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Abstract
This paper employs a large BVAR model with common stochastic

volatility to examine the effects of oil supply shocks, global oil demand
shocks and precautionary oil shocks on 17 U.S. macroeconomic and
financial market variables from 1986Q1 to 2019Q2. Generalized im-
pulse response functions calculated using stochastic volatility provide
a time-varying account of the impacts of the shocks occurring in each
quarter. We also compute standard impulse response functions for
shocks of the sizes evident in 2019Q2 and 2008Q4. The magnitudes
of the generalized impulse response functions vary over time, but the
fluctuations are not particularly different except during the global fi-
nancial crisis. All oil shocks have permanent inflationary effects; there
is evidence of long-run adverse effects on several macroeconomic vari-
ables because of global oil demand shocks despite rising GDP, and all
oil shocks negatively affect the U.S. stock and currency markets in the
long term, but the effects on the bond market differ.
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1 Introduction

A frequently used approach to estimate the impacts of oil price shocks on
macroeconomic performance is to estimate structural vector autoregression
(SVAR) models (Filippidis, Filis and Kizys, 2020; Herrera and Rangaraju,
2019; Kim, Hammoudeh, Hyun and Gupta, 2017; Kilian, 2008; Kilian 2009;
Lardic and Mignon, 2008; Riggi and Venditti, 2015). This paper extends this
previous literature by providing a quantitative analysis of the impacts of oil
sector shocks using a large Bayesian VAR (BVAR) with common stochastic
volatility on 17 U.S. macroeconomic and financial market aggregates. The
paper explores the impacts of oil supply shocks, global oil demand shocks,
and precautionary oil shocks from 1986Q1 to 2019Q2.

The recent literature suggests two critical components for specifying a
good VAR model for structural analysis and forecasting of macroeconomic
series. The first is a large set of macroeconomic variables. Carriero, Clark
and Marcellino (2016), Chan (2020) and Koop (2013) show that VAR mod-
els with 15-20 variables perform better for structural analysis and forecasting
than models with a small number of variables. Models with a large dataset
more likely incorporate the information typically monitored by financial mar-
ket participants and policymakers, ensuring better identification of financial
market and monetary policy responses (Aastveit, 2014). In the energy liter-
ature, several papers examine the effects of energy price shocks using large
macroeconomic models. For example, Stock and Watson (2016) use a 207-
variable structural dynamic factor model to calculate the impacts of oil sup-
ply shocks on the U.S. economy, while Kapetanios, Marcellino and Venditti
(2019) examine the time-varying effects of oil sector shocks on sectoral U.S.
industrial output using a 28-variable non-parametric time-varying parameter
VAR model. However, VAR models with large information sets involve many
parameters and computationally-intensive estimation processes. Bayesian
methods using prior information allowing the shrinkage of VAR coefficients
is a popular solution for speeding up the computational process (Bańbura,
Giannone and Reichlin, 2010; Carriero, Clark and Marcellino, 2016; Chan,
2020).

The second critical component includes time variation in the error terms
to capture the time-varying volatility feature of macroeconomic data (Cog-
ley and Sargent, 2005; Primiceri, 2005). Baumeister and Peersman (2013b)
show that including time-varying volatility in the VAR specification is essen-
tial given observed fluctuations in oil price volatility and growth in macroe-



conomic volatility in recent years. Given the importance of including time-
varying volatility in VAR models for oil shock analysis, some researchers
have started to include this feature. Baumeister and Peersman (2013b) use
a 4-variable VAR model, including time-varying parameters and stochastic
volatility, to analyze the dynamic impacts of an oil supply shock on the
U.S. macroeconomic performance. Riggi and Venditti (2015) identify foreign
productivity and oil supply shocks in a small VAR model including drifting
parameters and stochastic volatility to investigate the nexus between the real
oil price and real exports in the eurozone.

Despite the demonstrated improvements for macroeconomic analysis by
using large datasets and time variation in volatility in the specification of
VAR models, few papers combine both of these features (see Carriero, Clark
and Macellino, 2016; Carriero Clark and Macellino, 2019; and Chan, 2020 for
exceptions). The difficulty is in incorporating stochastic volatility in VAR
error terms if the model is of high dimension. The model loses symmetry
due to the addition of time-varying volatility, which quickly makes the es-
timation process unmanageable as the number of variables increases. As a
solution, Carriero, Clark and Macellino (2016) introduce a Kronecker struc-
ture of the likelihood to expedite the sampling process. Chan (2020) further
improves the algorithm by using a fast band matrix routine and vectoring
the operations. There is no analysis of the effects of oil price shocks on the
macroeconomy in the oil shock literature combining both features. This pa-
per builds on Carriero, Clark and Macellino (2016) and Chan (2020) by using
the Kronecker structure of the likelihood and fast band matrix and vectoring
the operations in the estimation algorithm to estimate a large BVAR model
integrating common stochastic volatility to examine the impacts of oil sector
shocks on the U.S. economy. The empirical results illustrate that the model
with common stochastic volatility is statistically superior to the model ex-
cluding stochastic volatility using the marginal likelihood as the Bayesian
model comparison procedure (Chan, 2020).

Few recent papers study oil price shocks using models that integrate
time-varying parameters and large datasets. For example, Kapetanios, Mar-
cellino and Venditti (2019) study the dynamic impacts of oil sector shocks on
U.S. economic performance, applying a large time-varying coefficients VAR
model with 28 variables. They find that using the Kalman filter and for-
getting factors to estimate parameters dramatically improves the computa-
tional efficacy. Koop and Korobilis (2013) show that using forgetting factors
means that the MCMC algorithm is not required to estimate the parameters,
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thereby reducing the computational burden and increasing estimation speed.
Although time-varying coefficient VAR models have been applied in the oil
studies to analyse oil price shocks, there is a long-standing debate about
whether to include time-varying parameters in oil market models. The ad-
vocates state that the inclusion of time variation in the parameters of the
oil market models can smooth structural change (Baumeister and Peerman,
2013a,b; Kapetanios, Marcellino and Venditti, 2019).

On the other hand, Herrera and Rangaraju (2019) show that nonlin-
ear impulse responses in the time-varying coefficient models have wide error
bands. Kilian and Zhou (2020) point out that the estimated coefficients in
a time-varying parameters VAR model can change over time even if there is
no time variation in the real world because the time variation in estimated
coefficients derives from overfitting instead of time variation. Because of the
drawbacks of the inclusion of drift parameters in VAR models and the compu-
tational difficulties of combining time-varying parameters with time-varying
volatility in large VAR models, this paper focuses on the stochastic volatility
measure of time variation to examines the effects of oil sector shocks on the
U.S. economy. The concurrent integration of time variation in parameters
and volatility in large VAR models is left for future work.

The literature proposes several identification schemes to identify oil shocks.
For example, Kilian (2009) utilizes a recursive identification method and as-
sumes that the short-run crude oil supply curve is vertical and that a pre-
cautionary oil shock does not have any contemporaneous impact on real
economic activity. Peersman and van Robays (2009) attain identification via
sign restrictions. An extension of the sign restrictions approach is to impose
boundary restrictions on the sizes of the price elasticities of oil demand and
oil supply in the short-run to reduce the structural models compatible with
the sign restrictions (Baumeister and Peersman, 2013a; Kilian and Murphy,
2012). This study adopts the Baumeister and Peersman (2013a) identifica-
tion scheme to distinguish the oil shocks.

The impulse response functions reported are the Fry and Pagan (2011)
median target impulses along with the point-wise medians and associated
percentiles of the posterior distribution of the impulses often reported in the
literature. Fry and Pagan (2011) show that the latter approach misleads as
the median responses do not have a structural interpretation as the reported
medians come from different models. To solve this problem, Fry and Pagan
develop the median target method, which selects a model with the impulse
response functions most similar to the median values of the distribution of
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the impulses, rather than the median impulse response functions which come
from different models. Robustness to other methods of impulse selection such
as using the largest response of the real oil price to an oil supply shock or
using the model with an oil demand elasticity most similar to the posterior
medians of the elasticity among admissible models is also conducted (Kilian
and Murphy, 2012; 2014).

An advantage of modeling common stochastic volatility is that impulse
response functions can be computed explicitly for the shocks occurring in
each quarter. This paper computes impulse response functions to shocks in
two representative quarters (2019Q2 and 2008Q4). The generalized impulse
response functions of Koop, Pesaran and Potter (1996) are also presented over
the period 1986Q1 to 2019Q2. The generalized impulse response functions
plot the reactions of the oil sector variables to the shocks contemporaneously
and the U.S. macroeconomic and financial market variables one year after
the shock at each point in time to show the time-varying impacts of oil price
shocks on the U.S. macroeconomy and financial markets. Time-varying VAR
models of oil sector shocks often use the generalized impulse response func-
tions to analyze their macroeconomic impacts (Baumeister and Peersman,
2013a,b; Jebabli, Arouri and Teulon, 2014).

The framework yields several important findings. The generalized im-
pulse response functions show that the magnitudes of the reactions of U.S.
variables to oil shocks change over time, culminating during the global finan-
cial crisis. The impulse responses functions to a representative shock taken to
be the last data point in 2019Q2 show that the effects of the oil sector shocks
on the macroeconomic and financial market aggregates are strikingly dissim-
ilar. However, all shocks generate permanent inflationary effects. There is
evidence of some long-run adverse effects on several macroeconomic variables
because of global oil demand shocks despite GDP rising permanently. All of
the oil shocks negatively affect the U.S. stock market and currency market
in the long run, while the effects on the U.S. bond market vary. Our paper
calculates the impulse response functions for the shock in 2008Q4 for com-
parison. The qualitative results hold—however, the shock magnitudes and
hence impulse magnitudes differ.

The paper proceeds as follows: Section 2 outlines the econometric method-
ology, comprising model specification, model comparison methods and the
strategy for identification. Section 3 provides a descriptions of the data set.
Section 4 shows the empirical results and sensitivity analysis. The conclusion
is provided in Section 5.
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2 Empirical methodology

This Section sets out the large Bayesian VAR model with common stochastic
volatility (BVAR-CSV) used to analyze the structural oil sector shocks on
the U.S. macroeconomic and financial market variables. Section 2.1 sets out
the econometric model. Section 2.2 provides a model comparison criterion to
compare the BVAR-CSV to its counterpart with constant volatility. Section
2.3 outlines the strategy to identify the structural shocks and Section 2.4
describes the generalized impulse response functions.

2.1 The BVAR-CSV model

We follow the approach set out in Carriero, Clark, and Marcellino (2016)
and Chan (2020) to estimate a large BVAR-CSV by allowing a Kronecker
structure on the posterior variance of the VAR coefficients. This structure
accelerates the sampling process, given a large number of coefficients in the
BVAR (Carriero, Clark, and Marcellino, 2016). Chan (2020) extends this
work using fast band matrix and vectorization operations to reduce the com-
putational intensity of the method further. This Section uses the Chan (2020)
algorithm to estimate the BVAR-CSV model.

The model has the following generic representation:

yt = c0 + c1t+ B1yt−1 + ...+ Bpyt−p + ut, ut ∼ N (0, ehtΣ) (1)

ht = ρht−1 + ξht ξht ∼ N (0, δ2h), (2)

with an n × 1 vector of variables yt over the period t = 1, 2, · · · , T , c0 is
an n × 1 constant vector, c1 is an n × 1 vector, and B1, · · · ,Bp are n × n
coefficient matrices. The heteroscedastic errors u...uT are distributed as
N (0, ehtΣ) and the log volatility ht is a stationary AR(1) process with |ρ| < 1.

To reduce computational intensity, x′t = (1, t,y′t−1, · · · ,y′t−p) is set to
contain a 1 × k vector of a constant, a trend and lags with k = 2 + np.
Equation (1) can be stacked over t = 1, ..., T as

Y = XB + Θ, (3)

where Y = (y,y, · · · ,yT )′ is a matrix of dimension T×n, X = (x,x, · · · ,xT )′

is a matrix of dimension T × k, and B = (c0, c1,B1, · · · ,Bp)′ is a matrix of
dimension k× n. The error term Θ is a T × n matrix that can be succinctly
written as vec(Θ) ∼ N (0,Σ⊗Ψ), where variance-covariance matrix Σ is of
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dimension n×n, ⊗ is the Kronecker product and vec(·) transforms the T ×n
matrix into a Tn×1 column vector by stacking the columns. Ψ is a diagonal
covariance matrix of T × T dimension

Ψ =


eh1 0 0 · · · 0
0 eh2 0 · · · 0
...

. . . . . .

0 0 0 · · · ehT

 .

The cross-sectional covariance and the serial covariance of Y are separately
modelled respectively in Σ and Ψ. Specifically, stochastic volatility is mod-
elled by the matrix Ψ = diag (eh1 , . . . , e

h
T ). The Appendix contains descrip-

tions of the prior specifications and estimation details.

2.2 Model comparison criterion

This Section sets out the model comparison criterion to test whether allow-
ing for common stochastic volatility in a large BVAR model fits the data
better than its counterpart with constant volatility (BVAR-CV). The stan-
dard BVAR-CV is nested within the BVAR-CSV model. Specifically, in the
BVAR-CV model with independent and identical (iid) Gaussian innovations
vec(Θ) ∼ N (0,Σ⊗ IT ), where Σ is a n× n covariance matrix and IT is the
identity matrix of dimension T . The serial covariance matrix Ψ is an identity
matrix with Ψ = IT in the large BVAR-CV model, while the serial covariance
matrix Ψ is a diagonal matrix with Ψ = diag(eh1 , . . . , e

h
T ) in the BVAR-CSV

model. To simplify comparison, the parameters common across the models
have the same priors.

The criterion for choosing the best model given the data is the Bayes
factor defined as

BFab =
p(y|Ma)

p(y|Mb)
, (4)

where

p(y|Mi) =

∫
p(y|Θi,Mi)P (Θi|Mi)dΘ, (5)

which is the marginal likelihood (ML) under model Mi, i = a, b. Each model
Mi consists of two parts: a likelihood function p(y|Θi,Mi) and a prior density
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p(Θi|Mi). Θi is the model-specific parameter vector. The marginal likelihood
measures the probability that a specific model captures the true data gen-
erating process. If the true data are likely under model Ma, the associated
ML of model Ma would be large and BFab > 1 meaning that the true data
are more likely under model Ma than Mb.

The marginal likelihood of the BVAR-CV model with natural conjugate
priors is easily computed as it is available analytically (Karlsson, 2013). The
computation of the marginal likelihood of the BVAR-CSV model is not triv-
ial, given the high dimensionality of the time-varying model and needs to
be estimated using Chibb’s method. There are two ways to compute the
marginal likelihood of latent variable models with stochastic volatility: one
uses the conditional likelihood (Koop, Leon-Gonzalez and Strachan, 2009),
and the other uses the integrated likelihood (Chan, 2020; Chan and Eisen-
stat, 2015; Chan and Grant, 2016). Chan and Grant (2016) show that the
marginal likelihood predicated on the integrated likelihood is more accurate
than those using the conditional likelihood. For discussion of the integrated
likelihood computation, see Chan and Eisenstat (2015) and Chan and Grant
(2016).

2.3 Identification of the oil sector shocks

The model comparison criterion discussed in the previous section can be used
to compare reduced form models. However, the variance-covariance matrix
ut = ehtΣ in equation (1) is non-diagonal and therefore the disturbances
are correlated with each other. To give the impulse responses a structural
interpretation, the orthogonalized structural shocks ζt need to be recovered
from the reduced form model in equation (1). Specifically, the structural
shocks ζt have the following representation:

ut = Dtζt, (6)

where ζt is a n × 1 vector of disturbances, whose covariance matrix K is a
diagonal matrix. This means each shock in ζt is independent. Dt is a n× n
matrix representing the contemporaneous interactions between variables with
ones on the main diagonal.

The parameters in Dt need to be identified to have a structural inter-
pretation. The identification method of sign restrictions, popular in the oil
literature, restricts the choice of the candidate impulse response functions of
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the variables in the model to the oil sector shocks to those that satisfy the
signs expected by economic theory (Baumeister and Hamilton, 2019; Kilian
and Murphy, 2012; Peersman, 2005). This study also utilizes sign restric-
tions to disentangle oil price shocks. Sign restrictions overcome some of the
limitations of alternative identification methods.

Not all oil sector shocks are identical. Various demand and supply fac-
tors can drive oil price fluctuations (Baumeister, Peersman and van Robays,
2009; Cross and Nguyen, 2017; Fang and You, 2014; Kilian, 2009; Peersman
and van Robays, 2012). This paper follows the identification method apply-
ing sign restrictions proposed by Baumeister and Peersman (2013a).1 Sign
restrictions are applied to identify the three oil sector shocks. These are an
oil supply shock, a global oil demand shock, and a precautionary oil shock.

The oil supply shock reflects that the shift in oil supply causes a shift
in the oil price. Sources of such shocks may include oil quota cuts from
oil-exporting countries, geopolitical tension and civil wars. A negative oil
supply shock causes an increase in the oil price (Qoil) but a reduction in
global oil production (P oil) and world economic activity (Y w). The global
demand shock reflects that an economic boom, such as that evident recently
in China and India, with high commodity demand tends to stimulate com-
modity prices, leading to higher demand for oil and therefore the oil price.
The positive global demand shock comes with the growth in global oil pro-
duction (P oil), the price of oil (Qoil), and world economic activity (Y w). The
precautionary oil shock is similar to the global demand shock as it also causes
a positive co-movement between the oil price and output. However, the unfa-
vorable precautionary shock leads to a surge in speculative or precautionary
oil demand because of a rise in uncertainty about future oil production and
world economic activity. The positive precautionary shock reduces world eco-
nomic activity. Table 1 contains a description of the sign restrictions. The
−, and + denote sign of the response relative to the price of oil. The imposed
sign restrictions hold for one year after the shocks, common in literature on
oil price dynamics (Baumeister and Peersman, 2013b; Hamilton 2003).

The sign restrictions are implemented on the global variables ofQoil, P oil, Y w.

1Kilian (2009) proposes an alternative identification technique to identify three different
oil sector shocks. These are an oil supply shock, a global demand shock, and a precau-
tionary oil shock. Kilian assumes that the short-run oil supply curve is vertical so that an
oil demand shock cannot instantaneously impact world oil production but responds with
a month delay. However, this assumption is for models using monthly frequency data and
is less appropriate, given the quarterly data of the application in this paper.
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Table 1: Sign restrictions. The − and + denote a negative or positive re-
sponse to the oil sector shocks relative to the oil price, respectively.

Oil sector shocks Oil production (Qoil) Oil price (P oil) World economic activity (Y w)

Supply − + −
Global demand + + +
Precautionary + + −

Hence, the variables in equation (1) can be divided into two parts. The first
set of variables xt includes the three global variables: global oil production
(Qoil), the real oil price (P oil), and world economic activity (Y w). The sec-
ond set of variables zt contains the U.S. macroeconomic and financial market
variables. This means that equation (1) can be written as(

xt
zt

)
= c0 + c1 + B1

(
xt−1

zt−1

)
+ · · ·+ Bp

(
xt−p

zt−p

)
+Dt

(
ζxt
ζzt

)
. (7)

The independent disturbances (ζxt ) include the oil supply shocks, the
global oil demand shocks and the precautionary oil shocks, and ζzt contain
shocks for the U.S. macroeconomy and financial markets.

To estimate the contemporaneous impacts Dt and to identify the struc-
tural shocks ζxt and ζzt , the imposition of some restrictions on Dt is necessary.
Since the focus of our study is to analyze the effects of ζxt , we assume that
the three global variables Qoil, P oil and Y w contemporaneously affect the oil
sector variables, which means that the contemporaneous matrix Dt needs to
be restricted to a block lower triangular matrix for the U.S. macroeconomic
and financial market variables.

The identification proceeds by randomly drawing from the possible or-
thogonal shocks of the model until a set of 1.5 million admissible impulse
response functions that fulfill the sign restrictions are obtained. Usually,
some version of the median of the impulses that satisfy the sign restric-
tions is reported as the estimated impulse response function. However, the
sign restrictions method suffers from the model identification problem, where
many models can satisfy the specified sign restrictions (Fry and Pagan, 2011).
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Several methods have been suggested in the literature to select the impulse
responses to report from the credible set in empirical analyses. One way is to
report point-wise medians and associated percentiles of the posterior distri-
bution of the impulse responses. However, Fry and Pagan (2011) show that
this approach is misleading as the median responses do not have a structural
interpretation since the medians reported come from different models. They
propose the median target method (MT) where the reported impulses come
from a single model that is as close as possible to the medians of the im-
pulse response functions of the models that fulfill the sign restrictions. The
impulse response function plots in Section 4 report the MT and the point-
wise median and associated percentiles of the admissible impulse response
functions, with our preferred impulses being those generated using the MT
method. Sensitivity to alternative methods of selecting the impulse response
functions from the admissible set and sensitivity to alternative models with
constant volatility is explored in Section 4.4.

Kilian and Murphy (2012) show that it is insufficient to use sign restric-
tions to infer economically meaningful responses to the oil sector shocks.
The literature imposes additional restrictions to eliminate the set of admis-
sible structural models with implausible impulses to solve this problem. For
example, Antoĺın-Dı́az and Rubio-Ramı́rez (2018) propose narrative sign re-
strictions ensuring that the structural shocks and historical decompositions
are consistent with the established narrative around chosen historical events
to constrain the structural parameters. Additional boundary restrictions on
the sizes of short-run oil demand and oil supply elasticities are also imposed
in recent literature to exclude those models that come with implausibly high
elasticities (Baumeister and Peersman, 2013a, 2013b; Kilian and Murphy
2012, 2014). Baumeister and Peersman (2013a) set a bound of (−0.8, 0) for
the short-run oil demand elasticity as the short-run elasticity cannot surpass
the long-run elasticity, calculated to be around −0.8 in the Hausman and
Newey (1995) U.S. household surveys. The bound for short-run price elas-
ticity of the oil supply is between 0 to 0.6. This paper follows Baumeister
and Peersman (2013a), who impose additional boundary restrictions on the
sizes of the short-run oil demand and oil supply elasticities.2

2Kilian and Murphy (2012) set the upper bound of the short-run price elasticity of oil
supply to be 0.0258, which is much less than the upper bound imposed by Baumeister and
Peersman (2013a). The difference comes from data frequency as Kilian and Murphy use
monthly data while Baumeister and Peersman (2013a) use quarterly data. Because our
paper focuses on the influences of the oil sector shocks on the macroeconomic conditions,
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2.4 Generalized impulse response functions

The main obstacle in constructing impulse response functions in drifting
volatility models is that these models have non-linearities. In a VAR model
with non-homogenous time-varying shocks, the scale of the impulse response
functions will change over time. Authors have approached the issue of what
impulse response function to report in different ways. Nakajima, Kasuya and
Watanabe (2011) use the average of the time series of stochastic volatility
over the sample period as the size of the shock, while Chan and Eisenstat
(2015) use the shocks identified in the final period of the dataset.

This paper follows the Chan and Eisenstat (2015) approach and uses the
impulse response functions to the shocks in the final period of the sample as
the reported impulse responses. For comparison, we also present the impacts
of a shock from the 2007-2008 global financial crisis. These impulse response
functions demonstrate the short and long-run effects of the oil price shocks
from these specific periods on the U.S macroeconomy and financial market
variables. For VAR models with time-varying volatility, time-varying impulse
responses capture the dynamic impacts of time-varying oil price shocks at
each point in time. Baumeister and Peersman (2013a) compute the general-
ized impulse response functions as the drifting impulse responses and depict
the dynamic responses of the U.S. macroeconomic and financial market vari-
ables one year after each shock. These responses better reflect what occurred
in each quarter, given the historical shocks.

The generalized impulse response functions developed by Koop, Pesaran
and Potter (1996) can be defined as:

GIRFt+h = E[yt+h|Γt, εt]− E[yt+h|Γt]. (8)

The variable yt+h is the forecast of the endogenous variables h periods ahead,
Γt is the current information set and εt the structural shock. The generalized
impulse response function represents the discrepancy between conditional ex-
pectations, including and excluding the shock εt. The information set Γt in-
cludes the actual values of the lagged endogenous variables, and knowledge of
the model parameters, hyper-parameters and structural shocks up to period
t.

we estimate the model using quarterly data as much of the macroeconomic data series
are of quarterly frequency. Given that our model uses quarterly data, we confine the
short-term oil supply price elasticity to be between 0.0 and 0.6).
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3 Data

The paper studies the effects of the oil sector shocks on 17 U.S. macroeco-
nomic and financial market variables over 1986Q1 to 2019Q2 for 20 variables.
The starting date of 1986Q1 is consistent with similar studies finding a size-
able break in the nexus between the oil market and the real economy at this
time (Baumeister and Peersman, 2013b; Peersman and van Robays, 2009).
This starting date corresponds to the OPEC collapse and the beginning of
the Great Moderation.3 With the collapse of OPEC, oil prices are more likely
to respond endogenously to U.S. macroeconomic conditions.

The oil sector consists of oil price and production variables, and the model
includes a world economic activity variable to distinguish the oil demand, oil
supply and precautionary oil shocks. The oil price variable (P oil) is the real
U.S. refiner’s acquisition cost of imported crude oil (IRAC) following the
finding of Baumeister, Peersman and van Robays (2009) that the IRAC is
a superior proxy for the free global price of oil. This price is commonly
applied in the literature as a proxy for the free market of imported crude oil
(Baumeister and Peersman, 2013b; Cross and Nguyen, 2017; Kilian, 2009).

Global oil production (Qoil) is the world crude oil supply, and world eco-
nomic activity (Y w) is proxied by global industrial production (Baumeister
and Peersman, 2013b; Melolinna, 2014). Baumeister and Peersman (2013b)
show that global industrial production is the best index at the quarterly fre-
quency to measure the world economy.4 The oil price, oil production and

3In the 1970s to early 1980s OPEC operated as a cartel to set or influence the oil price.
Saudi Arabia in late 1985 failed to bolster the oil price by reducing its oil provision. As
a result, Saudi Arabia reversed its policy of restricting oil production, causing OPEC’s
collapse (Baumeister and Kilian, 2016). Although OPEC attempted to reconvene and
curtail production in the following year, there is no evidence that these attempts are
unsuccessful after that (Kilian and Murphy, 2014).

4The oil price is from the Energy Information Administration (EIA)’s Monthly Energy
Review. World oil production data is the seasonally adjusted crude oil production in
thousand barrels daily from the EIA. The global industrial production index is from the
United Nations Monthly Bulletin of Statistics computed as the weighted average of the
industrial activity of a large number of countries. Refer to Peersman and van Robays
(2012) for a full description of the index. We splice the series with world industrial
production data retrieved from the Netherlands Bureau for Economic Policy Analysis
because of the discontinuation of the United Nations series in 2008Q3. This series started
in 1991, and the index covers 97 percent of world industrial production. An alternative
is to use proxy world economic activity using the dry cargo single voyage ocean freight
rate (Cross and Nguyen, 2017; Kilian, 2009; Ratti and Vespignani, 2013). An alternative
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Table 2: Summary of the U.S. macroeconomic and financial
market data and transformations, 1986Q1 to 2019Q2.

Variables Transformation

Real gross domestic product log-difference

Consumer price index log-difference

Effective federal funds rate level

Personal income log-difference

Real personal consumption expenditure log-difference

Industrial production index log-difference

Civilian unemployment rate level

Housing starts log-difference

Producer price index log-difference

Average hourly earnings: manufacturing log-difference

Real gross private domestic investment log-difference

Capacity utilization: manufacturing log-difference

M1 money stock log-difference

10-Year Treasury constant maturity rate level

Corporate bond yield1 level

S&P 500 index log-difference

Nominal exchange rate log-difference
1 The corporate bondy yield is Moody’s seasoned Baa corporate bond
Yield relative to yield on 10-Year Treasury constant maturity.

world economic activity variables are converted into growth rates by taking
the first difference of the natural logarithm of each.

Table 2 lists the macroeconomic and financial market variables in the
U.S. component of the model.5 These U.S. macroeconomic aggregates are
commonly used in the macroeconomic models such as in Chan (2020) and

indicator of world economic conditions is that recently proposed by Baumeister, Korobilis
and Lee (2020), covering multiple dimensions of the global economy by including the
information of 16 variables through the first principal component while previously existing
indicators are constructed based on a single category of the global economy.

5The U.S. data comes from the FRED database except for the S&P 500 index and
the nominal exchange rate. The S&P 500 index is from Datastream, and the nominal
exchange rate measured by the effective exchange rate narrow index is from the Bank for
International Settlements.
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Koop (2013). The non-stationary variables are converted into growth rates
by taking the first difference of the natural logarithm of each variable, while
the stationary variables remain in levels. The table summarises the transfor-
mations applied to each variable.

Carriero, Clark and Marcellino (2016) and Chan (2020) use quarterly
data for the U.S. in developing their large BVAR-CSV models. We follow
their approach and use quarterly frequency data given our focus on macroe-
conomic data where many of the series of interest are of quarterly frequency.
Quarterly frequency data also reduces the number of parameters that need to
be computed, given the large data set and time-varying volatility and signif-
icantly reduces the intensity of the computational process. The monthly oil
price and oil production data are transformed to quarterly frequency by cal-
culating the average of the monthly observations in each quarter. This paper
also follows Baumeister and Peersman (2013b) and Hamilton and Herrera
(2004) and sets the lag length to p = 4.

4 Empirical results

This Section begins by comparison of the BVAR-CSV and BVAR-CV models
4.1. The empirical results are based on the estimation of the large BVAR-
CSV model as the model comparison criterion favoured the model allowing
for stochastic volatility within the data.

Section 4.2 presents the generalized impulse response functions to exam-
ine the impacts of oil sector shocks on the U.S. macroeconomy and financial
markets for the sample duration. Section 4.3 presents the impulse response
functions in response to the oil sector shocks specific to 2019Q2. Section 4.4
examines the sensitivity of the impulse response functions to shocks occurring
in 2008Q4, being the peak of the disruption induced by the global financial
crisis and the sensitivity of the impulse response functions estimated by a
large BVAR-CV model. This last Section also compares alternative methods
of impulse selection of the sign restrictions algorithm.

4.1 Model comparison results

Table 3 compares the BVAR-CSV model with the BVAR-CV model using
the Bayes factor as described in Section 2.2. Following Chan and Eisenstat
(2015), the Bayes factors are expressed in natural logarithms. The large
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BVAR-CV is the base model. The natural logarithm of the Bayes factors for
the BVAR-CV model is equal to zero. If the natural logarithm of the Bayes
factors of a BVAR-CSV model is greater than zero, then the BVAR-CSV
model is the preferred model for the given data. The results underline the
substance of allowing for stochastic volatility in modeling global oil and U.S.
macro and financial data as the data strongly favors the BVAR-CSV model.

Table 3: Log Bayes factors for the large BVAR-CV and BVAR-CSV models.

BVAR-CV BVAR-CSV

Log Bayes factor 0 279.3

4.2 Generalized impulse response functions

This Section examines the time-varying effects of the oil sector shocks on the
U.S. macroeconomy and financial markets using generalized impulse response
functions. Figures 2 to 4 show the reactions to the oil supply, global oil
demand and precautionary oil shocks. The plots of the responses of the oil
sector variables are for the quarter in which the shock occurs. The plots of
the U.S. macroeconomic and financial variables depict their reaction one year
after the initial shock (Baumeister and Peersman, 2013b). The responses are
cumulated and are in levels.

We draw several conclusions from these plots. First, the magnitudes of
the responses of the U.S. macroeconomic and financial market variables to
the shocks change over time because stochastic volatility matters for the
evolution of the size of the shocks.6 Second, the effects of all three of the

6Baumeister and Peersman (2013b) examine the time-varying effects of oil supply
shocks on the U.S. macroeconomy using a time-varying coefficients VAR model with
stochastic volatility in a small four-variate model. They show that the reactions of GDP
and consumer prices to oil supply shocks change substantially over time. The exclusion
of the drifting parameters in our model mutes the reactions to the oil price shocks com-
pared to Baumeister and Peersman (2013b) as the inclusion of heteroskedasticity does not
considerably perturb the VAR parameter estimates in our model. This paper trades off
modeling the impact of the time-varying coefficients in favor of using a large dataset.
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Figure 1: Posterior mean of the log volatility ht under the BVAR-CSV

oil shocks peak during the global financial crisis and are often two to three
times larger than the impacts of the equivalent shocks before and after the
financial crisis. Correspondingly, the scales of the impulse response functions
increase during the financial crisis.

Figure 1 shows the posterior mean of the common log volatility (ht)
through time. The log volatility increases and exceeds three during the 2008
financial crisis and hovers around a range between one and two in other pe-
riods. This result shows explicitly that the structural effects of the oil price
shocks on the U.S. macroeconomy and financial markets vary over time, espe-
cially in the financial crisis, emphasizing the importance of including time-
varying volatility in modeling the nexus between the U.S. macroeconomic
performance and oil sector shocks.

Oil supply shock: Figure 2 illustrates the time-varying reactions of
the oil sector and U.S. aggregates to the oil supply shocks. The results
demonstrate that unfavorable oil supply shocks have adverse consequences
for many U.S. macroeconomic and financial market variables such as GDP
growth, housing starts, real gross private domestic investment and the ex-
change rate. As oil prices increase, consumer prices and the producer prices
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for all commodities rise, but average hourly earnings and personal income
only slightly change, even in the financial crisis. As the Fed responds by
stimulating the economy, the M1 money stock rises, and the federal funds
rate falls. The magnitude of the effect of the monetary stimulus in 2008 is
twice as large as those in other periods. For the bond market, surprisingly,
the 10-year Treasury yield slightly rises in the short-run (Figure 2). One
plausible reason is that it takes time for risk-off sentiment to build up and as
a result there is a lag for investment to flood into the Treasury bond market.

Global oil demand shock: Figure 3 depicts the generalized impulse im-
pacts of a global oil demand shock on the U.S. macroeconomy and financial
markets. Overall the effects on the short-term reactions of the U.S. macroe-
conomic aggregates are positive. Similar to the responses to the oil supply
shocks, the positive impacts of the global oil demand shocks increase dra-
matically in the global financial crisis in 2008. Surprisingly, average hourly
earnings to global oil demand shocks are relatively small, while the posi-
tive responses of personal income are considerable. The stock price index
declines in response to the positive oil demand shock due to rising global
demand, although this effect is not significant. The rising appetite for risk of
investors reduces the demand for 10-year Treasury bonds, and the demand
for risky corporate bonds soars, increasing the 10-year Treasury bond yield
and decreasing the corporate bond yield.

Precautionary oil shock: Figure 4 shows the generalized impulse re-
sponses of the U.S. variables to the precautionary oil shocks. The precau-
tionary oil shocks negatively impact some U.S. macroeconomic variables,
including GDP growth, real personal consumption, real gross private domes-
tic investment and manufacturing capacity utilization. However, the adverse
effects on other macroeconomic variables are not significant. For example,
the responses of personal income and housing starts are small for all peri-
ods, including the global financial crisis, and the responses of average hourly
earnings even increase after the precautionary oil shocks. In terms of U.S.
stock and currency markets, the impacts of the precautionary oil shocks are
also not significant for most periods. There is a small exception in reaction
to the global financial crisis, but the influence of the shock vanishes after
four quarters. Risk-off sentiment emerges in the bond market, and investors
move funds to safer assets. The demand for Treasury bonds rises and declines
for corporate bonds reflected in declines in the 10-year Treasury yield and
growth in corporate bond yields.
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4.3 Impulse response functions

The generalized impulse response functions for the oil sector variables plot
the shocks and reactions to the three oil shocks when the shocks occur.
The generalized impulse response functions for the U.S. macroeconomic and
financial market variables present plots of the responses of each variable four
quarters after the oil sector shocks occur. However, a complete-time profile of
the impulse response functions to the shocks showing their dynamic effects on
the economy, comparable to standard impulse response functions estimated
from models without stochastic time-varying volatility, are available. While
standard impulse response functions are usually plots in response to one
standard deviation shocks, the BVAR-CSV generalized impulse responses
plot shocks specific to each quarter. The impulse response functions to the
quarter specific shocks follow the same dynamic paths, but the magnitudes of
the shocks differ. The magnitudes of the shocks and their contemporaneous
effects are shown in the first three panels of the first rows of the generalized
impulse response functions in Figures 2 to 4. This Section analyses the
impulse response functions of the three oil sector shocks using the shocks
occurring in 2019Q2 shown in Figures 5 to 7. The impulse responses are
accumulated and shown in levels. The shaded areas indicate the 68 percent
posterior credible set.

Oil supply shock: Figure 5 depicts the impulse responses to the oil
supply shock in 2019Q2. The results demonstrate that the small unfavorable
oil supply shock negatively influences many of the U.S. variables. The oil
supply shock raises the unemployment rate in the U.S. by 0.1% in the long-
term and causes a perpetual reduction in the level of GDP by 0.2%. Real
personal consumption, the industrial production index, housing starts, and
real gross private domestic investment experience a permanent decline in
response to the adverse supply shock. The MT impulses for personal income
and capacity utilization also reflect a reduction, although the credible set
shows that an improvement in these variables is possible. Consumer prices in
the U.S. rise by 0.1% in the long run for the 2019Q2 shock, and the producer
price index for all commodities permanently increases by 0.4% associated
with the permanent 3.6% growth in the oil price.

The lower federal funds rate and growth in the M1 money stock reflect
the loosening of monetary policy to stimulate the economy. The negative oil
supply shock has some adverse effects on the U.S. financial market variables.
For example, the U.S. currency depreciates by around 0.5% in the short run
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and further deteriorates in the long run by 0.8%. Since the negative oil supply
shock leads to lower GDP growth and higher inflation, economic uncertainty
rises correspondingly.

The uncertainty encourages investors to move away from the relatively
riskier stock and corporate bond markets. These movements cause a decline
in stock prices, decreased corporate bond prices, and corporate bond yields
rise. Surprisingly, the Treasury bond yield, which is a safe asset, increases
in the short-term. The share market decline is relatively small in the short
run but becomes more substantial in the long run. These movements coin-
cide with the Treasury bond market movements, where yields start to decline
around four quarters after the shock. The decline in yields may reflect in-
vestors’ increasing uncertainty about the macroeconomic environment as at
the onset of the negative oil supply shock; investors do not expect a perma-
nent decline in the GDP level. However, as the loosening of monetary policy
does not lift GDP growth or inflation, investors become more cautious about
the economy and eventually reallocate funds from the stock market to the
Treasury bond market.

Global oil demand shock: Figure 6 presents the MT selected impulse
response functions and the median impulse response functions to the global
oil demand shock for 2019Q2. Similar to the oil supply shock, the global
oil demand shock is small and leads to the permanent increase in consumer
prices of 0.3% and long-run growth in the producer price index for all com-
modities of 1.1%. However, the economic impacts of a global oil demand
shock on other U.S. variables are different from the influences of the oil sup-
ply shock. The global oil demand shock raises U.S. GDP, personal income,
industrial production, and manufacturing capacity utilization permanently.
However, the 68% credible sets of impulses for U.S. GDP, capacity utilization,
and the industrial production index shows that the signs of these effects are
only certain for just under two years. The models consistent with the short-
run sign restrictions in the short-term differ at the longer time horizon. For
many macroeconomic variables, including real personal consumption, hous-
ing starts and real gross private domestic investment, the effects of global
oil demand shock are not persistent. These variables rise temporarily in re-
sponse to the global oil demand shock, and the unemployment rate falls for
16 quarters.

Monetary policy is tightened with a higher federal funds rate and a de-
crease in the M1 money stock to offset the inflationary consequences of the oil
demand shock. Contractionary monetary policy sparks a trade-off between
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price stability and economic stabilization. The long-run impact on GDP is
subdued, being less than 0.05%, while the maximum impact on GDP in the
first few quarters is more than 0.1%.

In the U.S. financial markets, the nominal U.S. exchange rate experi-
ences a long-run depreciation of 0.6%. Surprisingly, the global oil demand
shock induced by the increased world economic conditions causes a perma-
nent reduction in the stock price of 1%. For the bond market, the positive
oil demand shock makes investment flow to the riskier corporate bonds and
leads to a fall in corporate bond yields and growth in the 10-year Treasury
yield.

Precautionary oil shock: Figure 7 contains the MT selected impulse
responses to the precautionary oil shock. Although the precautionary shock
in 2019Q2 leads to a permanent decrease in some variables such as GDP,
personal income, real personal consumption, industrial production, real gross
private domestic investment, manufacturing capacity utilization, and an in-
crease in the long-run in the producer price index for all commodities and
housing starts, the magnitudes of the impacts of precautionary oil shock are
different to those of the oil supply shock. For example, the effects of a pre-
cautionary oil shock on personal income on average are larger than those to
the oil supply shock and are negative in all horizons, suggesting that 2019Q2
reflects a precautionary oil shock rather than the oil supply or demand shock.

Consumer prices increase in the first year following the shock then declines
slightly in the long run, while the point-wise median impulse response shows
a permanent inflationary effect. The 68 % credible set of impulse response
functions suggests that the response is positive and permanent. The impulse
responses of average hourly earnings show a similar discrepancy between the
MT selected response and the median response. The MT response shows that
average hourly earnings rise slightly in the first few quarters and decrease by
around 0.02% in the long run. However, the median response indicates that
earnings per hour increase persistently following the shock.

23



F
ig

u
re

5:
Im

p
u
ls

e
re

sp
on

se
fu

n
ct

io
n
s

of
th

e
oi

l
se

ct
or

an
d

U
.S

.
m

ac
ro

ec
on

om
ic

an
d

fi
n
an

ci
al

va
ri

ab
le

s
to

an
oi

l
su

p
p
ly

sh
o
ck

,
20

19
Q

2.

T
h

e
so

li
d

b
lu

e
li
n

es
ar

e
th

e
m

ed
ia

n
im

p
u

ls
e

re
sp

on
se

s.
T

h
e

b
lu

e
d

as
h

ed
li

n
e

w
it

h
ci

rc
le

m
ar

ke
rs

ar
e

th
e

M
T

se
le

ct
ed

im
p
u

ls
e

re
sp

on
se

s.
T

h
e

sh
ad

ed
ar

ea
s

in
d

ic
at

e
th

e
68

%
p

os
te

ri
or

cr
ed

ib
le

se
t.

24



F
ig

u
re

6:
Im

p
u
ls

e
re

sp
on

se
fu

n
ct

io
n
s

of
th

e
oi

l
se

ct
or

an
d

U
.S

.
m

ac
ro

ec
on

om
ic

an
d

fi
n
an

ci
al

va
ri

ab
le

s
to

an
oi

l
d
em

an
d

sh
o
ck

,
20

19
Q

2.

T
h

e
so

li
d

b
lu

e
li
n

es
ar

e
th

e
m

ed
ia

n
im

p
u

ls
e

re
sp

on
se

s.
T

h
e

b
lu

e
d

as
h

ed
li

n
e

w
it

h
ci

rc
le

m
ar

ke
rs

ar
e

th
e

M
T

se
le

ct
ed

im
p
u

ls
e

re
sp

on
se

s.
T

h
e

sh
ad

ed
ar

ea
s

in
d

ic
at

e
th

e
68

%
p

os
te

ri
or

cr
ed

ib
le

se
t.

25



F
ig

u
re

7:
Im

p
u
ls

e
re

sp
on

se
fu

n
ct

io
n
s

of
th

e
oi

l
se

ct
or

an
d

U
.S

.
m

ac
ro

ec
on

om
ic

an
d

fi
n
an

ci
al

va
ri

ab
le

s
to

a
p
re

ca
u
ti

on
ar

y
oi

l
sh

o
ck

,
20

19
Q

2.

T
h

e
so

li
d

b
lu

e
li
n

es
ar

e
th

e
m

ed
ia

n
im

p
u

ls
e

re
sp

on
se

s.
T

h
e

b
lu

e
d

as
h

ed
li

n
e

w
it

h
ci

rc
le

m
ar

ke
rs

ar
e

th
e

M
T

se
le

ct
ed

im
p
u

ls
e

re
sp

on
se

s.
T

h
e

sh
ad

ed
ar

ea
s

in
d

ic
at

e
th

e
68

%
p

os
te

ri
or

cr
ed

ib
le

se
t.

26



4.4 Sensitivity analysis

Figures 8 to 10 show the median impulse responses and MT selected responses
to the oil shocks in 2008Q4 to illuminate how the impulse response functions
differ given the size of the shocks. The shocks in 2019Q2 are small, while
the shocks in 2008Q4 are the largest in the sample corresponding to the
global financial crisis as reflected by the log volatility of ht in Figure 1. The
parameter estimates governing the dynamics of the impulses are the same
for each draw. The range of the credible set of impulses is often two to three
times wider for the 2008Q4 shock than in 2019Q2. The differences in the
dynamic paths of the impulse response functions that occur are a product
of randomly drawing 1.5 million admissible impulse response functions that
fulfill the sign restrictions. The discrepancies are most substantial for the
response of average hourly earnings to the oil supply shock and the reaction
of consumer prices to a precautionary oil shock.

Figures 11 to 13 display three alternative approaches to the median-based
selection of the impulse response functions for the 2019Q2 shock. The ap-
proaches are to choose the model with an oil demand elasticity that is most
similar to the posterior median of the elasticity among the set of admissible
models (Kilian and Murphy, 2014) and to select the models with the largest
response of the real oil price to an oil supply shock, and the smallest response
of the real oil price to an oil supply shock. The patterns in the variable re-
sponses using the elasticity approach are more similar to those of the median
responses than those of MT selected responses. However, some exceptions
are where the impulses are dissimilar or even move in opposite directions
after some shocks. For example, the elasticity-selected responses show that
after a global oil demand shock, the nominal exchange rate declined in the
first three quarters then rallies to a permanent 0.2% increase while the me-
dian impulse response shows that the U.S. currency depreciates more than
0.4% in the long run. Another discrepancy is that after the precautionary
oil shock, the median impulse response for the CPI rises by around 0.08%.
However, both the elasticity-selected response and the MT selected-response
show that the CPI only rises in the first few quarters before declining in the
long run.

Most of the impulse responses from the models with the largest and the
smallest reactions of oil to the oil supply shock move in the same direction as
their median counterparts. For some variables, the differences in the impulses
taken from the models giving the largest and smallest responses are small. For
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example, the 10-year Treasury yield reactions to a global oil demand shock
are similar, especially in the long run. Noteworthy is that the responses from
the model with the smallest oil price response are not always smaller for
the other variables in the model than those from the model with the largest
response to the oil price. For example, after a precautionary oil shock, the
sizes of the reactions of some aggregates such as the unemployment rate,
the industrial production index, the 10-year Treasury yield from the small
response model are more substantial than the equivalent selected from the
model with the largest reaction of the oil price to the oil supply shock.

Although the model comparison measured in the previous Section shows
that the BVAR-CV provides inferior model-fit for the sample data, this Sec-
tion estimates the impulse responses to the shocks identified in the final
period of the dataset by the BVAR-CV model as another robustness check.
Figures 14 to 16 depict the median impulse and MT-selected responses to
the oil price shocks in 2019Q2 using a BVAR-CV model to illustrate how the
impulse response functions differ, estimated by a BVAR model with constant
volatility. The results show some obvious dissimilarities between the magni-
tudes of the impulse responses estimated by the BVAR-CV model and the
ones estimated by the BVAR-CSV model. For example, the responses esti-
mated by the BVAR-CV model show that after an oil supply shock, S&P 500
index drops by around 2% in the long run, while the responses estimated us-
ing the BVAR-CSV model illustrate that the S&P 500 index only experiences
a less than 1% permanent decline. The discrepancy between MT-selected re-
sponses and the median impulse responses, estimated using the BVAR-CV
model, are superfluous to all three types of oil sector shocks.
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5 Conclusion

This paper combines recent results in the Bayesian SVAR literature to es-
timate a large Bayesian VAR model including common stochastic volatility
to provide empirical evidence on the impacts of oil sector shocks on U.S.
macroeconomic and financial market variables. This recent work shows that
BVAR models with a large number of variables outperform models with a
small number of variables for structural analysis and forecasting, and time
variation in the VAR error terms capture the time-varying volatility that
is a feature of macroeconomic data. Formal Bayesian model comparison
shows that the data prefer the large BVAR-CSV model to a counterpart
with constant volatility. Sign and boundary restrictions are then applied to
disentangle the three structural oil sector shocks of an oil supply shock, a
global oil demand shock, and a precautionary oil shock.

The advantage of incorporating the time-varying volatility is that the
magnitude of the oil sector shocks differs in each quarter. Generalized im-
pulse response functions reveal the contemporaneous effects of the oil sector
shocks and their effects on the U.S. variables after one year. The impulse
response functions show the dynamic effect of the shocks. The analysis shows
the dynamic impulse response functions in response to the oil sector shocks
in 2019Q2 and, for comparison, in 2008Q4. The generalized impulse response
functions show that while the magnitudes of the responses are not constant
at each point in time, they are not considerably different, with the exception
of the global financial crisis in 2008 when the size of the shocks and subse-
quent reactions of most of the U.S. variables to the three oil shocks often rise
to be between two to three times larger than those in other periods.

The paper draws several conclusions. First, the impacts of the three oil
sector shocks on the model variables are strikingly different. Second, there are
permanent inflationary effects for all of the oil sector shocks. Third, although
the global oil demand shock is associated with increased GDP, there are some
adverse effects on several macroeconomic variables in the long run. Fourth,
all oil sector shocks negatively affect the U.S. share market and currency
market in the long run, while the influences on the U.S. bond market vary.
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Appendix - estimation details

This Appendix sets out the method used to estimate the large BVAR-CSV
described in Section 2 following Chan (2020).

The paper sets the prior p(B,Σ,Ψ) = p(B,Σ)p(Ψ) with the parame-
ter blocks (B,Σ) and a priori independent Ψ. The prior is the standard
normal-inverse-Wishart prior where Σ ∼ IW(K0, δ0) and (vec(B) | Σ ∼N
(vec(B0),Σ⊗VB) (Kadiyala and Karlsson, 1997). B0 = 0 and the covari-
ance matrix VB is chosen to be a diagonal matrix to induce shrinkage. The
diagonal matrix VB is assumed to have diagonal elements ςB,ii = τ2 for the
intercept and ςB,ii = τ1/(ι

2ŝr) for coefficients on the lags of variable r de-
noted ι, where ŝr is the sample variance of an AR(4) of r. The paper also
sets δ0 = n + 3,K0 = In, τ1 = 0.22 and τ2 = 102. The intercepts are not
shrunk to zero while the lag coefficients ι are shrunk to zero as the lag length
increases (Koop and Korobilis, 2010). In terms of Ψ = diag(eh1 , . . . , ehT )
with ht = ρht−1 + ξht ; ξht ∼ N (0, δ2h), the prior is the independent inverse-
gamma prior for δ2h: δ2h ∼ (IG)(υh, Kh) and truncated normal prior for
ρ ∼ N (ρ0, Vρ)1(|ρ| < 1). Finally, υh = 5, Kh = 0.04, ρ0 = 0.9 and Vρ = 0.22.

To estimate the BVAR-CSV we sample jointly B and Σ. Specifically, the
natural conjugate priors for B,Σ mean that the posterior draws can come
from p(B,Σ | Y,Ψ) and p(Ψ | Y,B,Σ).

Combining the likelihood p(Y|B,Σ,Ψ) means that the joint prior den-
sity function p(B,Σ), the posterior density function p(B,Σ | Y,Ψ) is nor-
mal inverse-Wishart, making analytical results easy to obtain. There are
two steps in sampling (B,Σ | Y,Ψ). First, sample Σ from (Σ | Y,Ψ) from
the inverse-Wishart distribution. Second, given Σ, sample the (vec(B) |
Y,Σ,Ψ) from the normal distribution. Since the large BAVR model in
this paper involves 20 variables, the high-dimension density makes the com-
putation process time-consuming. To improve the computational process,
given the large number of parameters, we apply a Kronecker structure to the
likelihood and use fast band matrix methods following Carriero, Clark and
Marcellino (2016) and Chan (2020).

The number of iterations to obtain the posterior draws is set to 25,000,
with the first 5000 draws discarded. To reduce the autocorrelation among
the draws, only every 10th draw is selected. To compute the generalized im-
pulse response functions the mean responses of the 20 endogenous variables
are kept from 100 draws successfully satisfying the imposed sign restrictions.
For each period, 500 current states of the economy are drawn, and the repre-
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sentative impulse responses are taken to be the median of this distribution.
The impulse response functions to the shocks from the specific periods are
calculated using 1.5 million random draws of the rotation matrix.
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