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ing. These problems are generally solved using some form of projection method. The
difficultly with projection methods is that their computational complexity increases
rapidly with the number of state variables, limiting the sophistication of the models
that can be solved. This paper develops a perturbation method for solving models
with time-inconsistency that enables larger models to be more readily solved and an-
alyzed. The method operates on a model’s (generalized) Euler equations; it does not
require forming a quadratic approximation to household welfare and it does not require
that the model’s steady state be efficient. We apply the method to several models
featuring time-inconsistency and show that it exhibits good accuracy.
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1 Introduction

Time-consistency features importantly in many areas of macroeconomics: fiscal policy, mon-

etary policy, banking regulation, and sovereign lending, to name just a few. In the context

of optimal monetary policy time-inconsistency emerges because some constraints on the cen-

tral bank’s decision problem, such as the Phillips curve, involve expectations and only bind

ex ante. The central bank’s well-intentioned efforts to leverage the expectations channel

into inflation, guide it towards announcing policies for the future that it ultimately has no

incentive to keep. In the absence of a commitment mechanism, the equilibrium of inter-

est in such problems is usually the Markov-perfect equilibrium, which is time-consistent by

construction. Time-consistency problems also feature in behavioral macroeconomics, where

decision-makers may have hyperbolic or quasi-geometric preferences. The difficulty with

solving models involving time-consistency is that decision-makers must recognize that the

choices they make today change future behavior while simultaneously taking into account

that these changes to future behavior have implications for the choices made today. To solve

such models one often must make strong assumptions in order to gain analytic tractability

and/or employ numerical methods whose computational intensity increases rapidly, usually

exponentially, with the number of state variables. The consequence is that the models

analyzed are often more stark and simplistic than one would like.

This paper presents a perturbation method to solve optimization-based dynamic macroe-

conomic models for first-order accurate time-consistent equilibria. The method is based on

the tools used to obtain first- and second-order accurate solutions to rational expectations

models, which are now widely available. When expressed in terms of first-order condi-

tions, models that feature time-inconsistency contain what are known as generalized-Euler

equations. Generalized-Euler equations differ from standard Euler equations in that they

contain the levels of variables as well as their derivatives with respect to endogenous state

variables. These derivatives are problematic for perturbation methods because they imply

that the model’s steady state cannot be solved independently of its dynamics. We overcome

the challenges that these derivatives pose by applying an iterative scheme whereby a first-

order accurate solution emerges from the repeated application of a second-order perturbation

method.

Because our solution procedure is an iterative one that requires second-order methods

to obtain a first-order accurate solution, it is slightly more demanding than a standard

first-order perturbation method, but it remains significantly less demanding than projection
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methods.1 Moreover, our procedure inherits the scalability of perturbation methods, allow-

ing it to be applied to medium- to large-scale models, ones that cannot reasonably be solved

accurately using projection methods, even using sparse grid technology. Further, because

it is based on (generalized) Euler equations, our method does not require second-order wel-

fare approximations and nor does it ask that the perturbation point be the model’s efficient

steady state.

We illustrate our approach by applying it to a range of models drawn from different areas

in macroeconomics. For expositional purposes and to aid comparisons, these models are

intentionally kept comparatively simple. They each contain just two state variables and

they can all be solved relatively quickly using projection methods. The fact that they can

be solved using projection methods without too much difficulty enables us to obtain highly

accurate global solutions and allows us to more easily illustrate the accuracy of our first-

order accurate solution. Furthermore, the models’ simplicity allows us to provide a clearer

description of how our solution method can be applied.

We are not the first to apply perturbation methods to models exhibiting time-inconsistency.

In the monetary policy literature, it is common to fit a linear-quadratic (LQ) approxima-

tion to the non-linear problem (Benigno and Woodford, 2005, 2012) and compute a linear

solution from the LQ approximation. However, applications of the LQ approach invariably

assume that monetary policy is conducted according to the timeless perspective (Woodford,

1999) whereas our focus is on discretion. When the LQ approach is applied to problems

where monetary policy is conducted with discretion, it is generally necessary to approxi-

mate about an efficient steady state with zero inflation. Although that approach allows the

steady state to be obtained independently of the model’s dynamics, the requirement that the

steady state be efficient limits the set of models that can be analyzed. In addition, deriving

a second-order accurate approximation to welfare is often analytically demanding making

the method challenging to apply to even quite simple models. Dotsey and Hornstein (2003)

present a numerical method to form a LQ approximation for a discretionary policy problem

where the steady state is not efficient. Their method is a form of successive approximations

that begins with a guess at the steady state around which to perturb the model and then

iterates over the steady state until convergence is reached. Unfortunately, their approach

is generally inapplicable to models whose steady state is inefficient and it is subject to the

pitfalls documented in Kim and Kim (2003, 2006). A method related to the one devel-

1In our applications we found the linear solution to converge quickly, usually in just 4 or 5 iterations.
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oped here is described in Krusell, Kuruşçu, and Smith (2002). Like ourselves, they express

the problem to be solved in terms of a system containing a generalized Euler equation and

solve simultaneously for the model’s steady state and equilibrium dynamics. Our solution

strategy extends their approach to stochastic economies and to models with multiple state

variables, and it differs from their method by explicitly imposing saddle-point stability on

the first-order dynamics.

The remainder of this paper is organized as follows. In the following section we outline

the four models that we use to demonstrate our solution method and illustrate its accuracy.

In section three we present our perturbation-based solution strategy. Section four applies

our method to the four models and compares the results to those from a highly accurate

projection-based solution. Section five discusses how household welfare can be recovered

once the solution is obtained. Section six concludes. An appendix identifies and discusses

special cases where LQ approximations can be employed to solve for time-consistent equilibria

and shows why LQ methods cannot be applied generally.

2 The models

In this section we outline the four models to which we apply our solution method. The

models are of varying complexity, but they are all simple enough that they can be easily

described and their solution using projection methods is not too time-consuming. The

latter is important because we use a highly accurate global solution as the benchmark to

assess the accuracy of our first-order accurate solution. The first of the four models—the

stochastic growth model—does not involve time-inconsistency. Its inclusion in the analysis

establishes a benchmark for the accuracy we might hope to obtain for the models with time-

inconsistency. The remaining three models all involve time-inconsistent decision-making

and are drawn from various literatures: optimal fiscal policy, quasi-geometric preferences,

and optimal monetary policy. We provide a brief description of each model and document

its key equations; readers are referred to the original sources for complete derivations.

2.1 Model one — stochastic growth model

The stochastic growth model needs little introduction. A representative consumer/producer

has capital stock, kt, and makes decisions regarding consumption, ct, and future capital in

order to maximize expected discounted lifetime utility, which depends on the sequence of
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goods consumed. We assume that period-utility is of the iso-elastic form. With goods

produced according to a Cobb-Douglas technology and with aggregate technology, at, obeying

a standard stationary AR(1) process, the key equations characterizing equilibrium are:

at+1 = ρat + εt+1, (1)

kt+1 = (1− δ) kt + eatkαt − ct, (2)

c−σt = βEt
[
c−σt+1

(
1− δ + αeat+1kα−1t+1

)]
. (3)

Equation (2) is the law-of-motion for capital, which allows the capital stock to be aug-

mented by unconsumed production and to depreciate at rate δ ∈ (0, 1]. Equation (3) is the

standard consumption-Euler equation in which β ∈ (0, 1) is the discount factor, σ ∈ (0,∞)

is the inverse of the elasticity of intertemporal substitution, and Et is the mathematical

expectations operator. When solving the model we set β = 0.99, α = 0.3, δ = 0.015 and

ρ = 0.95. The standard deviation of the technology innovation, εt, is set to 0.01.

2.2 Model two — time-consistent fiscal policy

This model is taken from Ambler and Pelgrin (2010) (which draws on Klein, Krusell, and

Rios-Rull, 2008), who used it as a vehicle to illustrate how to apply control methods to

compute Markov-perfect policies for stochastic non-linear models. The model was further

analyzed by Dennis and Kirsanova (2016) who showed that it could be solved efficiently using

a projection method based on Chebyshev polynomials applied to a system of equilibrium

conditions containing a generalized Euler equation.

The environment is one in which a representative consumer/producer owns the capital

stock, produces using a Cobb-Douglas technology, and receives utility from consuming goods

and government services. The government purchases goods, transforms them costlessly

into government services, and provides them free to consumers. Government expenditure

is financed through a tax levied on household-income with an allowance made for capital

depreciation. The household’s problem is to choose consumption and future capital to maxi-

mize expected discounted life-time utility while taking taxes and the provision of government

services as given. The government’s problem is to choose the level of services to provide

in order to maximize household welfare, taking into account its balanced budget condition

and the impact that income taxation has on households’ incentives to accumulate capital.

Complete descriptions of the model can be found in Ambler and Pelgrin (2010) and Dennis

and Kirsanova (2016).
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With the household’s expected discounted lifetime utility given by:

Ut = Et

[
∞∑
t=0

βt
(
c1−σt

1− σ
+ µ

g1−ηt

1− η

)]
, (4)

β ∈ (0, 1), σ ∈ (0,∞), µ ∈ (0,∞), η ∈ (0,∞), welfare maximization by the consumer and

the government leads to the following system of constraints and first-order conditions:

at+1 = ρat + εt+1, (5)

kt+1 = (1− δ) kt + eatkαt − ct − gt, (6)

c−σt = βEt

[
c−σt+1

(
1 +

(
1− gt+1

eat+1kαt+1 − δkt+1

)(
αeat+1kα−1t+1 − δ

))]
, (7)

µg−ηt = βEt
[(
c−σt+1 − µg

−η
t+1

)
ck (at+1, kt+1) + µg−ηt+1

(
1− δ + αeat+1kα−1t+1

)]
. (8)

Equation (5) describes the process for aggregate technology while equation (6) summa-

rizes the law-of-motion for capital. Relative to the stochastic growth model, equation (6)

only differs in that government purchases of goods, gt, in addition to consumption subtracts

from production in determining the level of investment. The consumption-Euler equation

is summarized by equation (7). In this equation it is the after-tax return on capital that

matters for consumption, where the tax rate is applied to production minus depreciated

capital and is determined importantly by the level of government services provided.

The final equation in the system, equation (8), is the first-order condition associated

with government services. We denote the household’s decision rule for consumption by

c (at, kt). Equation (8) takes the form of a generalized Euler equation because it depends

on the derivative of the household’s consumption decision rule with respect to capital. This

derivative enters the Euler equation because the government must account for the effect

an increase in its provision of services—funded through higher income-taxation—has on

household consumption via lower capital accumulation. When solving this model we take

the parameterization from Ambler and Pelgrin (2010). Specifically, we set β = 0.987,

α = 0.3, δ = 0.05, σ = 1, µ = 0.3, η = 1, ρ = 0.95, and the standard deviation of the

technology innovation to 0.03.

2.3 Model three — quasi-geometric discounting

This model comes from Krusell, Kuruşçu, and Smith (2002) and Maliar and Maliar (2005).

Like the previous two models, we can think of this one in terms of a representative con-

sumer/producer that owns the capital stock and that chooses consumption and future capital
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in order to maximize expected discounted lifetime utility. However, in this model the house-

hold/producer has quasi-geometric discounting, which is to say that its expected discounted

lifetime utility is given by:

Ut =
c1−σt

1− σ
+ θEt [Vt+1] , (9)

θ ∈ (0, 1], σ ∈ (0,∞), with:

Vt =
c1−σt

1− σ
+ βEt [Vt+1] , (10)

β ∈ (0, 1), where we have chosen period-utility to be of the iso-elastic form for simplicity.

Together, equations (9) and (10) imply that the household discounts between today and

tomorrow at rate βθ, and between tomorrow and the next day at rate β. When θ is less

than one the short-run discount rate is greater than the long-run discount rate, leading to a

Strotz (1956) form of time-inconsistency.

Solving the household/producer’s decision problem leads to the following key equations:

at+1 = ρat + εt+1, (11)

kt+1 = (1− δ) kt + eatkαt − ct, (12)

c−σt = βEt
[
c−σt+1

(
θ
(
1− δ + αeat+1kα−1t+1

)
+ (1− θ) kk (at+1, kt+1)

)]
. (13)

Equations (11) and (12) are familiar and standard. The crucial difference between

this model and the stochastic growth model lies in equation (13), which takes the form of

a generalized Euler equation because it depends on the derivative of the decision rule for

future capital with respect to capital, kk (at, kt), in addition to the level of capital itself.

This derivative enters because the current-period household can use its decision regarding

future capital to alter the future state and thereby alter the decisions made by its future

self. As a consequence capital accumulation has a pecuniary return in the form of the

marginal product of capital and a non-pecuniary return related to the effect current-period

saving has on how the future household determines its consumption. If θ = 1, then this

non-pecuniary return disappears, equation (13) simplifies to equation (3), and there is no

time-inconsistency. When solving this model we are guided by Maliar and Maliar (2005)

and set β = 0.95, θ = 0.95, α = 0.36, δ = 0.1, σ = 2, ρ = 0.95, and the standard deviation

of the technology innovation to 0.01.

2.4 Model four — time-consistent monetary policy

Our fourth model is an application of optimal discretionary monetary policy in a new Key-

nesian model. Our analysis of this model builds on Comincini (2020) who solved it using
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a value-function-iteration, but we recast it as a system of constraints and first-order con-

ditions, one of which is a generalized Euler equation. Related models, but log-linearized

and studied for an ad-hoc loss function and/or non-discretionary policy can be found in a

variety of places, including Amato and Laubach (2004) and Dennis and Söderström (2006).

Comincini (2020) provides a full description of the model.

The model is one in which households receive utility from consumption and dis-utility

from labor, ht, and there are external habits in consumption. We assume that expected

discounted lifetime utility is additively separable in consumption and labor and takes the

form:

Ut = Et

[
∞∑
t=0

βt

(
(ct − γCt−1)1−σ

1− σ
− ν h

1+χ
t

1 + χ

)]
, (14)

β ∈ (0, 1), σ ∈ (0,∞), ν ∈ (0,∞), χ ∈ (0,∞), and γ ∈ (0, 1), where Ct denotes period-

t aggregate consumption. Monopolistically competitive firms employ labor and produce

according to the linear production technology:

yt = eatht, (15)

and set prices subject to a Rotemberg (1982) quadratic adjustment cost. The household’s

utility maximization leads to the labor supply equation:

νhχt = wt (ct − γCt−1)−σ , (16)

where wt denotes the real wage, while firm’s cost minimization causes real marginal costs,

ωt, to be given by:

ωt =
wt
eat
. (17)

Firms are assumed to set the price for their good to maximize their expected discounted net

cash flow, where the cash-flows are paid to households in the form of a dividend and valued in

terms of the utility that dividend provides. From the first-order condition for price-setting

we get (in a symmetric equilibrium and after aggregating across firms) the following Phillips

curve for inflation, πt:

πt (1 + πt) =
1− ε
φ

+
ε

φ
ωt + βEt

[
(Ct+1 − γCt)−σ eat+1Ht+1πt+1 (1 + πt+1)

(Ct − γCt−1)−σ eatHt

]
, (18)

where φ ∈ (0,∞) governs the magnitude of the price-adjustment cost and ε ∈ (1,∞) repre-

sents the price elasticity of demand. Finally, we have the resource constraint:

Ct =

(
1− φ

2
π2
t

)
eatHt. (19)
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We substitute equations (16) and (17) into the Phillips curve, then the central bank’s

decision problem is to choose πt to maximize household welfare (equation (14)), subject to

the Phillips curve and the resource constraint. The resulting system of first-order conditions

is:

at+1 = ρat + εt+1, (20)

Ct =

(
1− φ

2
π2
t

)
eatHt (21)

πt (1 + πt) =
1− ε
φ

+
ε

φ

1

eat
νHχ

t

(Ct − γCt−1)−σ
+ βEt

[
Mt+1

(Ct − γCt−1)−σ eatHt

]
, (22)

Mt = (Ct − γCt−1)−σ eatHtπt (1 + πt) , (23)

0 = −φπtλ1t − (1 + 2πt) (Ct − γCt−1)−σ λ2t, (24)

νHχ
t =

(
1− φ

2
π2
t

)
eatλ1t +

[
ε (1 + χ)

φ
Hχ
t +

(
1− ε
φ
− πt (1 + πt)

)
(Ct − γCt−1)−σ eat

]
λ2t,

(25)

λ1t = (Ct − γCt−1)−σ + βEt [Mc (at+1,Ct)]λ2t

− σ
(

1− ε
φ
− πt (1 + πt)

)
(Ct − γCt−1)−σ eatHtλ2t

+ βEt

[(
σγ

(
1− ε
φ
− πt+1 (1 + πt+1)

)
(Ct+1 − γCt)−σ−1 eat+1Ht+1

)
λ2t+1

]
,

(26)

where λ1t is the Lagrange multiplier on the resource constraint, λ2t is the Lagrange multiplier

on the Phillips curve, and Mt represents the marginal utility of the goods lost through the

adjustment costs generated by inflation. Equation (26) has the form of a generalized Euler

equation because it depends on the derivative Mc (at+1,Ct).

We parameterize the model by setting β = 0.99, σ = 1, ν = 1, χ = 1, γ = 0.6,

ε = 11, φ = 60, ρ = 0.95, and the standard deviation of the technology innovation to

0.01. Importantly, we have not introduced a production subsidy to offset the monopolistic

distortion, nor a consumption tax to offset the consumption externality—the distortions

caused by monopolistic competition and external consumption habits remain.

3 A first-order perturbation solution

In this section we describe a procedure that uses perturbation to construct a first-order

accurate solution to optimization-based models involving time-inconsistency. Our focus on
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first-order solutions stems in large part from the fact that many non-linear models are well-

approximated by linear solutions. However, should it be needed, we note that the extension

from first-order accuracy to second-order accuracy is both straightforward and intuitive, and

employed in section 6.

Our solution method is conceptually simple and easy to implement. To illustrate it, we

enlist the help of model three. Recall that for this model the key equations are:

at+1 = ρat + εt+1, (27)

kt+1 = (1− δ) kt + eatkαt − ct, (28)

c−σt = βEt
[
c−σt+1

(
θ
(
1− δ + αeat+1kα−1t+1

)
+ (1− θ) kk (at+1, kt+1)

)]
. (29)

If θ = 1, then the short-run discount rate and the long-run discount rate would be equal,

there would be no time-inconsistency problem, equation (29) would simplify to:

c−σt = βEt
[
c−σt+1

(
1− δ + αeat+1kα−1t+1

)]
, (30)

and we could easily solve for the model’s steady state (the model’s zeroth-order solution).

This steady state provides a point to linearize around and solving the model for its first-

order accurate equilibrium dynamics becomes straightforward using a method such as Klein

(2000).

The difficulty arises when θ 6= 1. When θ 6= 1 we cannot solve for the model’s steady

state without knowing the derivative of the decision rule for capital, which is part of the

model’s first-order solution. So in order to solve for the steady state (the zeroth-order

solution) we need to know the first-order solution. Although the decision rule for capital is

a non-linear function, its linear approximation has the form:

k (at, kt) ≈ kss + ψa (at − ass) + ψk (kt − kss) , (31)

where ψa and ψk are derivatives, ass = 0 is the steady state value for (log-) technology, and

kss is the unknown steady state value for capital. From equation (31), the derivative of next

period’s capital with respect to capital is ψk. Suppose we know ψk, then the steady state

of equations (27)—(29) can be computed and is given by:

ass = 0, (32)

kss =

[
1

α

(
1− β (1− θ)ψk

βθ

)
− 1 + δ

] 1
α−1

, (33)

css = kαss − δkss, (34)
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which provides a point around which equations (27)—(29) can be linearized.

Unfortunately, we cannot produce a first-order accurate solution from an iterative proce-

dure that begins by guessing ψk, solving the resulting linearized rational expectations model,

extracting an update of ψk from the solution, and iterating to convergence. The reason this

approach is incorrect is that in order to have a first-order accurate solution we require that the

derivative kk (at+1, kt+1) in equation (29) be approximated to first-order accuracy, and this

requires that the decision rule for capital itself be approximated to second-order accuracy.

Therefore, we require the model’s first-order accurate solution to obtain its zeroth-order

solution, we require its second-order accurate solution to obtain its first-order solution, we

require its third-order accurate solution to obtain its second-order solution, etc.

Acknowledging this inconvenient recursion our solution procedure is as follows. Rather

than assume that the model’s third-order accurate solution is known, we simply assume

that the terms in the third-order (and higher) accurate solution are sufficiently small that

they can be safely ignored. Ignoring terms higher than second-order, the solution for next

period’s capital has the approximation:

k (at, kt) ≈ kss + ψa (at − ass) + ψk (kt − kss) +
ψaa
2

(at − ass)2

+ ψak (at − ass) (kt − kss) +
ψkk
2

(kt − kss)2 , (35)

and the partial derivative of future capital with respect to kt is:

kk (at, kt) ≈ ψk + ψak (at − ass) + ψkk (kt − kss) . (36)

With the building blocks established, our method for computing a first-order accurate

solution to the model is as follows:

1. Set the loop-counter to zero, i = 0, set the convergence tolerance, tol, and initialize

values for ψ0
k, ψ

0
ak, ψ

0
kk (that will be stored in the vector ψ0).

2. With the derivative approximated by equation (36), solve equations (27)—(29) using

a second-order perturbation method. This solution delivers an estimate of the steady

state and the first- and second-order equilibrium dynamics.

3. Increment the loop-counter, i = i+ 1, and extract ψik, ψ
i
ak, ψ

i
kk (that will be stored in

ψi) from the second-order solution for next period’s capital, which takes the form of

equation (35).
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4. While
∥∥ψi−ψi−1∥∥ > tol, return to step 2.

5. Exit.

Having exited the algorithm we discard all second-order terms, retaining the steady state

and the linear terms, which provide a solution that is first-order accurate. In our application

of this method to the four models above, we use the Gomme and Klein (2011) second-order

perturbation method to solve each model and to impose saddle-point stability on the first

order dynamics, and we linearize the model rather than log-linearize it. We linearize the

models because the resulting solutions can be compared more directly to those obtained using

the projection method. It is straightforward to modify the procedure to get a first-order

accurate log-solution.

3.1 A general environment

The solution method is described above in the context of a specific model, but its general

application should be readily apparent. Suppose the model is described by the general

non-linear form:

Et

[
f̃

(
yt+1,xt+1,

∂yt+1

∂xt+1

,yt,xt, εt+1

)]
= 0, (37)

where xt is an nx × 1 vector of predetermined variables, yt is an ny × 1 vector of non-

predetermined variables, εt is an s× 1 vector of innovations, and f̃ is an (ny + nx)× 1 vector

of functions, whose solution takes the form:

xt+1 = h (xt, σ) + σεt+1, (38)

yt = g (xt, σ) , (39)

where σ is a perturbation parameter. Equation (37) differs from the class of models con-

sidered in Schmitt-Grohé and Uribe (2004), Gomme and Klein (2011), Binning (2013) only

through the presence of the Jacobian term: ∂yt+1

∂xt+1
.

Our iterative solution procedure estimates the Jacobian ∂yt+1

∂xt+1
from a conjecture at equa-

tion (39) and substitutes the estimated Jacobian into equation (37). After this substitution,

equation (37) can be written as:

Et [f (yt+1,xt+1,yt,xt, εt+1)] = 0, (40)

to which standard second-order perturbation methods can be applied. The second-order

solution for the non-predetermined variables that is produced is then differentiated with
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respect to xt to obtain a revised estimate of the Jacobian, and we then iterate to convergence.

We note that it is possible to extend this procedure to obtain solutions with higher-order

accuracy. For example, by assuming that it is the fourth-order terms that can be safely

ignored, conjecturing a second-order expression for the derivative, gx (xt), and using a third-

order perturbation solver such as Binning (2013) to solve the model; updating the conjecture

and iterating to convergence.

4 Results

In this section we solve each of the four models described in section 2 and present the results.

First, we solve the models using a projection method based on Chebyshev polynomials and

Gauss-Hermite quadrature. We obtain a highly accurate solution from this projection

method that we then use as the benchmark against which to assess the properties and

accuracy of the first-order accurate solution procedure. For the projection method, details

regarding the number of solution nodes, the order of the polynomials, the domain for each

state variable, etc, are summarized in Table 1.

Table 1: Projection method details
Model one Model two Model three Model four

Quadrature nodes 21 21 21 21
Solution nodes (at, kt/ct−1) (21, 51) (21, 51) (21, 51) (21, 51)
Polynomial orders (at, kt/ct−1) (6, 9) (6, 14) (6, 9) (5, 6)
Technology domain [±0.096] [±0.288] [±0.096] [±0.096]
Endog. state domain [27, 42] [4, 17] [2.6, 4.7] [1.3, 1.8]
log10(‖Euler error‖∞) −11.8 −7.9 −10.0 −8.2

For all of the models the domain for the technology shock was chosen to be plus/minus

three unconditional standard deviations while that for the endogenous state variable (capital

for models one—three, lagged consumption for model four) was chosen to cover that variable’s

stationary distribution determined through a stochastic simulation (one million periods). We

used 21 nodes for technology and 51 nodes for the endogenous state variable, with the order

of the polynomial for these two variables varying according to the model. The nodes are

constructed from the roots of the corresponding Chebyshev polynomial. The last row of

Table 1 reports on the Euler-equations errors for each model and speaks to the accuracy of

the solution. These errors are based on the consumption-Euler equation for models one—

three2 and on the Phillips curve for model four. To compute the errors we used a uniform

2The log10(‖Euler error‖∞) from the government spending Euler equation in model two is −8.7.
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grid with 101 points for each state variable.

Turning to the results, in addition to the solution itself, we compute and show for each

model aspects of the solution that researchers and policy-makers are typically interested in:

decision rules, stationary distributions, and impulse response functions.

Beginning with the stochastic growth model, the linear solution expressed as deviations

from steady state is: 
ât+1

k̂t+1

ĉt
ŷt

 =


0.950 0.000
2.216 0.971
0.680 0.039
2.896 0.025

[âtk̂t
]

+


1
0
0
0

 [εt+1] , (41)

with the steady state given by: ass = 0, kss = 34.609, css = 2.377, and yss = 2.896.

Investment is computed from the solutions for output and consumption. From this solution

we plot decision rules, stationary distributions and impulse response function, see Figure 1.

The panels in the top row of Figure 1 display the solution for capital, consumption,

output, and investment, respectively, as a function of capital, holding technology at its

steady state value. The panels in the second row of Figure one are similar, expect the

solutions are shown as functions of technology, holding capital at its steady state value.

Stationary distributions for these variables are shown in the third row while the panels in

the final row display response functions for a positive one standard deviation technology

shock.

Recall that this model is not one in which decision-makers face a time-inconsistency prob-

lem. In this sense it represents a benchmark for accuracy against which the remaining three

models can be compared. What is clear from Figure 1 is that the first-order approximation

is really quite accurate over most of the domain for capital and technology that was used to

obtain the projection solution. Ideally, the solutions to the models with time-inconsistency

will exhibit a similar level of accuracy.

The solution results for model two, the model of time-consistent fiscal policy, are shown

in Figure 2. As previously, decision rules are shown in the top two rows of panels, stationary

distributions are shown in the third row, and impulse response functions are shown in the

fourth row.

Looking at the decision rules first, the panels in the top two rows of Figure 2 show that

the first-order solution is very accurate in the vicinity of the steady state, but that the ac-

curacy deteriorates when capital (first row) and technology (second row) is far from steady

state. This decrease in accuracy is to be expected from a first-order accurate perturbation
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Figure 1: Results for stochastic growth model

solution. The panels in the third and fourth rows of Figure 2 reveal that the stationary dis-

tributions and the impulses response functions (in particular) are accurately approximated,

a consequence of the fact that the model spends very little time in the regions of the domain

where the decision rules have less accuracy.

The first-order solution for model two is:
ât+1

k̂t+1

ĉt
ĝt
ŷt

 =


0.950 0.000
1.206 0.929
0.538 0.066
0.158 0.022
1.902 0.067


[
ât
k̂t

]
+


1
0
0
0
0

 [εt+1] . (42)

For this model investment is calculated by subtracting consumption and government spend-

ing from output. The steady state is: ass = 0, kss = 8.531, css = 1.150, gss = 0.326, and

yss = 1.902.
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Figure 2: Results for time-consistent fiscal policy

Turning to the third model with quasi-geometric discounting. The linear solution to this

model is given by: 
ât+1

k̂t+1

ĉt
ŷt

 =


0.950 0.000
0.755 0.906
0.821 0.154
1.576 0.160

[âtk̂t
]

+


1
0
0
0

 [εt+1] . (43)

Again, investment is the residual between output and consumption. The steady state is:

ass = 0, kss = 3.538, css = 1.222, and yss = 1.576.

The results for the behavioral macro-model with quasi-geometric discounting are shown

in Figure 3, following the same layout as the two previous figures. From an accuracy per-

spective, the results are similar to model two. The accuracy of the first-order approximation

is clearly good, especially in the vicinity of the steady state. When capital is far from steady

state the linear decision rules tend to overstate consumption and output, which leads invest-
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ment to be overstated too, but this inaccuracy is in the tail-region of the domain where the

model spends very little time.

Figure 3: Results for quasi-geometric discounting

The panels in the third row of Figure 3 show that the stationary distributions are well-

approximated even though the linear solution omits precautionary effects from uncertainty.

The impulse responses displayed in the final row reveal high accuracy, even in the early

periods of the responses when the effects of the shock are largest.

Our final set of results relate to the model with time-consistent monetary policy. Among

the three models with time-consistency considered in this paper, this is the most complicated.

Its solution requires solving a system with 12 non-predetermined variables, although only a

few—consumption, labor, and inflation—are of primary interest.

16



Figure 4: Results for time-consistent monetary policy

The model’s linear solution is:
ât+1

ĉt
ĥt
π̂t

 =


0.950 0.000
0.860 0.430
−0.647 0.429
1.384 −0.849

[ âtĉt−1

]
+


1
0
0
0

 [εt+1] , (44)

while the steady state equal to: ass = 0, css = 1.507, hss = 1.508, and πss = 1.886.

Figure 4 shows that the decision rules are approximated with a high-level of accuracy.

Recall that we did not introduce a production subsidy to offset the effects of monopolistic

competition and nor did we introduce a tax to offset the consumption externality. For this

reason, the model exhibits a discretionary inflation bias, which is shown in panel I, where

the unconditional mean of inflation is just under 1.9 percent per annum for the model’s

chosen parameterization. The first-order solution accurately captures this inflation bias,

and indeed captures the model’s stationary distribution very well. The impulse responses
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shown in the final row of Figure 4 well-capture the decline in inflation that arises from a rise

in technology and the transition dynamics that occur as the model returns to steady state.

One final note regarding model four is that if we introduce an optimal subsidy to offset

the monopolistic distortion and an optimal consumption tax to offset the consumption ex-

ternality, then the steady state is efficient, there is no discretionary inflation bias, and the

steady state inflation rate is zero. In that case it is possible to form a LQ approximation

around the zero-inflation efficient steady state (because the Phillips curve is not needed to

derive a valid second-order approximation to conditional welfare). In this special case, then,

the model can be solved using a LQ solution technology, and the solution obtained would

be identical to the first-order solution from our perturbation approach.

4.1 Summary

The take-away message from Figures 1—4 is that the first-order accurate perturbation solu-

tion delivers solutions that are very similar to the nonlinear solutions for these models. For

all three aspects of the solution that we looked at: decision rules, stationary distributions,

and impulse response functions, the first-order perturbation method produces solutions with

properties that conform closely to those from the projection method. Because the pertur-

bation method scales well with the size of the system whereas projections methods become

exponentially more time-consuming, this provides good reason to expect that our projection

method can be a powerful and accurate alternative to projection-methods for medium- to

large-scale macro-models in which time-inconsistency matters.

5 Welfare

Our solution method works with a model’s first-order conditions and does not compute

conditional welfare as part of the solution process. In this section we discuss how conditional

welfare can be computed.

We first note that when a model’s non-linear first-order conditions are being solved using

a projection method that computing conditional welfare is straightforward. One simply

augments the system of equations being solved with a recursive representation of conditional

welfare and then solves the expanded system of equations. To give a concrete example, for

model two that involves time-consistent fiscal policy, one can obtain conditional welfare, Ut,

18



by solving the expanded system:

at+1 = ρat + εt+1, (45)

kt+1 = (1− δ) kt + eatkαt − ct − gt, (46)

c−σt = βEt

[
c−σt+1

(
1 +

(
1− gt+1

eat+1kαt+1 − δkt+1

)(
αeat+1kα−1t+1 − δ

))]
, (47)

µg−ηt = βEt
[(
c−σt+1 − µg

−η
t+1

)
ck (at+1, kt+1) + µg−ηt+1

(
1− δ + αeat+1kα−1t+1

)]
, (48)

Ut =
c1−σt

1− σ
+ µ

g1−ηt

1− η
+ βEt [Ut+1] . (49)

If we were using our perturbation procedure to obtain a solution that was second-order

accurate or higher, then we could mimic this approach and solve an expanded system, but

with a first-order accurate solution we cannot. Nor can we take a direct quadratic approxi-

mation to conditional welfare, which gives the following for the fiscal policy model:

Ut ≈ Et

[
∞∑
t=0

βtut

]
, (50)

where

ut = uss + c−σss (ct − css) + µg−ηss (gt − gss)−
σc−σ−1ss

2
(ct − css)2 −

µηg−η−1ss

2
(gt − gss)2 , (51)

and evaluate it using the model’s first order solution. This fails because equation (51)

contains linear terms.

As Kim and Kim (2006) emphasize, computing conditional welfare correctly to second-

order requires that the model be solved to second-order accuracy. Accordingly, if one is

interested in computing the conditional welfare associated with the time-consistent policy,

then the solution procedure used would require using a third-order perturbation method

to enable the derivative in the generalized-Euler equation to be approximated to second-

order accuracy. The approach parallels that described in section 3, but with a third-order

perturbation method used and with iteration occurring over an expanded set of coefficients.

Upon convergence, and after discarding the third-order terms, the resulting solution will be

second-order accurate and can be used to compute conditional welfare using a quadratic

approximation that retains linear terms (like equations (50)—(51) above), (Kim and Kim,

2006).

We implement the method described above and apply it to each of the four models. For

this purpose we use the third-order perturbation method developed in Binning (2013). The
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Figure 5: Absolute differences in computed welfare

absolute differences between the welfare computed using this second-order accurate solution

and that computed using the projection method are displayed in figure 5.

Figure 5 shows that welfare is well-approximated in the vicinity of the steady state

for all four models, with the absolute differences in welfare close to zero. Further, with

the exception of model two, the perturbation solution delivers an estimate of welfare that is

accurate over the entire domain shown (which is the domain used for the projection method).

For model two, welfare looks to be less well-approximated, most noticeably when capital is

far from steady state.

It is important to recognize that the welfare approximation that the perturbation method

employs achieves second-order accuracy through the iterative use of a third-order perturba-

tion solution to the model. Because a third-order solution is used, the resulting welfare

approximation requires derivatives that are higher than second-order, at least for the models
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containing a generalized Euler equation (models two—four). As a consequence, the accu-

racy shown here is achieved through the use of first-, second-, and third-derivatives of the

utility function and the constraints. As attractive as LQ methods are it seems difficult to

apply them to models with time-inconsistency other than in special cases. One notable

special case is that of discretionary monetary policy when the steady state is efficient and is

characterized by zero inflation. Another special case is where the model does not contain

any endogenous state variables (see appendices A.1 and A.2).

6 Conclusions

This paper has developed and illustrated a procedure for solving dynamic stochastic models

containing generalized-Euler equations—models exhibiting time-inconsistency—using per-

turbation methods. The approach does not require the optimization problem being solved

to be reformulated in terms of an approximate LQ problem, but works, instead, with sys-

tems of first-order conditions. For this reason, the procedure does not involve forming a

second-order approximation to household welfare and it can be applied without modification

to models where the steady state is inefficient. Because it utilizes a perturbation around the

steady state, the procedure inherits all the strengths and weaknesses of perturbation meth-

ods. In particular, the method scales well and can be applied to medium- to large-scale

models, but loses accuracy in regions away from the steady state. We note how the solution

method can be used to take log-linear approximations, as opposed to linear approximations,

and illustrate in the context of computing conditional welfare how it can be adapted to

construct second- or higher-order accurate approximations.

To demonstrate the procedure and to assess its accuracy, we apply it to four different

models, three of which involve time-consistent decision-making: the stochastic growth model,

time-consistent fiscal policy, quasi-geometric preferences, and time-consistent monetary pol-

icy. To asses its accuracy, we compare the results from the perturbation method to those

from a projection-based solution and show that the method is accurate except in regions far

from the steady state, regions where the model spends little time. Lastly, we show how

perturbation can be employed to compute welfare and note that the approximation requires

third-order derivatives, which undermines the general applicability of LQ methods to models

with time-inconsistency.
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Appendix A: LQ approximations

In this Appendix we consider two cases where a valid LQ approximation to a problem

involving time-inconsistency can be formed. In Appendix A1 we show that a valid LQ

approximation is possible when the model’s steady state is efficient; in Appendix A2 we show

that a valid LQ approximation is possible when the model does not contain any endogenous

state variables. In Appendix A3 we turn to the general case where the model’s steady state

is not efficient and the model contains endogenous state variables. For this general case we

show that a valid LQ approximation is not possible because such an approximation requires

knowing the equilibrium decision rules for the choice variables, along with their first- and

second-derivatives with respect to the endogenous state variables.

Appendix A1: Efficient steady state

Here we briefly analyze the case where the model’s steady state is efficient and show that it

can be solved using LQ methods. Typically, but not always, the decision-maker facing the

time-inconsistency problem will be a policy maker, such as the fiscal authority (model two)

or the central bank (model four), but it could also be the representative household (model

three). Before introducing the problem, we note that the case considered here gains traction

when considering optimal discretionary monetary policy because in those models the steady

state can often be rendered efficient through the simple introduction of a production subsidy

or an employment subsidy to offset the distortionary effects of monopolistic competition. For

other applications where time-inconsistency matters, such as fiscal policy or quasi-geometric

preferences, this case is of less interest.

Efficient steady state

Let zt be an s×1 vector of shocks with innovations εt ∼ i.i.d[0,Ω] and yt be an n×1 vector

of non-predetermined/choice variables. We suppose that the constraints on the planner’s

problem are:

zt+1 − Γzt − εt+1 = 0, (A1)

p (yt−1,yt, zt) = 0, (A2)

and that the representative household’s expected discounted lifetime utility takes the form:

Ut = E0

[
∞∑
t=0

βtu (yt−1,yt, zt)

]
. (A3)
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The functions, p and u, are each assumed to be concave and smooth. Equations (A1) and

(A2) distinguish between equations for the shocks processes, equation (A1), and equations

that bind on the endogenous variables, equation (A2). We assume that there are s shocks

and less than n equations in p. We further assume that Γ has spectral radius less than one

and therefore that the steady state for zt found from equation (A1) is the zero vector, 0.

To determine the efficient steady state for yt we formulate the planner’s problem, which

is to choose {yt, λt}∞t=0 to extremize the Lagrangian:

L = E0

[
∞∑
t=0

βt
(
u (yt−1,yt, zt) + λTt p (yt−1,yt, zt)

)]
, (A4)

leading to the first-order conditions:

∂L
∂yt

: u2 + λTp2 + βEt

[
u
′

1 +
(
λ
′
)T

p
′

1

]
= 0, (A5)

∂L
∂λt

: p = 0. (A6)

where we have suppressed the function arguments and time subscripts, introduced “primes”

to signify next-period values, and used function-subscripts to denote the derivative with

respect to the numbered argument. We denote by y and λ the (efficient) steady state values

that satisfy jointly equations (A5) and (A6).

Time-consistent decision problem

Let the first-order conditions and constraints aggregated across households and firms that

are not already included in equation (A2) be denoted:

Et [f (yt−1,yt,yt+1, zt)] = 0. (A7)

Because the model’s steady state is efficient, equation (A7) holds at the values for y and

z determined from the planner’s problem. The problem for the decision-maker facing the

time-consistency problem is to choose {yt, λt, µt} to solve the Bellman equation:

V (yt−1, zt) = max
{yt,λt,µt}

[
u (yt−1,yt, zt) + λTt [p (yt−1,yt, zt)]

+µTt Et [f (yt−1,yt,g (yt, zt+1) , zt)] + βEt [V (yt, zt+1)]

]
, (A8)

where yt = g (yt−1, zt) is the unknown equilibrium law-of-motion relating yt to the state

variables. From the Bellman equation, we recover equations (A2) and (A7) and obtain the
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following first-order and envelope conditions:

0 = u2 + λTp2 + µT (f3g1 + f2) + βEt

[
V
′

1

]
, (A9)

V1 = u1 + λTp1 + µT f1, (A10)

V2 = u3 + λTp3 + µT f4, (A11)

respectively; again we have suppressed the function arguments and time-subscripts for clarity.

Combining equations (A9) and (A10) we get:

0 = u2 + λTp2 + µT (f3g1 + f2) + βEt

[
u
′

1 +
(
λ
′
)T

p
′

1 +
(
µ
′
)T

f
′

1

]
, (A12)

which is in the form of a generalized Euler equation (note equation (A12) can be simplified

using equation (A5)).

The next step is to form a second-order approximation to the Bellman equation around

the efficient steady state. Because the steady state is efficient, this approximation employs

a second-order approximation to the constraints in equation (A2), but only a first-order

approximation to the equations in equation (A7). The second-order approximation to the

Bellman equation is:

[
ŷTt−1 ẑTt

] [ V11 V12

V21 V22

] [
ŷt−1
ẑt

]
+ v = f.o.t.+ s.o.t.

+ λTt (p1ŷt−1 + p2ŷt + p3ẑt)

+ µTt
(
f1ŷt−1 +

(
f2 + f3g1

)
ŷt + f4ẑt

)
+ βEt

[[
ŷTt ẑTt+1

] [ V11 V12

V21 V22

] [
ŷt

ẑt+1

]
+ v

]
(A13)

where f.o.t. and s.o.t. refer to first order terms and second order terms, respectively, and the

first order terms are:

f.o.t. =
(
u1 + λ

T
p1 + µT f1 −V1

)
ŷt−1 +

(
u2 + λ

T
p2 + µT

(
f3g1 + f2 + βV1

))
ŷt

+
(
u3 + λ

T
p3 + µT f4 −V2

)
ẑt, (A14)

Looking at the expression for the first-order terms in the welfare approximation, equations

(A9)—(A11) imply that the first order terms equal zero, that the welfare approximation

contains only second-order terms and is a quadratic, and that the approximated Bellman

equation is LQ.
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Appendix A2: No endogenous state variables

In this appendix we treat that case where the underlying model does not have any endogenous

state variables. We show that it is possible in this case to formulate the time-inconsistent

decision problem in terms of an approximate LQ problem.

Let the model be described by the system:

zt+1 − Γzt − εt+1 = 0, (B1)

Eth (yt,yt+1, zt) = 0, (B2)

where equation (B2) represents the constraints and first-order conditions associated with the

decision-maker that does not face a time-inconsistency problem, and let the representative

household’s expected discounted lifetime utility take the form:

Ut = E0

[
∞∑
t=0

βtu (yt, zt)

]
. (B4)

The problem for the decision-maker facing time-inconsistency is to choose {yt, λt} to

solve the Bellman equation:

V (zt) = max
{yt,λt}

[
u (yt, zt) + λTt Et [h (yt,g (zt+1) , zt)] + βEt [V (zt+1)]

]
, (B5)

where yt+1 = g (zt+1) is the unknown equilibrium law-of-motion relating yt+1 to the state

variables. From the Bellman equation, the first-order conditions are:

∂V (z)

∂y
: u1 + λTh1 = 0, (B6)

along with equation (B2), while the derivative with respect to zt (which will be useful later)

is:
∂V (z)

∂z
: u2 + λTh3 = 0. (B7)

From equations (B1)—(B2) and (B6) we can determine the steady state values for z, y, and

λ, which need not be efficient.

The next step is to form a second-order approximation to the Bellman equation around

the steady state. Using s.o.t to denote second order terms the approximation gives:

ẑTt Vẑt + v = max
[
f.o.t.+ s.o.t+ λTt

(
h1ŷt + h3ẑt

)
+ βEt

[
ẑTt+1Vẑt+1 + v

]]
, (B8)

where the linear terms, f.o.t., are given by:

f.o.t =
(
u1 + λ

T
h1

)
ŷt +

(
u2 + λ

T
h3

)
ẑt. (B9)
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Looking at the expression for f.o.t., equations (B6) and (B7) imply that the first order

terms equal zero, that the welfare approximation is a quadratic, and that the approximated

Bellman equation is LQ.

Appendix A3: Endogenous state variables and distorted steady
state

Here we consider models for which the steady state is not efficient and in which there are

endogenous state variables. Models two, three, and four from the main text fall into this

category. For this category of models we illustrate the difficulties associated with trying to

form a valid LQ approximation to the problem and show why such an approximation is not

possible.

Let the model be described by the system:

zt+1 − Γzt − εt+1 = 0, (C1)

Et [h (yt−1,yt,yt+1, zt)] = 0, (C2)

with the representative household’s expected discounted lifetime utility given by:

Ut = E0

[
∞∑
t=0

βtu (yt−1,yt, zt)

]
. (C3)

The problem for the decision-maker in the decentralized model is to choose {yt, λt} to

solve the Bellman equation:

V (yt−1, zt) = max
{yt,λt}

[
u (yt−1,yt, zt) + λTt [Et [h (yt−1,yt,g (yt, zt+1) , zt)]] + βEt [V (yt, zt+1)]

]
,

(C4)

where yt = g (yt−1, zt) is the unknown equilibrium law-of-motion relating yt to the state

variables. From the Bellman equation, the first-order conditions and the envelope conditions

are:

0 = u2 + λT (h3g1 + h2) + βEt

[
V
′

1

]
, (C5)

V1 = u1 + λTh1, (C6)

V2 = u3 + λTh4, (C7)

along with equation (C2). Equations (C5) and (C6) can be combined to give:

0 = u2 + λT (h3g1 + h2) + βEt

[
u
′

1 +
(
λ
′
)T

h
′

1,

]
. (C8)
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Ordinarily, equations (C1), (C2) and (C8) would be solved to obtain the steady state values

for z ,y, and λ. However, in this case, this is not possible because equation (C8) is a

generalized Euler equation that contains the unknown derivative, g1.

Suppose that the steady state values z ,y, and λ were somehow known. To produce a

valid LQ approximation of the Bellman equation we need to form a second-order Taylor ap-

proximation to both period-t utility, u (yt−1,yt, zt), and equation (C2). Approximating the

former is not difficult. However, equation (C2) contains g so a second-order approximation

to equation (C2) requires taking first- and second-derivatives of g, but g is unknown. Even

if one were to guess values for these derivatives in an attempt to implement at an itera-

tive solution (successive approximation) the approach would fail because the linear solution

obtained would not allow a correct update of g’s second derivatives.
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