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Abstract 

This paper aims to empirically investigate the dynamic connectedness between oil prices and stock returns 

of clean energy-related and technology companies in China and U.S. financial markets. We apply three 

multivariate GARCH model specifications (CCC, DCC and ADCC) to investigate the return and volatility 

spillovers among price and return series. We use rolling window analysis to forecast out-of-sample one-

step-ahead dynamic conditional correlations and time-varying optimal hedge ratios. Our results suggest that 

Invesco China Technology ETF (CQQQ) is the best asset to hedge Chinese clean energy stocks followed 

by WTI, ECO, and PSE. Our results are reasonably robust to the choice of different model refits and forecast 

length of rolling window analysis. Our empirical findings provide investors and policymakers with the 

systematic understanding of return and volatility connectedness between China and U.S. clean energy stock 

markets. 
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1. Introduction 

Developing renewable energy sources to either replace or enrich the existing energy supply portfolio 

remains a crucial strategy for countries to reduce coal dependency and, therefore, reach the climate targets that 

the participating governments pledged under The Paris Agreement (Scasny et al., 2015). The International 

Energy Agency (IEA) (2017) estimates that the global demand for renewable energy sources would rise from 

9% in 2017 to 16% in 2040. Given the extraordinary process of industrialisation and urbanisation over the past 

four decades, China has become the largest energy consumer and carbon emitter which has caused severe 

issues of environmental degradation (Zhang et al., 2015). According to the National Bureau of Statistics of 

China (2019), China’s total energy consumption between 1978 and 2017 increased from 147 million tons of 
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standard coal equivalent (tsec) to 449 million tsec, with an average of 7% annual growth rate. In response to 

climate change, energy scarcity and environmental degradation, China proposed to change the economic 

structure from a conventional manufacturing-driven to a service-oriented structure based on a clean and low-

carbon energy supply system. Towards this goal, China released its 12th Five-Year Plan for National Strategic 

Emerging Industries in 2010 and listed the renewable energy sector as one of the leading industries for the 

country to achieve a sustainable low-carbon economy (Song et al. 2018). Moreover, China has committed to 

ambitious goals of peaking its carbon dioxide (CO2) emissions before 2030 and achieving the carbon neutrality 

before 2060 (Fang et al., 2021; Shi et al., 2021). Consistent with this national ambition in environmental 

mitigation, by the end of 2018, clean energy sources accounted for 14.3% of China’s total energy consumption 

(National Bureau of Statistics of China, 2019).  

Nevertheless, renewable energy development often requires sufficient and adequate public financial 

support as private sources cannot finance such a large project (Reboredo et al., 2017). Al Mamun et al. (2018) 

argue that the financial stress on funding a clean energy project could be alleviated by financial market 

development, while Reboredo and Wen (2015) emphasise the important role of the stock market in China’s 

clean energy development. Along with preferential policies and a bull market in sustainable finance, clean 

energy related stocks have been receiving unprecedented attention among investors in the Chinese financial 

market. Despite the remarkable growth in stock issuance volumes over the past decade, the overall market size 

of clean energy related stocks in China remains relatively nascent, and it is substantially smaller than other 

sectors. Due to the uncertainties in clean energy commercialisation, stock investments in publicly traded clean 

energy companies are expected to be inefficient and highly volatile (Henrique and Sadorsky, 2008, Ahmad et 

al., 2018). Given the presence of information asymmetries and immature trading mechanisms in China’s clean 

energy stock market, investors tend to make decisions blindly by following the general market and policy 

trends (Roboredo and Wen, 2015; Sun et al., 2019).  

As for the flourishing literature on clean energy related stocks, existing studies have identified the 

significant role of oil in affecting clean energy stock price dynamics (Reboredo, 2015; Bondia et al., 2016). 

Although rising oil prices are widely accepted as one of the major factors for companies to substitute fossil 

fuel-based production with clean energy sources, Henrique and Sadorsky (2008) suggest the impact of oil price 

movements on clean energy stock prices is limited, and it is not as effective as the impact of technology stocks. 

In contrast, using the vector autoregression (VAR) along with the causality test framework, Kumar et al. (2012) 

report a significant positive relationship between oil prices and clean energy stock prices. Under the Markov-

switching empirical framework, Managi and Okimoto (2013) analyse the price co-movement between oil, 

clean energy stocks and technology stocks on daily data from 2001 to 2010. Their study reports a structural 

break in late 2007 and suggests that oil prices and technology stock prices positively impact clean energy stock 

prices for the post structural break period. Based on Managi and Okimoto (2013), Bondia et al. (2016) further 

review this relationship using the endogenous structural break framework. Given the presence of two structural 

breaks, Bondia et al. (2016) report a significant short-run price co-movement between oil, clean energy stocks 

and technology stocks, while, in the long run, they do not find any meaningful causal relationships. Using 

wavelets analysis, Reboredo (2017) document that the mean dependence between oil prices and clean energy 

stock prices is weak in the short run. However, the relationship becomes significantly stronger in the long run. 

For the period between 2009 and 2016, Reboredo and Ugolini (2018) demonstrate that oil prices were one of 

the most significant contributors to the clean energy stock return movements in the U.S. and the EU market. 

Likewise, following the frequency-domain spillover method proposed by Baruník and Křehlík (2018), Ferrer 

et al. (2018) and Naeem et al. (2020) find a significant time-varying connectedness between oil prices and 

clean energy stocks. Moreover, both studies reach a consistent conclusion confirming that most connectedness 

is not persistent in the long run. Based on a set of firm-level data, Foglia and Angelini (2020) reveal a 

significant increase in the degree of volatility connectedness between crude oil and clean energy stock prices 

during the COVID-19 pandemics. Furthermore, Foglia and Angelini (2020) verify the role of the global 
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COVID-19 outbreak as the trigger that stimulates investors to seek a risk-adjusted return and, therefore, modify 

their portfolio to reduce risks during periods of high uncertainty.  

Since innovations in the clean energy technologies are crucial for future development and market 

expansion of renewable energy sources, having technological breakthroughs can significantly promote 

investments in renewable energy sector (Nasreen et al., 2020; Popp et al., 2011; Zheng et al., 2021). 

Consequently, investors tend to view clean energy stocks as having a similar risk profile as technology stocks 

(Sadorsky, 2012; Zhang and Du, 2017; Ferrer et al., 2018; Sun et al., 2019, Nasreen et al., 2020). Based on the 

results of the DCC-GARCH model estimation, Sadorsky (2012) reports that clean energy stock prices correlate 

more with technology stocks than oil prices. In line with Sadorsky (2012), Zhang and Du (2017) confirm that 

the stock price variation of clean energy companies correlates more with technology companies than with 

fossil fuel companies in China. In addition, Nasreen et al. (2020) use wavelets analysis to show that the stock 

returns of clean energy companies are heavily affected by shocks in technology companies. On the basis of 

daily closing prices from the U.S. market, Ferrer et al. (2018) find a significant short-run co-movement 

relationship between clean energy stocks and technology stocks. Sun et al. (2019) use the impulse response 

functions to demonstrate a considerable return linkage between the stock prices of China’s clean energy 

companies and technology companies. In addition, Sun et al. (2019) highlight that any unexpected shocks on 

technology stock prices in China’s financial market are expected to generate positive impacts on clean energy 

stock prices for at least eight periods.  

Another strand of the literature investigates the volatility transmissions among oil prices, clean energy 

stock prices and technology stock prices. For instance, using multivariate GARCH specifications, Sadorsky 

(2012) reveals significant volatility spillovers from oil prices and technology stock prices to clean energy stock 

prices implying that oil could be used to hedge clean energy investment. Wen et al. (2014) document significant 

volatility spillovers between oil prices and clean energy stock prices, whereas Ahmad et al. (2018) confirm 

that a one-dollar long position in the U.S. clean energy stock could be hedged by on average for 29 cents with 

a short position in the crude oil futures market.   

Given the impact of increasing integrations between the Chinese and U.S. financial markets, major U.S. 

benchmark indices' return and volatility information contain significant predictive power for the Chinese stock 

market (Wang and Di Iorio, 2007; Johansson, 2010; Ye, 2014). Unlike the related studies that only focus on 

single market analysis, we measure the dynamic cross-market return and volatility linkages between different 

clean energy stocks between the Chinese and U.S. financial markets. Since there is a growing number of 

investors using the cross-market investment strategies for portfolio diversification and risk management, our 

empirical results are expected to assist investors in designing trading strategies on clean energy stock markets. 

In addition, our empirical results have practical implications to assist policymakers in decision making for 

accelerating clean energy development in China.  

Following the literature on clean energy stock prices, we consider three VAR-MGARCH models (CCC, 

DCC and ADCC) to investigate return and volatility co-movement among clean energy stock prices, oil prices 

and technology stock prices between the Chinese and U.S. financial markets for the period from May 15, 2012, 

to July 23, 2021. We use rolling window analysis to forecast out-of-sample one-step-ahead dynamic 

conditional correlations, optimal hedge ratios and optimal portfolio weights. Consistent with the previous 

literature, our empirical results suggest that the stock prices of clean energy companies correlate more with 

technology stocks than with oil prices. Moreover, we find that technology stocks are the most effective asset 

to hedge Chinese clean energy stocks. As confirmed by a set of different robustness checks, our empirical 

results are consistent and robust to different choices of sample sizes, forecast lengths, model refits, and 

distributions. 

Our empirical results provide practical implications for investors and policymakers. Understanding 

dynamic return and volatility interdependencies between stock returns of clean energy companies, technology 

companies and oil prices are of ultimate interest for investors in portfolio designs and risk managements. Given 
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significant price co-movements between the clean energy stocks in the Chinese and U.S. financial markets, 

investors may take the U.S. clean energy stock prices as one of determining factors for their cross-market 

investment strategy. Moreover, the positive conditional correlations between the stock returns of clean energy 

companies and technology companies suggest that policymakers may accelerate clean energy development by 

providing fiscal incentives and other supports to clean energy-related technology companies.  

The remainder of this paper is structured as follows. Section 2 and Section 3 outline data and empirical 

methodology that we use for our analysis. Section 4 reports and discusses the main empirical results. Section 

5 reports optimal hedge ratios and portfolio weights derived from multivariate GARCH estimations. Section 

6 provides a robustness analysis, and Section 7 summarises our empirical findings and concludes the paper 

with policy implication discussion. 

2. Methodology 

In this paper, three competitive models, VAR(1)-CCC-GARCH(1,1), VAR(1)-DCC-GARCH(1,1) and 

VAR(1)-ADCC-GARCH(1,1), are used to explore return and volatility connectedness between stock prices of 

clean energy companies, technology companies and oil prices. For the conditional mean equation, we follow 

Sims (1980) in using a vector autoregression (VAR) model to fit return series. Since a VAR model treats all 

input variables equally as endogenous variables, each variable is assumed to depend linearly on the past 

information of itself and all the other variables included in the system. Hence, using a VAR estimation allows 

us to capture autocorrelations and cross-autocorrelations among the return series.  

Let 𝑟𝑡 to be a (𝑛 × 1) vector of return series at time t. We specify a generalised VAR(𝑝) process of 𝑟𝑡 

conditional on past information set 𝐼𝑡−1 as:  

𝑟𝑡 = 𝑚0 + ∑ 𝑚𝑖𝑟𝑡−𝑖

𝑝

𝑖=1

+ ε𝑡 ,   ε𝑡|𝐼𝑡−1 ∼ 𝑁(0, 𝐻𝑡) , (1) 

where p is the optimal lag length chosen by the information criteria, 𝑚0 is a vector of constants and 𝑚𝑖 is a 

(𝑛 × 𝑛)  matrix of coefficients. The residuals obtained from Eq.(1) are defined as 𝜀𝑡 = 𝐻𝑡
1/2

𝑧𝑡, where 𝐻𝑡 is 

the conditional covariance matrix, and 𝑧𝑡 is an (𝑛 × 1) independent and identically distributed random vector 

of residuals.  

As for the next step of our analysis, we use the constant conditional correlation (CCC) model of Bollerslev 

(1990), dynamic conditional correlation (DCC) model of Engle (2002), and asymmetric dynamic conditional 

correlation (ADCC) model of Cappiello et al. (2006) to further explore the conditional volatilities and optimal 

hedge ratios among underlying asset returns. The CCC model of Bollerslev (1990) assumes a constant 

conditional correlation matrix among different time-series variables. However, many previous empirical 

studies have demonstrated that the assumption of the constant conditional correlations is too restrictive and 

unrealistic in practice due to the continuous time-variant nature of volatility among financial assets. By 

relaxing the assumption of constant conditional correlation, Engle (2002) developed the DCC model that 

allows to measure time varying conditional correlations between asset returns. The estimation of DCC model 

of Engle (2002) involves two steps, where the first step estimates the GARCH parameters and the second step 

estimates the dynamic conditional correlations: 

{

𝐻𝑡 = 𝐷𝑡𝑅𝑡𝐷𝑡 ,

𝐷𝑡=𝑑𝑖𝑎𝑔 (ℎ1,𝑡
1/2

, ⋯ , ℎ𝑛,𝑡
1/2

) ,

𝑅𝑡 = 𝑑𝑖𝑎𝑔(𝑄𝑡)−1/2 𝑄𝑡  𝑑𝑖𝑎𝑔(𝑄𝑡)−1/2.

 (2) 

 



5 

In Eq.(2), 𝐻𝑡  is a (𝑛 × 𝑛) conditional covariance matrix, 𝑅𝑡  is a time-varying conditional correlation 

matrix, 𝐷𝑡  is the diagonal matrix with time-varying standard deviations ℎ𝑖,𝑡
1/2

 resulting from the first-step 

univariate GARCH estimations. 𝑄𝑡 is a symmetric positive definite variance matrix between series 𝑖 and 𝑗. 

The Eq.(3) specifies the dynamic correlation structure of underlying asset returns, where dynamic 𝑄 is the 

unconditional covariance matrix of the standardised residuals 𝑧𝑖,𝑡  (𝑧𝑖,𝑡 = 𝜀𝑖,𝑡/√ℎ𝑖,𝑡).  

𝑄𝑡 = (1 − 𝜃1 − 𝜃2)𝑄 + 𝜃1𝑧𝑡−1𝑧𝑡−1
′ + 𝜃2𝑄𝑡−1 .  (3) 

In Eq.(3), θ1  and θ2  are non-negative scalars that are used to construct the dynamic conditional 

correlation. The DCC model satisfies the mean reverting condition if θ1 + θ2  < 1. Under the DCC model 

specification, the dynamic conditional correlations can be estimated through:  

𝜌𝑖𝑗,𝑡 =
𝑞𝑖,𝑗,𝑡

√𝑞𝑖,𝑖,𝑡  𝑞𝑗,𝑗,𝑡

 . (4) 

Based on the DCC model specification, Cappiello et al. (2006) further extend the model setting by 

incorporating the asymmetric effects (leverage effect) in conditional assets correlations. In asymmetric DCC 

(ADCC) model specification, the correlation evaluation equation 𝑄𝑡 is defined as follows:  

𝑄𝑡 = (𝑄̅ − 𝐴′𝑄̅𝐴 − 𝐵′𝑄̅𝐵 − 𝐺′𝑄̅  ̅𝐺) + 𝐴′𝑧𝑡−1𝑧𝑡−1
′ 𝐴 

+𝐵′𝑄𝑡−1𝐵 + 𝐺′𝑧𝑡 + 𝐵′𝑄𝑡−1𝐵 + 𝐺′𝑧𝑡  ̅ 𝑧′𝑡  ̅𝐺   , 
(5) 

where A, B and G are (𝑛 × 𝑛) parameter matrices, 𝑧𝑡  ̅ are zero-threshold standardised errors which are equal 

to 𝑧𝑡 when less than zero and zero otherwise.  𝑄̅ and 𝑄̅   ̅are the standardised unconditional correlation matrices 

of 𝑧𝑡 and 𝑧𝑡  ̅, respectively 

3. Data  

This paper incorporates the daily prices of the following five time series: (a) The WilderHill Clean Energy 

Index (ECO); (b) The CSI CN Mainland New Energy Index (CSI); (c) The NYSE Arch Tech 100 index (PSE); 

(d) the daily closing price of the nearest contract on the West Texas Intermediate (WTI) crude oil futures 

contract; (e) the daily closing price of the Invesco China Technology ETF (CQQQ). The Wilder Hill Clean 

Energy Index (ECO) is a modified equal-dollar-weighted index that consists of 40 clean energy companies in 

the U.S. market. Similarly, the performance of Chinese clean energy companies is reflected in the CSI CN 

Mainland New Energy Index (CSI), which is one of the leading benchmarks for the clean energy sector in 

China. It consists of 50 companies engaged in renewable energy production, storage and electric vehicles. The 

Invesco China Technology (ETF) tracks 110 public listed Chinese leading companies from technology sectors. 

Likewise, the NYSE Arca Tech 100 index measures the performance of technology companies listed on US 

stock exchanges. 

Figure 1: Time series plots of CSI, ECO, WTI, CQQQ and PSE 
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Our sample period covers 2161 daily closing prices from May 15, 2012, to July 23, 2021. Accordingly, 

all the data series are retrieved and collected from Thomson Reuters DataStream using the Reuters Instruments 

Code (RIC)a.  For estimation purposes, we convert all the sample series into natural logarithms. For the purpose 

of comparison, we set each series to 100 on May 15, 2012 and Figure 1 outlines the price development of the 

underlying data series. Accordingly, we observe that CSI and ECO tend to move together, while CSI and WTI 

tend to move differently. The 2014 oil shock due to the unexpected supply surplus had significant impacts on 

the global oil prices as the price fell sharply from a peak over $100 per barrel in mid-2014 to below $35 per 

barrel at the beginning of 2015. Meanwhile, the CSI index increased significantly, reflecting an excellent 

financial performance of the renewable energy sector in the Chinese market. 

Figure 2: Graphs of return series of CSI, ECO, WTI, CQQQ and PSE. 

 

Table 1:The descriptive statistics, diagnostics, and unit root tests results of return series 

Index CSI ECO WTI CQQQ PSE 

Mean 0.0537 0.0591 -0.0127 0.0569 0.0701 

Median 0.0805 0.1369 0.0953 0.0997 0.1137 

Maximum 7.1717 15.0144 31.9634 9.2026 9.0649 

Minimum -9.8277 -16.239 -60.1676 -11.5996 -12.7364 

 
a We use Reuters Instrument Code, “.ECO”, “.CSI000941”, “CLc1”, “CQQQ.K” and “.PSE” to retrieve and collect daily data on the 

ECO index, the CSI index, WTI crude oil nearest future contact price, the CQQQ ETF and PSE index from Thomson Reuters 

DataStream, respectively. 
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Std.dev 1.9536 2.0567 3.1772 1.7299 1.2292 

Skewness -0.66508 -0.37136 -2.92329 -0.39511 -0.85152 

Kurtosis 3.3524 9.1141 78.1726 3.4997 12.9058 

Jarque-Bera 1170.742*** 7525.687*** 553062.4*** 1158.508*** 15251.464*** 

Shapiro-Wilk 0.9489*** 0.9098*** 0.7036*** 0.9667*** 0.8909*** 

ARCH-LM 317.8789*** 373.18251*** 416.6927*** 206.7238*** 791.8057*** 

ADF -11.8618*** -12.4005*** -12.5472*** -12.6351*** -13.6812*** 

PP -2137.92*** -2246.2584*** -2301.7*** -2046.2*** -2458.21*** 

KPSS 0.2911 0.2966 0.1013 0.04671 0.0586 

Observations 2160 2160 2160 2160 2160 

Note: *, **, and *** represents significance at 10%, 5% and 1% level respectively. Normality is tested by 

Shapiro-Wilk test. ARCH-LM test performs the LM test for Autoregressive Conditional Heteroskedasticity with 

the null assumption of no ARCH effects. Unit roots are tested using the Augmented Dicky and Fuller (ADF), 

Phillips–Perron (PP) and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) unit root tests. 

For each series, the continuous compounded daily returns are calculated using 100 × 𝑙𝑛(𝑝𝑡/𝑝𝑡−1), where 

𝑝𝑡 and 𝑝𝑡−1 are the daily closing price at time 𝑡 and 𝑡 − 1, respectively. Figure 2 shows how asset returns 

varied over time. Notice that all five series experience pronounced volatility clustering in the first quarter of 

2020, a time period of the global COVID-19 outbreaks. Descriptive statistics of daily returns are summarized 

in Table 1. As can be seen, each of these return series shows skewed and leptokurtic distribution, and normality 

test results from Jarque-Bera test and Shapiro-Wilk test confirm that none of these return series is normally 

distributed. In addition, the ARCH effects are also present for all return series as confirmed by the ARCH 

Lagrange multiplier (LM) tests. For the unit root tests, we perform the Augmented Dicky-Fuller (ADF), 

Phillips–Perron (PP) and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests. The null hypothesis of ADF and 

PP tests is that the data contains unit roots, while the KPSS test assumes the absence of unit roots. The results 

of these unit root tests are summarised in the lower part of the Table 1, suggesting that the first differences of 

all underlying variables are stationary. 

 

4. Empirical results and discussion 

The VAR(1)-CCC(1,1) model is used as a benchmark to study the return and volatility dynamics among 

the underlying series. As discussed above, the DCC and ADCC models will be utilised to further investigate 

the conditional correlation, dynamic hedge ratios and optimal portfolio weights among the series. In order to 

account for the presence of leptokurtic distributions in asset returns, we estimate our MGARCH models with 

multivariate t (MVT) distributions.  

Table 2: VAR parameter estimates (Conditional mean equation) 

 Constants CSIt−1 ECOt−1 WTIt−1 CQQQt−1 PSEt−1 

CSIt 0.0424 -0.0268 0.0961 -0.0038 0.1104 0.0098 

 (0.3073) (0.2625) (0.0015) (0.7832) (0.0019) (0.8565) 

ECOt 0.0424 -0.0350 0.0836 -0.0076 0.0557 -0.2124 

 (0.1243) (0.1688) (0.0096) (0.6031) (0.1415) (0.0002) 

WTIt -0.0022 -0.0046 -0.0099 -0.0511 0.0714 -0.2030 

 (0.9748) (0.9073) (0.8422) (0.0230) (0.2226) (0.0227) 

CQQQt 0.0638 -0.0410 0.0574 -0.0133 0.0965 -0.1989 

 (0.0861) (0.0551) (0.0341) (0.2776) (0.0024) (0.0000) 

PSEt 0.0823 -0.0310 0.0451 -0.0030 0.0446 -0.2259 

 (0.0017) (0.0399) (0.0182) (0.7274) (0.0469) (0.0000) 

Note: This table reports the estimated VAR parameters of CCC, DCC and ADCC model specification, respectively. 

The models are fitted by using Quasi-Maximum Likelihood estimation (QMLE). The P-values are reported in 

parentheses. There are 2159 daily observations, and all computations are carried out by the rmgarch package of 

Ghalanos (2019) in R. 

Since VAR estimations assume that each variable depends on the past information of the variables 

included in the system, correct identification of lag length is crucial to obtain accurate model estimations. For 
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the selection of optimal lag length, we apply empirical approaches of the Akaike's information criterion (AIC), 

the Bayesian information criterion (BIC), the final prediction error criterion (FPE) and Hannan–Quinn 

information criterion (HQIC). Within the scope of our study and based on the results of information criteria, 

we conduct a five-variable VAR estimation with one lag length to model our conditional mean equations. Table 

2 presents the estimated coefficients of conditional mean parameters. The results show that, on average, one 

period lag of ECO index returns positively impacts the current period of CSI returns, with the impact being 

statistically significant at 1% level. Alternatively, the result of past returns of CSI index on current returns of 

ECO index remains limited and statistically insignificant. A unidirectional return transmission from the ECO 

to CSI is important in establishing a positive relationship between the current period of CSI returns and the 

last period of ECO returns. This result is coherent with the findings reported by Bonga-Bonga (2018) and 

Nasreen et al. (2020), who suggest that the stock returns of clean energy companies are heavily affected by 

shocks from other markets. Moreover, as Ye (2014) suggested, the returns of major U.S. benchmark indexes 

have significant power to predict a future moving direction of stocks in the Chinese market. Since there is no 

overlap of trading hours between the U.S. and Chinese financial market, investors may use the U.S. renewable 

energy index as the prior indicator to forecast the next day's direction of the Chinese renewable energy stocks. 

Table 3: VAR-MGARCH estimations (Variance Equation Parameters) 

 VAR(1)-CCC(1,1) VAR(1)-DCC(1,1) VAR(1)-ADCC(1,1) 

 Coef. T-stat P-Value Coef. T-stat P-Value Coef. T-stat P-Value 

ωCSI 0.0236 1.852 0.0640 0.0297 1.4275 0.1534 0.0235 1.7077 0.0877 

αCSI 0.0717 5.868 0.0000 0.0615 3.4390 0.0006 0.0773 6.2683 0.0000 

βCSI 0.9268 73.096 0.0000 0.9322 43.1142 0.0000 0.9265 62.6821 0.0000 

γCSI             -0.0096 -0.5600 0.5755 

ωECO 0.0424 2.441 0.0146 0.0381 1.9413 0.0522 0.0452 2.3210 0.0203 

αECO 0.0648 4.467 0.0000 0.0638 3.9064 0.0001 0.0418 3.5208 0.0004 

βECO 0.9237 54.023 0.0000 0.9275 49.9999 0.0000 0.9209 51.9377 0.0000 

γECO             0.0458 2.3337 0.0196 

ωWTI 0.1037 3.208 0.0013 0.0895 2.0446 0.0409 0.1025 3.5501 0.0004 

αWTI 0.1164 6.927 0.0000 0.1302 5.0121 0.0000 0.0506 3.1840 0.0015 

βWTI 0.8739 53.526 0.0000 0.8677 35.1685 0.0000 0.8826 58.4724 0.0000 

γWTI             0.0998 3.8402 0.0001 

ωCQQQ 0.0794 1.001 0.3127 0.0607 1.2731 0.2030 0.1393 1.8318 0.0670 

αCQQQ 0.0578 1.806 0.0710 0.0526 2.5502 0.0108 0.0276 2.0273 0.0426 

βCQQQ 0.9148 15.762 0.0000 0.9269 26.1670 0.0000 0.8813 19.1250 0.0000 

γCQQQ             0.0766 2.3319 0.0197 

ωPSE 0.0514 3.795 0.0001 0.0729 3.4551 0.0006 0.0503 4.3531 0.0000 

αPSE 0.1486 6.301 0.0000 0.1410 5.2453 0.0000 0.0000 0.0001 0.9999 

βPSE 0.8186 31.129 0.0000 0.8008 22.2431 0.0000 0.8371 33.0616 0.0000 

γPSE             0.2253 5.9602 0.0000 

𝜌ECO,CSI 0.1934                 

𝜌WTI,CSI 0.0930                 

𝜌CQQQ,CSI 0.4077                 

𝜌PSE,CSI 0.1305                 

𝜃1       0.0152 5.1594 0.0000 0.0166 5.2499 0.0000 

𝜃2       0.9606 77.0516 0.0000 0.9415 66.3060 0.0000 

𝜃3          0.0079 1.6577 0.0974 

𝜆 12.840 9.7102 0.0000 7.2764 18.4688 0.0000 7.2281 18.3632 0.0000 

Note: This table report the estimated variance parameters using VAR(1)-MGARCH model specifications. The 

multivariate Student-t distribution is used in model estimations to account for the presence of leptokurtosis distribution 

in the return series. The models are fitted by using Quasi-Maximum Likelihood estimation (QMLE). The stability 

condition 𝛼 + (𝛾/2) + 𝛽 < 1 is satisfied for each of our MGARCH model specifications. There are 2159 daily 

observations, and all computations are carried out by the rmgarch package of Ghalanos (2019) in R. 

The estimated coefficient of CQQQ in the CSI mean equation is positive and statistically significant at 1% 

level. The significant estimated coefficient indicates that the past period returns of CQQQ have positive 
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influences on the current period of CSI returns. This noticeable return transmission relationship implies that 

the average performance of the Chinese renewable energy stocks closely relates to the performance of 

technology companies. Given that technology remains one of the key elements for renewable energy 

development (Zhen et al., 2021), having technological breakthroughs in renewable energy can encourage 

investors to become more willing to pay a premium to green their portfolios in the financial market (Popp, 

2011; Reboredo, 2018; Wang et al., 2019). Meanwhile, the insignificant coefficient of WTIt−1 in the CSI mean 

equation indicates that the return transmissions between the CSI and WTI remain relatively weak and 

insignificant, which is consistent with findings reported in previous studies of Henriques and Sadorsky (2008) 

and Sadorsky (2012). The insignificant estimated coefficient of PSE in the CSI equation suggests that the 

return linkage between the Chinese clean energy stocks and the US technology stocks remains relative weak 

and limited.  

In terms of the conditional variance equation, Table 3 reports the estimated results of CCC, DCC and 

ADCC model specification, respectively. For each MGARCH estimation, the estimated ARCH (𝛼𝑖) and 

GARCH (𝛽𝑖) effects are statistically significant at 5% level. The significance of α and β reveals the presence 

of the volatility clustering that we observe in asset returns in Figure 2.  The sum of αi and βi is less than one 

indicating that the volatility process is mean reverting. Given that the coefficients αi are smaller than βi, the 

GARCH-type volatility persistence plays a more substantial role than the short-term ARCH effects. Note that 

CSI shows the most amount of long-term persistence followed by ECO, WTI, CQQQ and PSE.  

For the CCC model specification, the estimated conditional correlation between ECO and CSI (ρECO,CSI), 

WTI and CSI (ρWTI,CSI), CQQQ and CSI (ρCQQQ,CSI) and PSE and CSI (ρPSE,CSI) are each positive. Note that 

the conditional correlation between CQQQ and CSI (ρCQQQ,CSI) is 0.4077 which is significantly higher than 

the correlation between WTI and CSI (ρWTI,CSI). This result is consistent with Sadorsky (2012), Zhang and 

Du (2017), and Nasreen et al. (2020) who document that clean energy related stocks correlate more with 

technology stocks rather than with oil prices. For both DCC and ADCC models, the estimated coefficients  θ1 

and θ2 are each positive and significant at 1% level. The sum of θ1 and θ2 is strictly less than one, which 

implies that the estimated dynamic conditional correlations are mean reverting. In the case of ADCC model 

specification, the significant estimated coefficient on γi demonstrates the presence of leverage effects in our 

return series. The positive and significant asymmetric term 𝛾 for ECO index implies that the negative residuals 

(bad news) tend to have more impact on the variance then positive shocks of the same magnitude which is 

consistent with Ahmad et al. (2016). In addition, the estimated asymmetric term is also positive for WTI, 

CQQQ and PSE. In terms of CSI index, we do not find enough statistical evidence to support the presence of 

leverage effect for clean energy stocks in the Chinese market.  

The diagnostic tests for both univariate and multivariate standardised residuals are reported in Table 4 

and Table 5, respectively. Q-statistics and the LM ARCH tests suggest the absence of serial correlation and 

ARCH effects in our MGARCH model specifications. As a consequence, these diagnostic tests confirm the 

validity of the dynamic conditional correlations displayed in Figure 3.  

Table 4:Diagnostic tests for standardised univariate residuals. 

 VAR(1)-CCC(1,1) 

 CSI ECO WTI CQQQ PSE 

Q(20)r 16.34 27.18 17.94 15.21 23.84 

P-value 0.695 0.130 0.591 0.764 0.250 

ARCH 4.72 4.34 10.27 2.57 6.78 

P-value 0.967 0.977 0.592 0.998 0.872 

 VAR(1)-DCC(1,1) 

Q(20)r 15.15 23.53 20.21 15.99 36.57 

P-value 0.768 0.264 0.445 0.713 0.013 
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ARCH 4.749 4.943 9.802 3.356 8.417 

P-value 0.970 0.960 0.633 0.993 0.752 

 VAR(1)-ADCC(1,1) 

Q(20)r 15.01 24.82 18.52 15.33 34.85 

P-value 0.776 0.208 0.552 0.757 0.120 

ARCH 4.952 5.517 6.916 1.411 9.241 

P-value 0.960 0.938 0.863 0.999 0.682 

Note: Q(20)r tests are carried out by the univariate portmanteau test of Box-Pierce (1970).  

Following Basher and Sadorsky (2016) and Raza et al., (2018), we use rolling window analysis to 

construct out-of-sample one-step-ahead dynamic conditional correlations. We fix the estimation window at 

1160 observations to produce 1000 one-step ahead dynamic conditional correlations. Both DCC and ADCC 

model specifications are refit every 20 observations. Figure 3 shows pair-wise one-step-ahead conditional 

correlations. Note that both DCC and ADCC exhibit a similar pattern of the conditional correlations. Overall, 

we find that ECO, CQQQ and PSE positively depend on CSI. For each conditional correlation pair, we observe 

an upward trend after 2017. 

Table 5:Diagnostic tests for standardised multivariate residuals and information criteria. 

 VAR(1)-CCC(1,1) VAR(1)-DCC(1,1) VAR(1)-ADCC(1,1) 

  MVNORM MVT MVNORM MVT MVNROM MVT 

Q(20)r 523.7 505.5 528.8 528.5 531.6 527.1 

P-value 0.2237 0.4228 0.1802 0.1824 0.1586 0.1941 

ARCH 13.43 10.16 12.93 12.17 12.45 13.16 

P-value 0.2005 0.4269 0.2275 0.2737 0.2558 0.2149 

Log L -18720 -18278 -18670 -18281 -18645 -18271 

AIC 17.347 16.944 17.340 16.985 17.327 16.997 

BIC 17.387 16.999 17.489 17.151 17.493 17.179 

Shibata  17.347 16.944 17.338 16.984 17.326 16.995 

Hannan-Quinn 17.362 16.964 17.394 17.046 17.388 17.064 

Note: Q(20)r tests are carried out by the modified multivariate portmanteau test introduced by Hosking (1980). 

In terms of the DCC model, the conditional correlation between CSI and ECO is positive, covering a 

range between a minimum of 0.050 and a maximum of 0.418. The upward trend correlation between ECO and 

CSI can be seen as the effect of the conclusion of the Paris Agreement at the end of 2015. The Paris Agreements 

is a strong signal to secure market expectations of future industrial developments in clean energy sector, and 

therefore to encourage capital reallocations to clean energy stock market as investors are becoming aware of 

the impacts of governmental policies on climate changes and climate-related risks (Reboredo, 2018). In 

addition to that, we observe a significant increase in positive dynamic conditional correlation during the first 

wave of the global COVID-19 pandemic. The correlation trend increased extensively to reach a level of 0.393 

in March 2020. Since then, we have observed a decreasing tendency between these two indexes. 
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Figure 3: Rolling one-step-ahead conditional correlations. 

 

The conditional correlations between CSI and WTI fluctuate between negative and positive values, which 

captures the significant movements in oil prices. The negative CSI/WTI correlation is likely a result of the 

global oil price plunge of 2014-2016. The substitution effect between the two markets is primarily determined 

by a new orientation of economic structure in China and market uncertainties in the global oil market. 

Meanwhile, Chinese investment in renewable energy has increased significantly due to a series of new energy 

policies which were initiated in China after 2010. These policies include the China 12th Renewable Energy 

Development Five Year Plan (2011-2015), Energy Saving and New Energy Automotive Industry Development 

Plan (2012-2020), and the dual carbon goals with respect to the renewable energy development and 

environmental protection. The downward trend in oil prices and the upward trend in China’s clean energy 

stock prices have led investors to rebalance their portfolios to maintain a lower level of risk. Furthermore, we 

find a significant increase in dynamic conditional correlations between CSI and WTI during the first wave of 

the global COVID-19 outbreak. This result is consistent with Foglia and Angelini (2020), who claim that the 

interconnections between crude oil and the clean energy financial market rise significantly during high 

uncertainties. Although the estimated VAR model suggests an insignificant return relationship between CSI 

and WTI, our DCC/ADCC model specifications reveal a significant volatility spillover between the two and 

suggest that investors may use WTI to hedge an investment in the Chinese renewable energy stocks. At the 

same time, the relationship between CSI and CQQQ index returns is always strong and positive. The positive 

and strong correlation between CSI and CQQQ index indicates a close relationship between these two markets. 

Overall, it suggests that the stock returns of the Chinese renewable energy companies closely correlate with 

the technology companies, as any unexpected shocks to the CQQQ may generate a similar level of impact on 

the stock returns of Chinese renewable energy companies. Thus, investors should take the overall financial 

performance of Chinese technology companies as one of the primary indicators to predict the price dynamics 

of the Chinese clean energy companies. Likewise, we also find that PSE exhibits positive dynamic 

dependencies with CSI, implying a close relationship between Chinese clean energy companies and US 

technology companies. Both CSI/CQQQ and CSI/PSE reach their peak in the wave of the global COVID-19 

pandemic.  

As for the robustness check, we estimate the in-sample conditional correlations from the DCC and ADCC 

model specifications. As shown in Figure 4, for the period between 2017-2022, each pair of conditional 
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correlations shows similar pattern of movements compared to what we obtained in the previous rolling window 

analysis in Figure 3. 

Figure 4: In-sample dynamic conditional correlations. 

 

5. Analysis of hedging and optimal portfolio weights 

After fitting the DCC and ADCC models and estimating conditional correlations, we further evaluate the 

hedge properties of different assets for the CSI index. The return of hedged portfolio composed of spot and 

futures positions can be constructed as follows:  

R𝐻,t = R𝑆,t − γtR𝐹,t , (6) 

where RH,t is the return of hedged portfolio, RS,t are the returns on the spot position, RF,t is the return on the 

futures position and γt is the hedge ratio. If the investor has a long position in the spot position, then a hedge 

ratio represents the number of futures contracts that must be sold.  Given Eq.(6), the variance of the hedged 

portfolio conditional on the information set It−1 can be calculated as: 

var(RH,s, It−1) = var(RS,t, It−1) − 2γtcov(RF,t, RS,t, It−1) + γ2var(RF,t, It−1) 

(7) 

γt|It−1 =
cov(Rs,t, RF,t|It−1)

var(RF,t|It−1)
 .  

In Eq.(7), the 𝛾𝑡 represents the optimal hedge ratio that minimises the conditional variance of the hedged 

portfolio. As suggested by Baillie and Myers (1991), the optimal hedge ratio conditional on the information 

set 𝐼𝑡−1 can be obtained by taking the partial derivative with respect to 𝛾𝑡. Following Korner and Sultan (1993), 

the conditional volatility estimates from our DCC and ADCC models can be used to construct the dynamic 

hedge ratios. The dynamic hedge ratio between a long position in Chinese clean energy stock 𝑖 and a short 

position in another asset 𝑗 can be written as: 

γt|It−1 =
hS,F,t

hF,t
 ,  (8) 

where ℎ𝑆,𝐹,𝑡 is the conditional covariance between spot and futures returns at time 𝑡, and ℎ𝐹,𝑡 is the conditional 

variance of futures returns. As suggested by Ali et al. (2020), we formulate the index of hedging effectiveness 

(HE) to compare various hedge ratios obtained from our MGARCH estimations as follows:  

HE =
varunhedged − varhedged

varunhedged
 .  (9) 
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In absolute terms, a higher HE index indicates higher hedge effectiveness. In case that HE=1, it refers to 

a perfect hedge, and HE=0 refers to no hedge. In addition to the hedging effectiveness analysis, the conditional 

volatilities from our DCC and ADCC estimation can also be used to construct optimal portfolio weights. In 

line with Kroner and Ng (1998), we define the optimal weight of an asset 𝜔𝑖𝑗,𝑡 in a one-dollar portfolio as:  

𝜔ij,t =
hjj,t − hij,t

hii,t − 2hij,t + hjj,t
, 

 

𝜔ij,t
∗ = {

0 if ωij,t < 0

𝜔ij,t if 0 ≤ 𝜔ij,t ≤ 1

1 if 𝜔ij,t > 1

 . 

(10) 

Figure 5 shows the one-step-ahead optimal hedge ratios between a spot position in CSI and a futures 

position in either ECO, WTI, CQQQ and PSE computed from the DCC and ADCC model, respectively. For 

each pair of hedge ratios, we find that the DCC hedge ratios are very similar to the ADCC hedge ratios, and 

all hedge ratios show considerable variability in the first quarter of 2020, which is the time of the first wave of 

the global COVID-19 pandemic. As reported at the top of Table 6, the average CSI/ECO hedge ratio of the 

DCC model is 0.184, implying that a $1 long position in the Chinese clean energy index can be hedged for 

18.4 cents in the U.S. clean energy index. In contrast, the ADCC model produces a slightly higher average 

hedge ratio of 0.216. Note that the DCC model provides higher hedge effectiveness than the ADCC model. 

The average hedge ratio of the CSI/CQQQ hedges is 0.410 when using the DCC model and 0.431 when using 

the ADCC model. Meanwhile, the average hedge ratio between CSI and PSE is 0.248 for the DCC model and 

0.288 for the ADCC model. For both CSI/CQQQ and CSI/PSE hedge ratios, the HE index suggests that the 

DCC model provides better hedging effectiveness than the ADCC model. In the case of the CSI and WTI 

hedges, the ADCC model offers a higher hedging effectiveness with an average hedge ratio of 0.092. 

The optimal portfolio weights computed from the DCC and ADCC model specification are summarised 

in the lower part of Table 6. For the DCC model estimates, the average weight for the CSI/ECO portfolio is 

0.53, implying that for a $1 portfolio, 53 cents should be invested in CSI and the remaining 47 cents allocated 

in ECO. Given that the average optimal weight of the CSI/WTI portfolio is 0.619, for a $1 portfolio, 61.9 cents 

should be allocated in CSI index and 28.1 cents allocated in the WTI futures contract. The average weight for 

CSI/CQQQ portfolio reveals that 51.3 cents should be invested in CSI index and 48.7 cents invested in the 

CQQQ ETF. Unlike the CSI/CQQQ portfolio, the average weight of CSI/PSE suggested that only 29.2 cents 

should be invested in the CSI index and 81.8 cents invested in the U.S. technology index. By comparison, the 

ADCC model provides similar results revealing an average portfolio weight of 0.51, 0.61, 0.505 and 0.287 for 

the CSI/ECO, CSI/WTI, CSI/CQQQ and CSI/PSE portfolio, respectively. For both the DCC and ADCC model 

estimations, CQQQ is the best asset to hedge Chinese clean energy stocks, followed by WTI, ECO, and PSE. 

For investors who pursue higher return performance from Chinese clean energy stocks while hedging their risk 

through portfolio management, the highest hedging effectiveness of CSI/CQQQ indicates the usefulness of 

including the CQQQ ETF as a hedging instrument in their portfolio management.  

Table 6: Summary statistics of rolling one-step-ahead hedge ratios and portfolio weights. 

  VAR(1)-DCC(1,1) VAR(1)-ADCC(1,1) 

Hedge ratio: Mean St.dev Min Max HE Mean St.dev Min Max HE 

CSI/ECO 0.184 0.081 0.041 0.664 0.061 0.216 0.109 0.028 1.127 0.0549 

CSI/WTI 0.074 0.067 -0.03 0.375 0.016 0.092 0.075 -0.013 0.473 0.0184 

CSI/CQQQ 0.410 0.147 0.186 0.856 0.208 0.431 0.159 0.192 0.968 0.2065 

CSI/PSE 0.248 0.157 -0.019 1.138 0.029 0.288 0.181 0.015 1.345 0.0244 

Optimal Portfolio Weights:                  

CSI/ECO 0.531 0.183 0.060 0.972   0.510 0.189 0.000 1.000   
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CSI/WTI 0.619 0.192 0.199 1.000   0.610 0.210 0.194 1.000   

CSI/CQQQ 0.514 0.198 0.081 0.957   0.506 0.207 0.021 1.000   

CSI/PSE 0.295 0.175 0.000 0.931   0.288 0.199 0.000 0.989   

Note: hedge ratios are calculated using rolling window analysis with 1000 one-step-ahead forecasts and refit for every 

20 observations, respectively. DCC and ADCC models are estimated using a multivariate t distribution (MVT). All 

specifications include a constant and a VAR(1) process in the mean equation. 

Figure 5: Rolling one-step-ahead dynamic hedge ratios 

 

As a robustness check, we perform an in-sample hedge analysis based on the conditional volatility 

estimates from DCC and ADCC model specifications. Table 7 summaries the in-sample dynamic hedging 

ratios and optimal portfolio weights among underlying asset returns. Since the estimated in-sample hedge 

ratios and optimal portfolio weights are similar to what we obtained from the out-of-sample rolling window 

analysis, we conclude that our estimates are consistent and robust to different sample choices.  

 

Table 7: Summary statistics of in-sample hedge ratios and portfolio weights 

  VAR(1)-DCC(1,1) VAR(1)-ADCC(1,1) 

Hedge ratio: Mean St.dev Min Max HE Mean St.dev Min Max HE 

CSI/ECO 0.218 0.113 0.022 0.859 0.058 0.239 0.119 0.039 0.873 0.057 

CSI/WTI 0.092 0.074 -0.059 0.428 0.016 0.106 0.077 -0.043 0.439 0.016 

CSI/CQQQ 0.451 0.169 0.183 1.281 0.199 0.467 0.173 0.165 1.22 0.196 

CSI/PSE 0.274 0.163 -0.05 1.151 0.027 0.306 0.175 -0.004 1.231 0.025 

Optimal Portfolio Weights:                       

CSI/ECO 0.504 0.193 0.018 0.957  0.502 0.195 0.021 1.000  
CSI/WTI 0.591 0.205 0.104 1.000  0.588 0.213 0.098 1.000  
CSI/CQQQ 0.459 0.208 0.000 1.000  0.454 0.221 0.000 1.000  
CSI/PSE 0.253 0.160 0.000 0.9316  0.247 0.174 0.000 0.991  

 

6. Robustness analysis 

This section discusses how robust our estimates are to changes in model refits, forecast lengths and 

distributions. Table 8 presents the robustness of our estimates with respect to model refits for every 10, 20 and 

60 observations. The hedging effectiveness value for each hedge and GARCH model specification is fairly 

similar with a scale of minor negligible differences (0.001 – 0.002) across different model refits. For instance, 

in the case of CSI/ECO, the DCC model produces values of hedge effectiveness of 0.060, 0.061 and 0.059, 
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respectively. It is also the same for ADCC model. Note that both DCC and ADCC model deliver consistent 

results indicating that CQQQ is the most effective asset to hedge CSI, followed by ECO, PSE and WTI.  

Table 9 shows the robustness of our rolling window analysis using 500, 1000 and 1500 one-step-ahead 

forecasts, respectively. Forecast lengths of 500, 1000 and 1500 start from 12th June 2019, 28th April 2017 and 

16th March 2015. For the CSI/ECO and CSI/PSE hedges, the DCC model has higher hedging effectiveness 

values across all forecast horizons.  For the CSI/WTI hedge, the DCC model is preferred for forecast lengths 

of 500 and 1000. For longer forecast lengths, the ADCC model shows higher hedging effectiveness. For 500 

one-step-ahead forecasts, ADCC CSI/CQQQ is preferred, while the DCC model is preferred for longer forecast 

lengths of 1000 and 1500. Regardless of the forecast length, our estimates from DCC and ADCC model show 

that CSI/CQQQ has the highest hedging effectiveness for CSI, confirming that CQQQ is the best asset to hedge 

clean energy stocks in China. This result is consistent and robust across the different number of forecast 

lengths. 

Table 10 shows hedging effectiveness values estimated with a multivariate normal distribution (as 

opposed to the MVT distribution in the baseline setting) and with VAR(1) in the conditional mean equation. 

By fixing the forecast lengths equal to 1000, we refit the DCC and ADCC models for every 10, 20 and 60 

observations. Overall, both models show that CSI/CQQQ has the highest hedge effectiveness, followed by 

CSI/ECO, CSI/WTI and CSI/PSE. Hence, our results are robust to the choice of distribution. 
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Table 8: Hedge ratio summary statistics and hedging effectiveness using different refit window 

 refit = 10 refit = 20 refit = 60 
 Mean St.dev Min Max HE Mean St.dev Min Max HE Mean St.dev Min Max HE 

CSI/ECO               

DCC 0.184 0.081 0.039 0.652 0.060 0.184 0.081 0.041 0.664 0.061 0.186 0.079 0.045 0.636 0.059 

ADCC 0.216 0.107 0.032 1.084 0.054 0.216 0.109 0.028 1.127 0.055 0.218 0.107 0.028 1.083 0.053 

CSI/WTI               

DCC 0.074 0.067 -0.030 0.369 0.016 0.074 0.067 -0.030 0.375 0.016 0.074 0.067 -0.030 0.369 0.012 

ADCC 0.092 0.075 -0.013 0.474 0.019 0.092 0.075 -0.013 0.473 0.018 0.092 0.074 -0.013 0.445 0.014 

CSI/CQQQ               

DCC 0.409 0.147 0.186 0.848 0.208 0.410 0.147 0.186 0.856 0.208 0.411 0.146 0.189 0.846 0.206 

ADCC 0.430 0.159 0.192 0.954 0.206 0.431 0.159 0.192 0.968 0.207 0.430 0.156 0.194 0.926 0.204 

CSI/PSE               

DCC 0.248 0.156 -0.019 1.138 0.029 0.248 0.157 -0.019 1.138 0.029 0.251 0.155 -0.019 1.138 0.028 

ADCC 0.287 0.181 0.017 1.345 0.023 0.288 0.181 0.015 1.345 0.024 0.289 0.178 0.015 1.340 0.023 

Note: Hedge ratios are calculated from fixed rolling window analysis which produce 1000 one-step-ahead forecasts. Models are refit for every 10, 20 and 60 observations, respectively. 

DCC and ADCC models are estimated using a multivariate t distribution (MVT). All specifications include a constant and a VAR(1) process in the mean equation.  

 

Table 9: Hedge ratio summary statistics and hedging effectiveness using different forecast length 

 forecast length = 500 forecast length = 1000 forecast length = 1500 

 Mean St.dev Min Max HE Mean St.dev Min Max HE Mean St.dev Min Max HE 

CSI/ECO               
DCC 0.175 0.081 0.055 0.591 0.076 0.184 0.081 0.041 0.664 0.061 0.200 0.107 0.014 0.694 0.056 

ADCC 0.205 0.11 0.041 0.835 0.070 0.216 0.109 0.028 1.127 0.055 0.229 0.132 0.019 1.456 0.051 

CSI/WTI               
DCC 0.083 0.066 -0.035 0.354 0.020 0.074 0.067 -0.03 0.375 0.016 0.071 0.068 -0.033 0.475 0.014 

ADCC 0.093 0.071 -0.004 0.393 0.022 0.092 0.075 -0.013 0.473 0.018 0.09 0.076 -0.033 0.752 0.013 

CSI/CQQQ               
DCC 0.476 0.144 0.238 0.835 0.228 0.410 0.147 0.186 0.856 0.208 0.433 0.177 0.168 1.224 0.225 

ADCC 0.506 0.157 0.246 0.869 0.230 0.431 0.159 0.192 0.968 0.207 0.454 0.191 0.158 1.238 0.218 

CSI/PSE               
DCC 0.270 0.171 0.031 1.150 0.032 0.248 0.157 -0.019 1.138 0.029 0.267 0.162 0.006 1.022 0.035 

ADCC 0.313 0.203 0.016 1.303 0.028 0.288 0.181 0.015 1.345 0.024 0.303 0.181 0.008 1.443 0.031 

Note:  Hedge rations are calculated from fixed rolling window analysis which produce 500, 1000 and 1500 one-step-ahead forecasts, respectively. The models are refit for every 20 

observations. DCC and ADCC models are estimated using a multivariate t distribution (MVT). All specifications include a constant and a VAR(1) process in the mean equation. 
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Table 10: Hedge ratio summary statistics and hedging effectiveness using MVN distributions 

 refit = 10 refit = 20 refit=60 

 Mean St.dev Min Max HE Mean St.dev Min Max HE Mean St.dev Min Max HE 

CSI/ECO               
DCC 0.177 0.071 0.050 0.553 0.061 0.177 0.071 0.052 0.565 0.062 0.178 0.070 0.052 0.544 0.061 

ADCC 0.207 0.095 0.035 0.909 0.055 0.207 0.096 0.032 0.944 0.058 0.209 0.096 0.032 0.920 0.057 

CSI/WTI               
DCC 0.071 0.060 -0.041 0.326 0.017 0.071 0.060 -0.041 0.326 0.017 0.072 0.060 -0.041 0.326 0.013 

ADCC 0.088 0.067 -0.005 0.379 0.020 0.089 0.066 -0.003 0.379 0.020 0.089 0.066 0.000 0.379 0.014 

CSI/CQQQ               
DCC 0.398 0.135 0.193 0.808 0.209 0.399 0.135 0.195 0.808 0.209 0.399 0.134 0.196 0.808 0.207 

ADCC 0.425 0.157 0.196 0.899 0.209 0.426 0.159 0.196 0.899 0.209 0.426 0.155 0.198 0.899 0.207 

CSI/PSE               
DCC 0.244 0.142 0.018 1.055 0.028 0.245 0.142 0.018 1.055 0.028 0.248 0.141 0.014 1.055 0.027 

ADCC 0.281 0.160 0.029 1.273 0.024 0.282 0.160 0.027 1.273 0.025 0.286 0.160 0.027 1.273 0.023 

Note:  Hedge rations are calculated from 1000 one-step-ahead forecasts. Models are refit for every 10, 20 and 60 observations, respectively. DCC and ADCC models are estimated 

using a multivariate normal distribution (MVN). All specifications include a constant and a VAR(1) process in the mean equation 
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7. Conclusions 

Considering the global challenges of energy security and climate changes, the volume of investment in the 

renewable energy sector grows rapidly in the Chinese market. Understanding dynamic interdependence 

between stock returns of clean energy companies, technology companies, and oil price is of ultimate interest 

to investors and policymakers. In this paper, we use three VAR-MGARCH model specifications (CCC, DCC 

and ADCC) to investigate dynamic return and volatility connectedness between oil prices and stock returns of 

clean energy related and technology companies in China and U.S. financial markets. 

For conditional mean return equations, we find that past returns of the U.S. renewable energy companies 

have significantly influenced the current returns of Chinese renewable energy companies. Meanwhile, we 

support the findings from previous literature (Sadorsky, 2012; Kumar et al., 2012; Zhang and Du, 2017; Ferrer 

et al., 2018; Sun et al., 2019) that the stock returns of clean energy companies correlate more with technology 

companies rather than with oil prices. Based on the conditional volatilities estimated from the DCC and ADCC 

model, we apply a rolling window analysis to construct out-of-sample one-step-ahead forecast of dynamic 

conditional correlations, dynamic hedge ratios and optimal portfolio weights. For each pair of hedge ratios, we 

find that the DCC hedge ratios are very similar to the ADCC hedge ratios, and all hedge ratios show 

considerable variability in the first quarter of 2020, which is the time of the first wave of the global COVID-

19 pandemic.  For both the DCC and ADCC model estimations, CQQQ is the best asset to hedge Chinese 

clean energy stocks, followed by WTI, ECO, and PSE.  

Our empirical findings have considerable practical implications for investors and policymakers. Given the 

significant relationship between the stock prices of clean energy and technology companies in China’s 

financial market, investors should pay more attention to the fluctuations of technology stocks as they are one 

of the main contributors to the volatility dynamics of the Chinese clean energy companies. Since there is a 

growing number of investors who use cross-market strategies for risk management, U.S. clean energy stock 

prices and oil prices should be taken into account when designing optimal portfolios and for heading 

investments in China’s clean energy market. Given the highest hedging effectiveness of CSI/CQQQ, investors 

who pursue higher return performance from Chinese clean energy stocks may consider the CQQQ EFT as a 

reliable instrument to hedge risk in their portfolios.  

Nevertheless, policymakers should also be aware of the importance of clean energy technologies for clean 

energy development in China. Although China has made great progress on clean energy sources, the limited 

scope of development in clean energy technologies may lead China’s domestic suppliers to face challenges to 

enhance energy conversion efficiency and utilization efficiency of renewable energy sources. In the short run, 

policymakers may accelerate clean energy development by providing a form of support policies and 

professional services to enhance the diffusion of technological development across different regions and clean 

energy companies in the Chinese market. Since the energy sector in China is largely owned by the government, 

fiscal incentives such as feed-in tariffs, tax reductions and government subsidies remain one of the best choices 

for China’s policymakers to promote clean energy developments (Reboredo and Wen, 2015). Al Mamun et al. 

(2018) emphasise the ineffectiveness of direct government interventions on clean energy company 

development in the long run. Instead of providing direct support, policymakers should pay more attention to 

designing market-based supports, such as offering flexible financial support mechanisms for clean energy 

companies through financial intermediaries such as banks, funds, credit unions and stocks. In addition, the 

government should increase the number of grid-connected renewable energy supply systems to provide a stable 

source of electricity for energy consumers. In contrast, the positive price discriminations of clean energy 

electricity encourage public adoption of clean energy sources effectively. It is appropriate for the government 

to propose a form of fiscal incentives and economic incentives to promote the energy transformations among 
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consumers and companies in energy-intensive industries while introducing more stringent legislation for 

reducing the dependency on fossil fuel-based productions. 
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