively large posterior standard deviations. This is an example where

the Bayes factor favors a simpler, more restrictive model.

Despite restricting ϕµ = ϕµx = 0, this restricted model is able to fit the data very well, as shown

in Figure 4.

[Figure 4 about here.]
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5.3 Testing ϕµx = σ2
ηx = 0

Now, we test the joint hypothesis that ϕµx = σ2ηx = 0. This restriction goes to the heart of the

debate between Schmitt-Grohé and Uribè (2011) and Benati (2013). If the restricted model held

true, then RPI and TFP would be co-integrated as argued by Schmitt-Grohé and Uribè (2011). On

the other hand, if the restrictions were rejected, we would end with a situation where RPI and TFP

are not co-integrated, but still share a common component as shown in Benati (2013).

Since zero is at the boundary of the parameter space of σ2ηx , the relevant Bayes factor cannot be

computed using the Savage-Dickey density ratio. Instead, we compute the log marginal likelihoods

of the baseline model and the restricted version with ϕµx = σ2ηx = 0. The marginal likelihoods of

the two models are obtained by using the adaptive importance sampling estimator known as the

cross-entropy method proposed in Chan and Eisenstat (2015).

The marginal likelihood of the baseline model is 1714, compared to 1532 of the restricted version.

This means that the Bayes factor in favor of the baseline model is 182 (in log scale), suggesting

overwhelming support for the unrestricted model. This shows that we can reject the joint hypothesis

ϕµx = σ2ηx = 0. This result along with the fact that γ > 0 implies a positive covariation between RPI

and TFP. While this conclusion is identical to the result in Benati (2013), our approach sets itself

apart in the sense that it provides a quantitative measure of the relationship between the trends in

RPI and TFP, and it offers an interpretation that may be easily traced to economic theory.

5.4 Testing ϕµ = ϕµx = 1

Lastly, we test the joint hypothesis that ϕµ = ϕµx = 1. Since the value 1 is at the boundary

of the parameter space of both ϕµ and ϕµx , the relevant Bayes factor cannot be computed using

the Savage-Dickey density ratio. We instead compute the log marginal likelihoods of the baseline

model and the restricted version with ϕµ = ϕµx , again using the cross-entropy method in in Chan

and Eisenstat (2015). The former value is 1714 and the latter is 1347, suggesting overwhelming

support for the baseline model. Hence, we can reject the joint hypothesis ϕµ = ϕµx = 1. These are

consistent with the estimation results reported in Table 1. Specifically, under the baseline model,

ϕµ and ϕµx are estimated to be, respectively, 0.109 and −0.053, and both values are far from 1.
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6 Discussion and Implications

The estimation of our bivariate unobserved components model defined in (1)–(6) provides us with

a set of results that we summarize as follows:

1. The trends in RPI and TFP appear to be better represented by integrated processes of order

one.

2. RPI and TFP are not co-integrated but they share a common stochastic trend component.

3. The common stochastic trend component has a positive effect on both RPI and TFP, which

suggests a positive covariation between the two series.

4. The common stochastic trend component may be interpreted as General Purpose Technolog-

ical progress emanating from advances in information and communication technology.

5. The GPT progress appears to have long-run effect on the growth rate of TFP in the United

States.

These results have important ramifications for theoretical and empirical models of economic

fluctuations, and we devote the rest of this section to the discussion of such implications. Starting

with theoretical models of business cycles, it is apparent from our results that the univariate pro-

cesses of neutral technology and investment-specific technology should be modelled as integrated

processes. Now, the question is “Should the process be an ARIMA(0,1,0) or an ARIMA(1,1,0)?”.

Based on studies in the literature, the answer is not very clear. Cogley and Nason (1995) demon-

strate that Real Business Cycles (RBC) models with integrated exogenous (technological) processes

tend to fit the data better, but subsequent studies have differed in their choice of specifications. For

instance, Fisher (2006) imposes a unit process for neutral technology and investment-specific tech-

nology shocks, and, in more recent papers like Justiniano et al. (2011), it is common to encounter

an ARIMA (1,1,0) process. As we point out in the introduction, the choice of such specifications is

driven, among other things, by the desire to match the autocorrelation function for output growth

and the hump-shaped responses of macro variables to exogenous shocks. If output growth is pos-

itively correlated as documented in the literature, the ARIMA (1,1,0) process will be the obvious

choice since a unit root process would produce zero autocorrelation. Cogley and Nason (1995)
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validates this interpretation and show that an RBC model with an ARIMA (1,1,0) process for neu-

tral technology shock generates an autocorrelation function that is similar to its data counterpart.

However, the authors also assert that models with either unit root technology shocks or ARIMA

(1,1,0) shocks have great success at matching the permanent impulse response function of output,

but perform poorly in terms of generating the hump-shaped transitory impulse responses. Based

on the results from our framework, we make the following suggestion: if the econometrician is at-

tempting to match the autocorrelation function in macro variables, then technology shocks should

be modelled as following an ARIMA (1,1,0) process. On the other hand, if the econometrician

wants the theoretical technology shocks to capture as close as possible the characteristics of their

empirical counterparts, the an ARIMA (0,1,0) process would be preferable.

Furthermore, our findings clearly indicate that the conventional approach of assuming indepen-

dent trends processes of neutral technology and investment-specific technology is not supported by

the characteristics of the time series. The way we incorporate such trends in business cycle models

have great implications for the identification of the sources of macroeconomic fluctuations. First,

the choice of the built-in non-stationary component naturally dictates the way we transform the raw

data prior to the estimation of the structural parameters. For instance, in Justiniano et al. (2011),

the DSGE model features unit root processes for neutral technology and investment-specific tech-

nology, such that the observed variables are the log-difference of output, consumption, investment

and real wages (along with the level of hours, inflation and the Federal Funds rate). This approach

implicitly imposes a rigid equivalence between the model assumption and the data. Such equivalence

could potentially lead to specifications errors in the estimation of the structural parameters which

depend on the time series characteristics of the non-stationary component. Furthermore, we observe

that when the trend components of both technological processes are assumed to be co-integrated

as Schmitt-Grohé and Uribè (2011) argue, then shocks to the common stochastic trend in neutral

and investment specific productivity play a sizable role in driving business cycle fluctuations: three

fourth of the variances of output and investment growth and about one third of the predicted vari-

ances of consumption growth and hours. On the other hand, when the processes are assumed to

be independent as in Justiniano et al. (2011), shocks to the marginal efficiency of investment are

the single most important source of macroeconomic fluctuations as they explain between 60 and 85

percent of the variance of output, hours and investment at business cycle frequencies.
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These two issues are closely related to the views expressed in Ferroni (2011) and Canova (2014)

about the specification and estimation of DSGE models. Both authors recommend an alternative

one-step estimation approach that allows to specify a reduced-form representation of the trend

component, which is ultimately combined to the DSGE model for estimation. Our results about

the time series characteristics of RPI and TFP should provide some guidance on the specification

of such reduced-form models.

With regards to empirical models, our findings highlight some of the econometric shortcomings of

long-run VAR models of technology. Beginning with Blanchard and Quah (1989), many subsequent

studies have identified technology shocks via the assumption that “the unit root in productivity

arises exclusively from neutral technology shocks”. The estimation of our model reveals that there

are at least two technology-related sources of the unit root in TFP; therefore, we must rethink

identification strategies based on such long-run restrictions.

7 Conclusion

The aim of the paper is to evaluate the long-run relationship between the relative price of investment

(RPI) and total factor productivity (TFP). Using the unobserved component decomposition that

allows us to separate a trend component from a cyclical component in a time series, we specify a

model that features a common component between the trends component in RPI and TFP. The

main result of the analysis is that RPI and TFP share a common stochastic trend component that

may drive the mean growth rate of aggregate productivity in the United States. As documented in

many studies, we view this common stochastic trend component as capturing permanent changes

in General Purpose Technology from innovations in information and communication technologies.

In addition, our findings reveal that neutral technology and investment-specific technology should

not be modelled as being generated by two separate and independent exogenous processes as it is

typically performed in the DSGE literature.
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Figure 1: Fitted values of ẑt = τt and x̂t = γτt + τx,t.

1950 1960 1970 1980 1990 2000 2010 2020
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

27



Figure 2: Posterior means of τt and τx,t.
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Figure 3: Prior and posterior distributions of γ.
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Figure 4: Fitted values of ẑt = τt and x̂t = γτt + τx,t of the restricted model with ϕµ = ϕµx = 0.
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Table 1: Posterior means and standard deviations of model parameters

posterior mean posterior std. dev. P(· > 0)

γ 0.592 0.500 0.90
ζ1 0.004 0.000 1.00
ζ2 0.009 0.000 1.00
ζx,1 0.001 0.002 0.70
ζx,2 -0.003 0.004 0.23
ϕµ 0.109 0.168 0.78
ϕµx -0.053 0.075 0.22
φz,1 1.456 0.074 1.00
φz,2 -0.568 0.075 0.00
φx,1 0.914 0.355 0.99
φx,2 -0.243 0.266 0.20
σ2z 1.79× 10−5 3.38× 10−6 1.00
σ2x 7.84× 10−6 3.83× 10−6 1.00
σ2η 5.34× 10−6 2.35× 10−6 1.00

σ2ηx 5.04× 10−5 7.42× 10−6 1.00
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A Appendix

A.1 Model economy

In this section, we use a neoclassical model similar to the structure in Greenwood et al. (1997),

Oulton (2007), and Moura (2020) to derive our UC framework in equations (1)-(6). Consider the

following model

Yt = Ct + It = ztK
α
t

(
Xz
t ht
)1−α

, (A.1)

I∗t = atX
a
t It (A.2)

Kt+1 = (1− δ)Kt + I∗t . (A.3)

Equation (A.1) is the aggregate production function where output, (Yt), which can be used for

either consumption, (Ct), or gross investment, (It), is produced with capital, (Kt), and labor, (ht).

The production function is subjected to a stationary neutral technological shock, (at), and a non-

stationary neutral technological shock, (Xz
t ). Equation (A.2) relates investment in efficiency units,

(I∗t ), to gross investment. The terms at and Xa
t denote, respectively, stationary and non-stationary

investment-specific technology. Finally, equation (A.3) shows the evolution of the capital stock. It

is important to note that output and gross investment are both measured in units of consumption

goods.

In this model economy, Total Factor Productivity (TFP) and the Relative Price of Investment

(RPI), denoted as P It , are given, respectively, by

TFPt =
Yt

Kα
t h

1−α
t

= zt
(
Xz
t

)1−α
(A.4)

P It =
1

atXa
t

. (A.5)

Along a balanced growth path, the stochastic trend in Yt and Ct is given by Xz
t

(
Xa
t

) α
1−α while

the stochastic trend in investment measured in efficiency units I∗t is Xz
t

(
Xa
t

) 1
1−α .

Using the standard Divisia definition of aggregate output, output, Y D
t , is well-approximated by
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a share weighted index3

Y D
t = C1−γ

t I∗γt (A.6)

where γ is the current price share of investment in the value of output. Under this definition of

output, TFP is defined as

TFPDt =
Y D
t

Kα
t h

1−α
t

(A.7)

Therefore, expressions (A.4) and (A.7) may be combined to yield

TFPDt = zt
(
Xz
t

)1−αY D
t

Yt
, (A.8)

To determine the stochastic balanced growth path in TFPDt , we start with expression (A.8) and

apply the logarithm on both sides,

log(TFPDt ) = log(zt) + (1− α) log(Xz
t ) + log(Y D

t )− log(Yt),

then we take the first difference, and use the definition in A.6 to get

log(TFPDt )− log(TFPDt−1) = (1− α)
(

logXz
t − logXz

t−1

)
+ (1− γ)

(
logCt − logCt−1

)
+γ
(

log I∗t − log I∗t−1

)
−
(

log Yt − log Yt−1

)
= (1− α)

(
logXz

t − logXz
t−1

)
+(1− γ)

[
log
(
Xz
t

(
Xa
t

) α
1−α
)
− log

(
Xz
t−1
(
Xa
t−1
) α

1−α
)]

+γ

[
log
(
Xz
t

(
Xa
t

) 1
1−α
)
− log

(
Xz
t−1
(
Xa
t−1
) 1

1−α
)]

−
[

log
(
Xz
t

(
Xa
t

) α
1−α
)
− log

(
Xz
t−1
(
Xa
t−1
) α

1−α
)]

= (1− α)
(

logXz
t − logXz

t−1

)
+ γ

[
logXa

t − logXa
t−1

]

where we use the fact that, along a balanced growth path, Yt and Ct grow at the same rate as

3The Divisia index for output is ∆ log Y Dt = (1 − γ)∆ logCt + γ∆ log I∗t . Without loss of generality, we may
normalize the levels of log Y Dt , logCt, and log I∗t at period 0 to be zero, and rearrange to obtain the expression for
Y Dt . We use the superscript “D” to emphasize the dependence of output on the Divisia definition. Also, Y Dt differs
from Yt in the sense that the latter is measured in consumption units.
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Xz
t

(
Xa
t

) α
1−α while I∗t grows at the faster rate Xz

t

(
Xa
t

) 1
1−α . Then, using a simple change of variable

to specify technology so that it is Hicks neutral instead of Harrod neutral, i.e. X̃z
t =

(
Xz
t

)1−α
, we

obtain

log(TFPDt )− log(TFPDt−1) =
(

log X̃z
t − log X̃z

t−1

)
+ γ

[
logXa

t − logXa
t−1

]
log(TFPDt )− log X̃z

t − γ logXa
t = log(TFPDt−1)− log X̃z

t−1 − γ logXa
t−1

TFPDt

X̃z
t

(
Xa
t

)γ =
TFPDt−1

X̃z
t−1
(
Xa
t−1
)γ ,

or in other words, along the balanced growth path,
TFPDt

X̃z
t

(
Xa
t

)γ is stationary. We may apply the

same logic to the relative price of investment, P It , to show that
P It
Xa
t

is also stationary along the

stochastic balanced growth path. Let tfpDt and pIt denote stationary TFP and stationary RPI,

respectively; therefore, applying the logarithm and rearranging yields the system

logP It = logXa
t + log pIt (A.9)

log TFPDt = γ logXa
t + log X̃z

t + log tfpDt (A.10)

Suppose that we further assume that the growth rate of the non-stationary neutral technology,

and the non-stationary investment-specific technology, denoted as µzt ≡ ∆ log X̃z
t and µat ≡ ∆ logXa

t ,

respectively, follow stationary AR(1) processes, and the stationary components of TFP and RPI,

log tfpDt and log pIt , follow AR(1) processes as we specify in the paper. Therefore, equations (A.9),

(A.10) along with the assumed specifications constitute the full characterization of our UC frame-

work illustrated in equations (1)-(6) within the manuscript.

A.2 Common Trend in RPI and TFP

In this section, I empirically revisit two issues that have been explored in both Schmitt-Grohé and

Uribè (2011) and Benati (2013). The first is to determine whether RPI and TFP possess each

a stochastic non-stationary component, and the second is to assess whether these non-stationary

components are related. Therefore, I perform unit root tests and co-integration tests using U.S.

data over the period 1959 : Q2 to 2019.Q2 using the logarithm of RPI and the logarithm of TFP.
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A.3 Unit root tests

I carry out Augmented Dickey Fuller (ADF) tests that examine the null hypothesis that the log-

arithms of RPI and TFP have a unit root. The lag order is chosen based on the Schwartz and

Hannah-Quinn criteria (SIC and HQ, respectively).4 The results of the tests are presented in Table

2, and they clearly indicate that the tests fail to reject the null hypothesis of the presence of a unit

root in the series at the standard 5% confidence level.

An alternative to the ADF test is the Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) test

that evaluates the null hypothesis that the time series is stationary in levels. The lag length is still

selected according to the SIC and HQ criteria, and I allow for the possibility of a time trend in the

series. The results are illustrated in Table 3, and they are consistent with those obtained from ADF

tests: the KPSS rejects the null hypothesis of stationarity in the logarithm of the relative price of

investment and total factor productivity.

Overall, stationarity tests are unequivocal in terms of the univariate properties of RPI and TFP:

both time series contain a stochastic non-stationary component.

[Table 2 about here.]

[Table 3 about here.]

A.4 Co-integration between RPI and TFP

The results from the previous section clearly indicate that the time series of both RPI and TFP

contain a non-stationary stochastic component. With that information at hand, I assess the extent

to which these two non-stochastic components might be co-integrated. Specifically, I perform the

Johansen’s trace test that evaluates the null hypothesis that there is no co-integration relationship

between the two series. A rejection of this hypothesis would indicate that RPI and TFP are driven

by a single stochastic component. Consistent with the previous section, I still select the lag length

according to the SIC and HQ criteria, and the result points to 1 as the optimal lag order. As

discussed in Benati (2013), the lag order selection for VARs containing integrated variables in the

Johansen’s procedure may greatly affect the results of the test. Therefore, I also consider lag orders

4I use JMulti to determine the optimal lag order for each variable. I set 10 as the maximum number of endogenous
variables. The results indicate that 1 or 2 might be optimal. I obtained the same results using codes provided by
Benati (2013).
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of 7 and 3 as alternatives, as in Schmitt-Grohé and Uribè (2011) and Benati (2013), respectively. A

final and crucial component of the test is the specification of the data generating process (DGP) for

the co-integrated model as this step has great importance on the results of the test. In other words,

should a deterministic term, constant or linear term, be included in the DGP? Such decisions are

usually guided by the underlying process of the variables which may or may not contain a drift term.

Both the inverse of RPI and TFP appear to be trending upward, hence I consider the addition of a

constant and linear term in the DGP. The results of the Johansen’s trace tests are shown in Table

4.

[Table 4 about here.]

The co-integration results are inconclusive. When the lag order is 7, the null hypothesis of a

zero co-integrating vector is rejected at the standard 5% confidence level, a result that echoes those

in Benati (2013) and Schmitt-Grohé and Uribè (2011). However, the test fails to reject the null

hypothesis of a zero co-integrating vector when a lag order of 1 or 3 is considered. Therefore, it

appears that it is impossible to claim with certainty that RPI and TFP are driven by a single

stochastic trend component.

A.5 Estimation Details

In this appendix we provide the estimation details of the bivariate unobserved components model

specified in the main text. For convenience we reproduce the UC model below:

zt = τt + cz,t, (A.1)

xt = γτt + τx,t + cx,t, (A.2)

where τt and τx,t are the trend components, whereas cz,t and cx,t are the transitory components.

The transitory components are assumed to follow the AR(2) processes below:

cz,t = φz,1cz,t−1 + φz,2cz,t−2 + εz,t, (A.3)

cx,t = φx,1cx,t−1 + φx,2cx,t−2 + εx,t, (A.4)
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where εz,t ∼ N (0, σ2z) and εx,t ∼ N (0, σ2x), and the initial conditions cz,0, cx,0, cz,−1 and cx,−1 are

assumed to be zero. For the trend components, we model the first differences of ∆τt and ∆τx,t

as stationary processes, each with a break at t = TB with a different unconditional mean. More

specifically, consider:

∆τt = (1− ϕµ)ζ11(t < TB) + (1− ϕµ)ζ21(t ≥ TB) + ϕµ∆τt−1 + ηt, (A.5)

∆τx,t = (1− ϕµx)ζx,11(t < TB) + (1− ϕµx)ζx,21(t ≥ TB) + ϕµx∆τx,t−1 + ηx,t, (A.6)

where 1(·) denotes the indicator function, ηt ∼ N (0, σ2η) and ηx,t ∼ N (0, σ2ηx) are independent of

each other at all leads and lags. The initial conditions τ0 = (τ0, τ−1, τx,0, τx,−1)
′ are treated as

unknown parameters.

Section 3 in the main text outlines a 5-block posterior simulator to estimate the above bivari-

ate unobserved components model, and provide details of the first step. Below we describe the

implementation details of the remaining steps.

Step 2. To sample φ, we write (A.3)–(A.4) as a regression with coefficient vector φ:

c = Xφφ+ ε,

where c = (cz,1, cx,1, . . . , cz,T , cx,T )′ and Xφ is a 2T×4 matrix consisting of lagged values of (cz,t, cx,t).

Then, by standard regression results, we have

(φ |y, τ , γ,ϕ, ζ,σ2, τ0) ∼ N (φ̂,K−1φ )1(φ ∈ R),

where

Kφ = V−1φ + X′φΣ−1ε Xφ, φ̂ = K−1φ

(
V−1φ φ0 + X′φΣ−1ε c

)
.

A draw from this truncated normal distribution can be obtained by the acceptance-rejection method,

i.e., keep sampling from N (φ̂,K−1φ ) until φ ∈ R.

Step 3. Next, we simulate from p(ϕ |y, τ , γ,φ, ζ,σ2, τ0). As in Step 2, we first write (A.5)–
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(A.6) as a regression with coefficient vector ϕ:

∆τ = µϕ + Xϕϕ+ η,

where ∆τ = (∆τ1,∆τx,1, . . . ,∆τT ,∆τx,T )′,µϕ = (ζ11(1 < TB) + ζ21(1 ≥ TB), . . . , ζ11(T < TB) +

ζ21(T ≥ TB))′ and

Xϕ =



∆τ0 − ζ11(1 < TB)− ζ21(1 ≥ TB) 0

0 ∆τx,0 − ζx,11(1 < TB)− ζx,21(1 ≥ TB)

...
...

∆τT−1 − ζ11(T < TB)− ζ21(T ≥ TB) 0

0 ∆τx,T−1 − ζx,11(T < TB)− ζx,21(T ≥ TB)


.

Again, by standard regression results, we have

(ϕ |y, τ , γ,φ, ζ,σ2, τ0) ∼ N (ϕ̂,K−1ϕ )1(ϕ ∈ R),

where

Kϕ = V−1ϕ + X′ϕΣ−1η Xϕ, ϕ̂ = K−1ϕ
(
V−1ϕ ϕ0 + X′ϕΣ−1η (∆τ − µϕ)

)
.

A draw from this truncated normal distribution can be obtained by the acceptance-rejection method.

Step 4. To implement Step 4, note that σ2η, σ
2
ηx , σ

2
z , σ

2
x are conditionally independent given τ

and other parameters. In fact, they have the following inverse-gamma distributions:

(σ2η |y, τ , γ,φ,ϕ, ζ, τ0) ∼ IG

(
νη +

T

2
, Sη +

1

2

T∑
t=1

η2t

)
,

(σ2ηx |y, τ , γ,φ,ϕ, ζ, τ0) ∼ IG

(
νηx +

T

2
, Sηx +

1

2

T∑
t=1

η2x,t

)
,

(σ2z |y, τ , γ,φ,ϕ, ζ, τ0) ∼ IG

(
νz +

T

2
, Sz +

1

2

T∑
t=1

ε2z,t

)
,

(σ2x |y, τ , γ,φ,ϕ, ζ, τ0) ∼ IG

(
νx +

T

2
, Sx +

1

2

T∑
t=1

ε2x,t

)
.

Step 5. Next, we jointly sample δ = (ζ′, τ ′0)
′ from its full conditional distribution. To that end,
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we write (A.5)– (A.6) as a regression with coefficient vector δ:

Hϕτ = Xδδ + η,

where

Xδ =



d0 ⊗

1− ϕµ 0

0 1− ϕµx

 d1 ⊗

1− ϕµ 0

0 1− ϕµx



1 + ϕµ −ϕµ 0 0

0 0 1 + ϕµx −ϕµx

−ϕµ 0 0 0

0 0 −ϕµx 0

0 0 0 0

...
...

...
...

0 0 0 0



.

Then, by standard regression results, we have

(δ |y, τ , γ,φ,ϕ,σ2) ∼ N (δ̂,K−1δ ),

where

Kδ = V−1δ + X′δΣ
−1
η Xδ, δ̂ = K−1δ

(
V−1δ δ0 + X′δΣ

−1
η Hϕτ

)
,

where Vδ = diag(Vζ ,Vτ0) and δ0 = (ζ′0, τ
′
00)
′.
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Table 2: ADF test: testing the null hypothesis of the presence of a unit root.

Test Variable Lags Test Statistic Critical Value Reject Null

ADF Log RPI 1 -1.6893 -3.4310 No
ADF Log RPI 2 -1.7358 -3.4310 No
ADF Log RPI 5 -1.8142 -3.4313 No

ADF Log TFP 1 -2.5138 -3.4310 No
ADF Log TFP 2 -2.4844 -3.4310 No
ADF Log TFP 5 -2.3264 -3.4313 No

Note: ADF stands for Augmented Dickey Fuller test. RPI and TFP correspond to the relative price of investment
and total factor productivity, respectively. In all cases, the model includes a constant and a time trend. The data

series span from 1959.II to 2019.II.. The lag order is selected according to the SIC and HQ criteria.
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Table 3: KPSS test: testing the null hypothesis of stationarity.

Test Variable Lags Test Statistic Critical Value Reject Null

KPSS Log RPI 1 2.9071 0.1460 Yes
KPSS Log RPI 2 1.9482 0.1460 Yes
KPSS Log RPI 5 0.9899 0.1460 Yes

KPSS Log TFP 1 0.9144 0.1460 Yes
KPSS Log TFP 2 0.6196 0.1460 Yes
KPSS Log TFP 5 0.3238 0.1460 Yes

Note: RPI and TFP correspond to the relative price of investment and total factor productivity, respectively. In all
cases, the model includes a constant and time trend. The data series span from 1959.II to 2019.II. The lag order is

selected according to the SIC and HQ criteria.
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Table 4: Johansen’s trace test for co-integration between RPI and TFP.

Null Alternative Deterministic trend Lags p-value

r = 0 r > 0 Yes 1 0.0845
r = 0 r > 0 Yes 3 0.0975
r = 0 r > 0 Yes 7 0.0236

Note: The co-integration tests are performed on the logarithms of the relative price of investment and total factor
productivity. The sample period is 1959.II to 2019.II. The variable r denotes the number of co-integrating vectors.

RPI and TFP correspond to the relative price of investment and total factor productivity, respectively, and the
model includes a constant and time trend. The lag order is selected according to the SIC and HQ criteria.
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