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1 Introduction

Estimates of stochastic trends do not always exhibit behavior consistent with an underlying

random walk assumption. Such aberrations could result from otherwise hard-to-detect mis-

specification when estimating a trend. For example, serial correlation in the first differences of

an estimated trend could be due to unaccounted for measurement error in the data, omitted

variables, or incorrect assumptions about dynamics in the original model used in estimation.

To address this misspecification, we propose a simple correction via the application of a uni-

variate Beveridge and Nelson (1981) (BN) decomposition to the preliminary trend estimates.

As an illustrative example, we show how and why the correction works based on the law of

iterated expectations in the presence of even a small amount of unaccounted for measurement

error. Our proposed correction is easy to apply as a robustness procedure for any trend-cycle

decomposition that assumes a random walk trend and Monte Carlo analysis shows it can work

as well as if the original model used to estimate trend were correctly specified.

We demonstrate the empirical relevance of our proposed correction in an application to

estimating the trend path of the short-term risk-free real interest rate. This application builds

on a large literature that links lower interest rates in recent decades to an underlying decline

in the low-frequency “equilibrium” or “natural” real rate of interest, often referred to as r∗

(or “r-star”); see, for example, Cúrdia et al. (2015); Lubik and Matthes (2015); Hamilton

et al. (2016); Del Negro et al. (2017); Holston et al. (2017); Fiorentini et al. (2018); Brand

and Mazelis (2019); Brand et al. (2019); Berger and Kempa (2019); Lewis and Vazquez-Grande

(2019); Bauer and Rudebusch (2020); Kiley (2020a); Johannsen and Mertens (2021); Fu (2023).

Notwithstanding some differences regarding the formal definition of r∗, the main debate in the

literature has been as to why and how much it has fallen.1 One prominent view, inspired by the

semi-structural unobserved components (UC) model in Laubach and Williams (2003), is that

the decline is primarily a supply-side phenomenon associated with lower trend output growth.

A competing explanation considers a persistent fall in interest rates due to insufficient aggregate

demand, as argued by Summers (2015). Financial market portfolio considerations related to

an increase in demand for safe assets have also been put forward by Caballero et al. (2017) and

1As discussed in Lunsford and West (2019), there are many definitions of r∗. However, most theoretical
settings imply an equivalence between movements in the common low-frequency level of real interest rates (when
a set of interest rates includes an essentially risk-free measure) and the low-frequency level of any theoretically-
defined r∗. Thus, we focus on trend movements to understand persistent changes in r∗ over recent decades.
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Del Negro et al. (2017). A basic quantitative question regardless of the hypothesized source is

whether r∗, which was previously thought to be approximately 2% over very long periods of

time (see, for example, Taylor, 1993), has become negative in the past decade or so as both ex

ante and ex post measures of short-term real interest rates have often been persistently below

zero during this time.

For our analysis of r∗, we define it as the common stochastic trend for any set of real interest

rates that includes a risk-free short-term rate. Then, to investigate why and how much r∗ has

fallen, we consider a multivariate version of the BN decomposition based on Morley and Wong

(2020). This approach allows us to consider a large set of variables that have been hypothesized

to explain changes in r∗ and to account for historical movements in r∗ based on these variables.

Unlike many UC models, the BN decomposition does not assume changes in r∗ are orthogonal

to structural shocks that also have cyclical implications, which could lead UC models to imply

artificially smooth estimates of r∗, especially if the models include many variables linked to

cyclical movements in interest rates such as, for example, in Zaman (2023). Our model is a

vector error correction model (VECM) that assumes cointegration between short- and long-

term real interest rates. Working with ex ante real interest rates based on U.S. data makes it

viable to model a large system of variables in a linear environment despite the effects of the

zero lower bound (ZLB) on nominal interest rates in recent years. However, the constructed

ex ante real interest rates can be subject to measurement error given the need to proxy for

inflation expectations in the bond market, which are generally not directly observed.

Our main empirical findings can be summarized as follows: The preliminary estimated

trend for the cointegrated real interest rates is highly informed by the long-term real interest

rate, consistent with the expectations hypothesis. However, this estimated trend displays serial

correlation in its first differences, suggesting some misspecification in the VECM even though it

includes many variables and lags. Then, when we apply our proposed correction, the corrected

estimate is considerably smoother than the preliminary estimate, although it still displays a

substantial decline over our full sample period from 1973-2019. Notably, the smooth path for

r∗ is found without imposing smoothness a priori, as is often done in the literature (see, for

example, Del Negro et al., 2017). Key movements in the estimated r∗ can be accounted for by

mixture of productivity/demographic and safe asset supply/demand variables.
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The rest of this paper is organized as follows. Section 2 proposes our correction for mis-

specification when there is apparent serial correlation in the first differences of a preliminary

estimated trend. Section 3 explains how and why our proposed correction works within the

setting of unaccounted for measurement error in the data used to estimate a trend. Section 4

presents the empirical application to the estimation of r∗. Section 5 concludes.

2 A simple correction for misspecification

A standard assumption when conducting trend-cycle decomposition is that stochastic trends

follow random walk processes. For example, this assumption is taken in much of the empirical

literature on estimating the natural rate of interest, r∗, using semi-structural or reduced-form

time series models (see, for example, Laubach and Williams, 2003).2 However, it sometimes

happens that empirical estimates of trend, which we denote as {r̂∗t }Tt=1 in the case of estimating

r∗, will display some degree of serial correlation in first differences. When this happens, it

could be due to misspecification when applying the trend-cycle decomposition. For example,

as we show in the next section, failure to account for even a small degree of measurement

error in variables used for a multivariate trend-cycle decomposition could result in such serial

correlation.

To the extent that a source of misspecification can be detected and addressed by changing

the approach to trend-cycle decomposition, including adjusting the model specification, then

this would be the obvious way to proceed after finding any preliminary evidence of serial cor-

relation. However, there are settings where the source of misspecification is not clear or cannot

be addressed by a straightforward modification to a particular model used when conducting

trend-cycle decomposition. In such situations, we propose a simple correction based on apply-

ing a univariate BN decomposition directly to the preliminary estimated trend. In particular,

as long as the distortion in the preliminary estimated trend due to misspecification is station-

ary, our proposed correction should provide a more accurate estimated trend that does not

display serial correlation in its first differences. As we show in our example in the next section,

2In a more structural setting, there may be a model-implied short-run natural rate of interest that is itself
subject to transitory dynamics. However, this short-run natural rate should converge to a long-run level that
is robust to structural assumptions used to identify transitory movements in the natural rate of interest as
distinct from other transitory movements in a short-term risk-free real interest rate. This point about a robust
long-run level is related to the motivation for the use of the BN decomposition to evaluate structural models in
Rotemberg and Woodford (1996) and Kiley (2013).
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this approach works on the basis of the law of iterated expectations, with the univariate BN

decomposition removing an estimate of any remaining stationary component in the preliminary

estimated trend that was responsible for the apparent serial correlation in its first differences.

To implement our correction, we consider an autoregressive moving-average (ARMA) model

for the first differences of the preliminary estimated trend:

φ(L)∆r̂∗t = θ(L)εt, (1)

where φ(L) is an AR lag polynomial with roots outside the unit circle to satisfy stationarity,

θ(L) is an MA lag polynomial with roots outside the unit circle to satisfy invertibility, and εt is

a serially-uncorrelated error term. Then, assuming direct observation of the ARMA errors and

based on a univariate BN decomposition, the first difference of the corrected estimated trend,

which we denote {r̃∗t }Tt=1, is simply

∆r̃∗t ≡
θ(1)

φ(1)
εt, (2)

where assuming the deviations from trend average to zero over the sample, we can estimate the

level of r∗t as

r̃∗t = r̃∗0 +
t∑

τ=1

∆r̃∗τ ,where r̃∗0 =
1

T

T∑
t=1

r̂∗t −
1

T

T∑
t=1

t∑
τ=1

∆r̃∗τ . (3)

Or, as an alternative approach to estimating the level of r∗t , we could cast the ARMA model

into state-space form and follow the calculation in Morley (2002) using the Kalman filter, thus

addressing a lack of direct observation of the errors if one were unwilling to make an assumption

about their initial values, such as assuming ε0 = 0 for an MA(1) model.

Our proposed correction can be related to the literature on estimating the effects of long-run

structural shocks using structural vector autoregressions (SVARs) and non-parametric spectral

estimators to address misspecification biases (see, for example, Christiano et al., 2007; Mertens,

2012). However, our focus is specifically on estimating the overall trend rather than identifying

structural shocks and our proposed correction is strictly parametric. Related to the approach

in Christiano et al. (2007), one could alternatively consider a non-parametric estimator of the

spectral density of ∆r̂t at frequency zero as a correction, instead of applying a univariate

BN decomposition based on a parametric ARMA model. However, as Mertens (2012) points

out, such a non-parametric approach provides no panacea against small sample issues when

estimating the effects of long-run shocks. Thus, we focus on a parametric approach, in part to
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maintain consistency with our application of a parametric multivariate BN decomposition to

estimate r∗ in the first place, although we highlight that the correction can be applied given

any preliminary approach that assumes a random-walk stochastic trend.

Another key point with our proposed correction is that as long as we can approximate

the serial correlation in the first difference of the preliminary estimated trend with an ARMA

model, we can improve inference about a trend in terms of matching its underlying behav-

ior. Meanwhile, if there were actually very little misspecification to start with, then the first

difference of the preliminary estimated trend should be close to serially uncorrelated and the

corrected estimated trend would be quite similar to the preliminary estimate.3 Conversely, if

the corrected estimates continue to display serial correlation given a poorly-specified ARMA

model used for the correction, then additional iterations of our proposed correction could be

considered until the estimated errors for the ARMA model appear serially uncorrelated. It is

also worth noting that it will generally be more feasible to consider time-varying parameter

versions of univariate ARMA models for ∆r̂∗t than for high-dimensional multivariate models

used in the preliminary estimation of trend if there is any evidence of structural change in the

ARMA parameters.4

3 An example with measurement error

To illustrate how and why our proposed correction works, we provide a specific example of

misspecification due to the presence of unaccounted for measurement error when also applying

a BN decomposition to obtain the preliminary estimated trend. However, we emphasize that

the correction should also work for other possible sources of misspecification such as omitted

variables or incorrect dynamics and is applicable given a preliminary estimated trend from

other trend-cycle decompositions such as those based on UC models.

3For example, trend growth in output based on the multivariate BN decomposition used to estimate the
output gap in Morley and Wong (2020) with log real GDP as the target variable in a large Bayesian VAR
displays very little serial correlation. Therefore, applying the correction would have no material impact on the
estimates of trend and cycle.

4Time variation in ARMA parameters could result from misspecification of a time-varying parameter process
with a constant parameter model when conducting the preliminary trend-cycle decomposition. Or it could even
occur given a correct specification of a time-varying parameter model, but failure to account for measurement
error. In our application, however, we find that the estimated errors from our MA(8) model for ∆r̂∗t appear to
be serially uncorrelated in both the first and second halves of the sample period from 1973-2019, suggesting that
a stable constant parameter MA(8) model is sufficient to capture serial correlation in the preliminary estimated
trend based on a constant parameter VECM for the full sample period.
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3.1 Beveridge-Nelson decomposition

First, note that the BN decomposition estimates the random walk trend component r∗t of a

time series rt under the assumption that cyclical deviations from trend have an unconditional

mean of zero (i.e., E [rct ] = 0, where rct ≡ rt − r∗t ) based on the following equivalence:

E [r∗t |Ωt] = lim
h→∞

E [rt+h|Ωt] , (4)

where Ωt = {xt, . . . ,x1; f({xt}+∞
−∞)} includes all relevant information at time t for calculating the

long-horizon expectation given an assumed data generating process f({xt}+∞
−∞), with xt denoting

an n× 1 vector that includes the target variable rt, which is assumed to be in the first row for

convenience.5 The logic of the BN decomposition is that, because the long-horizon expectation

of the cyclical deviation from trend is zero, the long-horizon expectation of the overall time

series will only reflect an expectation of its trend component. Therefore, in principle, one only

needs to specify a forecasting model for a time series to estimate its trend based on the implied

long-horizon conditional expectation.

As in Morley and Wong (2020), we assume that conditional expectations for the first dif-

ference of the target variable rt can be fully captured by a stationary linear forecasting model

of ∆xt ∼ I(0) with the following companion-form representation:

∆Xt = F∆Xt−1 + Het, (5)

where ∆Xt is a k× 1 vector of stationary demeaned variables with ∆xt−µ in the first n rows

with µ being a vector of unconditional means, F is a k× k companion matrix with eigenvalues

strictly less than one in modulus, et is a n × 1 vector of serially uncorrelated forecast errors

for the variables in ∆xt, and H is a k × n matrix mapping forecast errors to the companion

form with n ≤ k. We note that this companion form can capture many forecasting models,

including VARs and VECMs (see Morley, 2002). We also note that such multivariate forecasting

models provide reduced-form representations of many dynamic structural models, with the BN

decomposition producing robust estimates of random walk trends for time series across different

structural identifications that lead to the same reduced-form representation (see Kiley, 2013).

Following Morley (2002) and Morley and Wong (2020), the BN trend and cycle for rt given

5For this example, we consider trend as a driftless random walk component, as this is typical assumption
when estimating r∗. However, it is straightforward to modify the BN decomposition to allow for deterministic
drift, as is generally done when applying it to real GDP or other time series with drift.
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the forecasting model for ∆xt can be calculated as

E [r∗t |Ωt] = rt + s′k,1F(I− F)−1∆Xt, (6)

E [rct |Ωt] = −s′k,1F(I− F)−1∆Xt, (7)

where we let sk,j denote a k× 1 selection vector that contains zeros in all rows except for a one

in the jth row. Note that, given the forecasting model in (5), the relevant information set can

be simplified to Ωt = {rt,∆Xt; F}.

A key feature of the BN trend is that its first differences should inherit the same lack of

serial correlation as the changes in the true random walk trend. In particular, following Morley

and Wong (2020), the first difference of the BN trend is

E [r∗t |Ωt]− E
[
r∗t−1

∣∣Ωt−1] = s′k,1(I− F)−1Het =
n∑
i=1

ωieit, (8)

where we let ωi denote a weight that is equal to the ith element of the 1 × n row vector

ω ≡ s′k,1(I−F)−1H and the resulting linear combination of serially-uncorrelated forecast errors

in (8) will itself be serially uncorrelated. Thus, any serial correlation in the change in the

estimated trend based on the BN decomposition must reflect some misspecification such as

unaccounted for measurement error.

3.2 Measurement error and our proposed correction

To consider the effects of measurement error, let x̌t ≡ xt + ut denote a vector of observed

variables in their accumulated levels with stationary and unconditionally mean-zero measure-

ment error ut ∼ I(0) and E [ut] = 0.6 For example, it is quite likely that our measure of the

real interest rate contains some measurement error as we need to proxy for inflation expecta-

tions when constructing an ex ante real interest rate. Thus, in practice, we only observe řt

as a conflation of the underlying true real interest rate rt and measurement error u1t. As we

6The assumption of measurement error in levels, not first differences, is crucial for our correction to work, but
we believe it is a reasonable assumption for many macroeconomic variables that the measured and true values
are not permanently drifting apart. It is also worth noting that our approach allows the measurement error to
be correlated with the underlying structural shocks. The key distinction that defines ut as measurement error
and distinct from forecast errors reflecting structural shocks is that error-adjusted variables (i.e., xt = x̌t − ut)
are block exogenous with respect to the measurement error. In addition to the standard classical errors-in-
variables ‘noise’ case, this block exogeneity could correspond to the ‘news’ case in Dungey et al. (2015) where
the measurement error is positively correlated with future changes in observed variables instead of negatively
correlated. In both cases, the measurement error, if it could be observed, would Granger-cause future changes in
the actual observed variables, but not in the error-adjusted variables. Meanwhile, Anderson et al. (2019) show
that a high signal-to-noise ratio in the errors-in-variables setting leads to only small distortions in inferences
about Granger causality for the observed variables compared to the error-adjusted variables.
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will see, this measurement error, if unaccounted for in the forecasting model used for the BN

decomposition, would imply serial correlation in the first differences of the BN trend for řt.

However, assuming this implied serial correlation can be well captured by an ARMA model,

we also show how to correct for it.

To see how we propose correcting for the effects of unaccounted for measurement error, first

consider the implied model for the observed data with measurement error:

∆X̌t = F∆X̌t−1 + Hět, (9)

where ∆X̌t ≡∆Xt + H∆ut and ět ≡ et + ∆ut−S′FH∆ut−1 given the k×n selection matrix

S = (s′k,1, s
′
k,2, ..., s

′
k,n)′. Note that the ∆ut − S′FH∆ut−1 term in the vector of residuals ět

means these residuals will be serially correlated even if the measurement error in ut is itself

serially uncorrelated. Thus, estimation of the companion matrix F without taking into account

the serial correlation in the residuals will correspond to a model misspecification and standard

estimates given this misspecification will converge to the linear projection matrix P from the

following linear projection:

∆X̌t = P∆X̌t−1 + Hηt, (10)

where ηt corresponds to serially-correlated projection errors such that Hηt = (I − PL)(I −

FL)−1Hět.
7

Next, note the following decomposition based on identities for the real interest rate measured

with error:

řt = rt + u1t,

= E [r∗t |Ωt] + E [rct |Ωt] + u1t,

= E [r∗t |Ωt] + E [rct |Ωt] + r̂ct − r̂ct + u1t,

where r̂ct ≡ −s′k,1P(I−P)−1∆X̌t is the BN cycle for řt given a misspecified forecasting model

for ∆x̌t that does not take into account serial correlation in the residuals. Then, we get the

7The difference between the linear projection matrix P and the companion matrix F is analogous to how
the population linear projection for a variable following an ARMA(1,1) process on its lag (i.e., the first-order
autocorrelation of the process) depends on both the autoregressive and moving-average parameters and will be
different from the autoregressive parameter given a non-zero value of the moving-average parameter. Specifically,
the first-order autocorrelation for an AR(1) process is simply the autoregressive parameter φ, while for an
ARMA(1,1) process, it is φ+ θ(1− φ2)/(1 + 2φθ+ θ2), where θ is the moving-average parameter on the lagged
shock to the ARMA(1,1) process.
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following expression for the preliminary BN trend, r̂∗t ≡ řt − r̂ct :

r̂∗t = E [r∗t |Ωt] + E [rct |Ωt]− r̂ct + u1t. (11)

Note that both estimates of the cyclical component on the right hand side of the expression in

(11) (i.e., hypothetical E [rct |Ωt] if data were observed without measurement error and actual r̂ct

given observed data with measurement error) will be stationary and mean zero by construction

and the measurement error u1t is I(0) and mean zero by assumption. Thus, the random walk

component of the preliminary BN trend r̂∗t in (11) corresponds to the BN trend E [r∗t |Ωt] in (4)

(i.e., the BN trend if the data were observed without measurement error). As a result, after

applying the preliminary BN decomposition to řt, we can subsequently apply a univariate BN

decomposition based on an ARMA model directly to r̂∗t in order to correct the preliminary

estimate for serial correlation in its first differences due to the stationary terms on the right

hand side of (11). Specifically, based on the law of iterated expectations, we get the following

equivalence:

E
[
E [r∗t |Ωt] |Ω̌t

]
= E

[
r∗t |Ω̌t

]
= lim

h→∞
E
[
r̂∗t+h|Ω̌t

]
, (12)

where Ω̌t = {x̌t, . . . , x̌1; P,µ, φ(L), θ(L)}, with φ(L) and θ(L) corresponding to the lag polyno-

mials from an ARMA model for ∆r̂∗t .
8 As can be seen, the BN trend for r̂∗t (i.e., limh→∞ E

[
r̂∗t+h|Ω̌t

]
)

provides an estimate of trend for rt (i.e., E
[
r∗t |Ω̌t

]
) even though we do not directly observe rt

due to measurement error.

We note that the presence of measurement error will generally imply a reasonably com-

plicated ARMA structure for the serial correlation in ∆r̂∗t . For example, consider a VAR(p)

structure for ∆xt and assume that at least some of the variables including the real interest rate

are measured with MA(q) error – i.e., u1t ∼ MA(q) and ujt ∼ MA(≤ q) for j > 1. Then, ∆x̌t

will have a VARMA(p, q+ 2) structure and, following Corollary 11.1.1 in Lütkepohl (2005), we

can solve for ARMA orders of the cyclical terms in r̂∗t :

E [rct |Ωt] = −s′k,1F(I− F)−1∆Xt ∼ ARMA(≤ pn,≤ pn− 1), (13)

r̂ct = −s′k,1P(I−P)−1∆X̌t ∼ ARMA(≤ pn,≤ pn+ q + 1), (14)

8Instead of an ARMA model, one could alternatively consider a UC model for r̂∗t . However, given an
implied correlation between permanent and transitory movements in r̂∗t based on the general properties of a
BN decomposition given by the first two terms on the right hand side of the expression in (11), applying a BN
decomposition will be appropriate even when this correlation is not identified for a UC model. See Morley et al.
(2003) on the identification of the correlation for UC models.
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where the orders follow from an ability to re-write the terms in (13) and (14) in terms of

the VAR(p) as s′n,1ct and s′n,1čt, with ct ≡ −ΓF,1(∆xt − µ) − . . . − ΓF,p(∆xt−p+1 − µ), čt ≡

−Γ̌P,1∆(x̌t−µ)− . . .− Γ̌P,p(∆x̌t−p+1−µ), and ΓF,j and ΓP,j denoting the jth set of n columns

of H′F(I − F)−1 and H′P(I − P)−1, respectively. In particular, given ∆xt ∼ VAR(p) and

∆x̌t ∼ VARMA(p, q+2), ct will be VARMA(p, p−1) and čt will be VARMA(p, p+q+1), with

the ARMA orders for s′n,1ct and s′n,1čt given by Corollary 11.1.1 in Lütkepohl (2005). Although

the ARMA orders provide upper bounds given that roots for the implied autoregressive and

moving-average polynomials may cancel for some paramaterizations, the point is that these are

highly complicated processes and imply the following even more complicated process for ∆r̂∗t

when combined with the other terms that show up in r̂∗t in (11) and first differences are taken:

∆r̂∗t ∼ ARMA(≤ 2pn,≤ 2pn+ q + 2). (15)

In practice, we tend not to know the process for measurement error and it may be hard to

detect it using tests for serial correlation in specific elements of the projection error vector ηt if

the measurement error is relatively small compared to the forecast errors in et. To see this issue,

consider a case where the measurement error is small enough (i.e., var(∆ut) << var(∆xt))

such that P ≈ F. In this case, we get the following simplified expression for ∆r̂∗t :

∆r̂∗t ≈ s′k,1(I− F)−1Het + s′k,1F(I− F)−1H∆ut − s′k,1F(I− F)−1H∆ut−1 + ∆u1t

=
n∑
i=1

ωieit +
n∑
i=1

γi(∆uit −∆uit−1) + ∆u1t, (16)

where we let γi denote a weight that is equal to the ith element of the 1 × n row vector

γ ≡ s′k,1F(I − F)−1H. This expression suggests that ∆r̂∗t will have an MA(q + 2) structure

given MA(q) measurement error and the effects of measurement error may be easier to detect

than in ∆řt = ∆rt + ∆u1t given a very different signal-to-noise ratio in terms of the effects

of shocks (signal) versus measurement error (noise).9 In particular, if r∗t is smoother than rt

(i.e., var(∆r∗t ) < var(∆rt)), the equivalence between the variance of trend shocks and the

variance of changes in the BN trend (see Morley, 2011; Kamber et al., 2018) implies that the

signal in ∆r̂∗t (i.e.,
∑n

i=1 ωieit) is weaker than the signal in ∆řt (i.e., ∆rt). Furthermore, the

9In our application, we find evidence for MA dynamics in ∆r̂∗t instead of a more general ARMA structure
such as implied by (15). However, we note that a lack of evidence for AR dynamics does not, on its own, imply
the measurement error is particularly small, as there could be near cancellation of some AR and MA roots for
some paramaterizations and measurement error processes.
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∑n
i=1 γi(∆uit−∆uit−1) term in (16) suggests additional noise related to the measurement error,

strictly so given independent measurement error across variables and a positive relationship

between the forecast error for rt and its long-horizon forecast such that γ1 > 0. Thus, the lower

signal-to-noise ratio for the change in the preliminary estimated trend ∆r̂∗t than the data ∆řt

means that serial correlation could be considerably easier to detect in ∆r̂∗t than in the target-

variable projection error η1t, which is what we find in our empirical analysis. We also note that

classical measurement error for the target variable with variance σ2
u1 will tend to imply some

negative serial correlation in ∆r̂∗t , especially if the γi’s are small, with cov(∆r̂∗t ,∆r̂
∗
t−1) = −σ2

u1

when γi = 0, ∀i. Indeed, negative serial correlation is what we find in our empirical application

and it leads our corrected estimates to be smoother than the preliminary estimates. However,

the point is that the smoothing reflects the source of misspecification such as unaccounted for

classical measurement error, and is not an inherent feature of the correction.

In terms of applying our proposed correction in practice, it is straightforward to show based

on (1), (2), (8), and (10) that the first difference of the corrected BN trend can be written as

follows:

∆r̃∗t =
θ(1)φ(L)

φ(1)θ(L)
s′k,1(I−P)−1(∆X̌t −P∆X̌t−1), (17)

and the level for r̃∗t can be calculated following (3). We also note that there remains an open

question about what is the best estimate of the cyclical component of rt. If we use the corrected

BN cycle r̃ct ≡ řt − r̃∗t , it will clearly include some of the measurement error in řt in addition

to the true cyclical component, while the preliminary BN cycle r̂ct may be closer to E [rct |Ωt].

To the extent that the measurement error appears to be small given an apparent lack of serial

correlation in the projection error η1t, we would suggest using the corrected BN cycle r̃ct .

Given population parameters, applying our correction would not produce as precise of an

estimate of r∗t as if we knew Ωt (i.e., we observed the data without measurement error) or

even as an estimate based on a correctly-specified multivariate model for ∆x̌t that captures

the serial correlation in ět. For example, if the model for ∆xt is a VAR, the correctly-specified

forecasting model for the data measured with error ∆x̌t would be a VARMA for a range of as-

sumptions about stationary processes for the measurement error, including even if it is serially

uncorrelated. However, our proposed approach is feasible given that we do not actually observe

Ωt and is much more practicable to implement than consideration of a VARMA given chal-
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lenges in specifying and estimating parameters for such models when there are many variables

and lags. Meanwhile, by incorporating multivariate information in our preliminary estimate

of trend, our approach should be more precise than a BN decomposition based on a correctly-

specified univariate model ∆řt (or, equivalently, ∆rt under the assumption of no measurement

error in the target variable). In particular, our proposed approach can be thought of as par-

titioning the parameter space into two, using multivariate information {X̌t, X̌t−1} to estimate

the projection parameters P and univariate information {r̂∗t , r̂∗t−1 . . . , r̂
∗
1} that more strongly

reflects measurement error than ∆řt to estimate univariate ARMA parameters for ∆r̂∗t implied

by the multivariate VARMA process.10 The tradeoff is less information than a full multivari-

ate approach (but still more than a full univariate approach) in return for generally far fewer

parameters to estimate than for the full multivariate model.

3.3 Monte Carlo analysis

To help illustrate the tradeoffs between different approaches to estimating trend and demon-

strate how well our proposed correction works, we conduct Monte Carlo analysis. For simplicity,

we consider a data generating process (DGP) in which there are implicitly the same number

as structural shocks as observable variables. In this setting, we get the “BN-as-definition” sce-

nario in Morley (2011) where r∗t = E [r∗t |Ωt] and rct = E [rct |Ωt]. We consider a bivariate VAR(1)

specification for the underlying data process ∆xt with µ = 0. In this case, ∆Xt = ∆xt, with

the following simplified form:

∆rt

∆x2t


︸ ︷︷ ︸

∆Xt

=

0 −0.05

0 0.95


︸ ︷︷ ︸

F

∆rt−1

∆x2t−1


︸ ︷︷ ︸

∆Xt−1

+

e1t

e2t


︸ ︷︷ ︸

et

, et ∼ N


0

0

 ,

0.1125 0.1

0.1 0.1


︸ ︷︷ ︸

Σ

 .

Then, rt = r∗t + rct , where r∗t = r∗0 +
∑t

τ=1 ∆r∗τ , with r∗0 = 0 and ∆r∗t = s′2,1(I − F)−1et,

and rct = −s′2,1F(I − F)−1∆Xt. For the observed data x̌t = xt + ut, where řt = rt + u1t

and x̌2t = x2t + u2t, we assume the addition of serially-uncorrelated measurement that has

only 5% the variance of the shocks– i.e., ut ∼ N (0, 0.05 × Σ). That is, we focus on the case

10In a recent study, Dufour and Pelletier (2022) develop some practical methods for specifying and estimating
VARMA models, including considering diagonal MA equations. Estimation of the VAR and MA parameters
is split into parts, not unlike our proposed approach, although we focus on univariate ARMA estimation for
∆r̂∗t instead of MA estimation for univariate projection errors ěit, i = 1, . . . , n, from long autoregressions. See
Dufour and Pelletier (2022) for full details of how to estimate VARMA models with diagonal MA equations.
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where measurement error is small in the sense that the projection errors for the misspecified

model will not display much serial correlation on their own. Again following Corollary 11.1.1 in

Lütkepohl (2005), we note that this DGP implies the following processes: ∆rt ∼ ARMA(2, 1),

∆x̌t ∼ VARMA(1, 2), ∆řt ∼ ARMA(2, 3), and ∆r̂∗t ∼ ARMA(4, 6). However, given the small

degree of measurement error and P ≈ F, we get ∆r̂∗t ≈ MA(2).

Given a sample size of T = 200, we evaluate the accuracy of different estimates of r∗t by

calculating the root-mean-squared-error (RMSE) for r̂∗t or r̃∗t for the following cases:

1. VAR(1) for ∆xt, where r̂∗t = E[r∗t |rt,∆Xt; F̂]. This case corresponds to the underlying

data without measurement error being observed, with the RMSE only reflecting the effects

of estimation uncertainty about the n2 = 4 parameters in F. Parameter estimation is

conducted via OLS and the BN trend is calculated based on (6).

2. VARMA(1,2) for ∆x̌t, where r̂∗t = E[r∗t |x̌t, . . . , x̌1; F̂, Θ̂], with Θ corresponding to the

MA parameters in the VARMA model. This case allows us to consider the effects of mea-

surement error and additional parameters to estimate, but assuming the correct model

specification for ∆x̌t. The RMSE reflects noisy information about {xt, . . . ,x1} and esti-

mation uncertainty about the n2 = 4 parameters in F and the 2n2 = 8 parameters in Θ.

The VARMA model is cast into state-space form and parameter estimation is conducted

via exact MLE based on the Kalman filter and the prediction error decomposition of the

likelihood. The BN trend is calculated following Morley (2002).

3. True VARMA(1,2) for ∆x̌t, where r̂∗t = E[r∗t |x̌t, . . . , x̌1; F,Θ]. This case considers

the effects of information loss from only observing the data with measurement error,

but assuming the correct model specification for ∆x̌t and the true population parameter

values for the model. Note that the Θ parameters depend on F and r̂∗t can be calculated

based on their implicit values by casting the model in (9) into state-space form and using

the Kalman filter following Morley (2002).

4. VAR(1) for ∆x̌t, where r̂∗t = E[r∗t |řt,∆X̌t; P̂]. This case considers what happens

if preliminary trend estimates are used despite model misspecification. That is, ∆x̌t is

incorrectly assumed to have no measurement error and P̂ is incorrectly used as an estimate

of F. As this is completely analogous to Case 1, just with the incorrect assumptions,

parameter estimation is conducted via OLS and the BN trend is calculated based on (6),
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but substituting ∆X̌t for ∆Xt and P for F.

5. VAR(1) for ∆x̌t + MA(2) for ∆r̂∗t , where r̃∗t = E[r∗t |x̌t, . . . , x̌1; P̂, θ̂1, θ̂2]. This case

considers our proposed correction using a parsimonious MA(2) model to capture serial

correlation in ∆r̂∗t . P̂ is estimated via OLS and the MA parameters are estimated via

conditional MLE.

6. VAR(1) for ∆x̌t + ARMA(4,6) for ∆r̂∗t , where r̃∗t = E[r∗t |x̌t, . . . , x̌1; P̂, φ̂1, . . . , φ̂4, θ̂1,

. . . , θ̂6]. This case considers our proposed correction using the true (but not necessarily

minimal representation) ARMA(4,6) model specification to capture serial correlation in

∆r̂∗t . P̂ is estimated via OLS and the ARMA parameters are estimated via exact MLE

using the Kalman filter.

7. ARMA(2,1) for ∆rt, where r̂∗t = E[r∗t |rt, rt−1, . . . , r1; φ̂1, φ̂2, θ̂]. This case corresponds

to only the target variable being observed, but without measurement error. The RMSE re-

flects the loss of multivariate information and estimation uncertainty about the ARMA(2,1)

parameters. The ARMA model is cast into state-space form and parameter estimation is

conducted via exact MLE based on the Kalman filter and the prediction error decompo-

sition of the likelihood. The BN trend is calculated following Morley (2002).

8. ARMA(2,3) for ∆řt, where r̂∗t = E[r∗t |řt, řt−1, . . . , ř1; φ̂1, φ̂2, θ̂1, θ̂2, θ̂3]. This case con-

sider the effects of measurement error and additional parameters, but assuming the correct

univariate model specification for ∆řt. The RMSE reflects the effects of measurement er-

ror and estimation uncertainty, in addition to the loss of multivariate information. The

ARMA model is cast into state-space form and parameter estimation is conducted via

exact MLE based on the Kalman filter and the prediction error decomposition of the

likelihood. The BN trend is calculated following Morley (2002).

The results for the Monte Carlo analysis are reported in Table 1 and illuminate the roles

of parameter uncertainty, measurement error, model specification, and univariate versus mul-

tivariate information in determining the precision of trend estimates. We note that the scale

of the reported RMSEs can be related to the fact that, in the absence of measurement error,

the error in estimating trend is the same size as the error in estimating the cycle, while the

implied standard deviation of the cycle is 1.03 for the DGP. So the RMSEs approximately equal

fractions of the standard deviation of the cyclical component of the simulated real interest rate.
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Table 1: Accuracy of trend estimates in a Monte Carlo experiment

Case # of parameters to estimate RMSE

1. VAR(1) for ∆xt 4 0.18
2. VARMA(1,2) for ∆x̌t 12 0.33
3. True VARMA(1,2) for ∆x̌t 0 0.05
4. VAR(1) for ∆x̌t 4 0.37
5. VAR(1) for ∆x̌t + MA(2) for ∆r̃t 6 0.33
6. VAR(1) for ∆x̌t + ARMA(4,6) for ∆r̃t 14 0.37
7. ARMA(2,1) for ∆rt 3 0.94
8. ARMA(2,3) for ∆řt 5 0.97

Notes: Results are for a Monte Carlo experiment based on a bivariate VAR(1) DGP for ∆xt with serially un-

correlated measurement error in ∆x̌t where the variance-covariance for ut is equal to 0.05 times the conditional

variance-covariance of ∆xt. The RMSE for an estimate based on a given model(s) is relative to r∗t based on

the true VAR(1) for ∆xt. Given the error in estimating trend is equivalent (but opposite sign) to the error in

estimating the cycle (in the absence of measurement error), the RMSE can naturally be compared in scale to

the implied standard deviation of the true cycle, which is 1.03. The sample size is T = 200 and the number of

Monte Carlo simulations is 100.

First, even given Case 1 of the correct model and no measurement error, the RMSE of 0.18

suggests that parameter estimation introduces a nontrivial amount of error in the estimates

of r∗t due to the sample size T = 200 and the persistence in the DGP leading to bias in

OLS estimates of VAR parameters (see, for example, Kilian, 1998). Introducing measurement

error, but assuming the correct model in Case 2, almost doubles the RMSE to 0.33 due the

noisier information given the measurement error and the increase in parameter uncertainty

given 12 VARMA parameters instead of 4 VAR parameters. However, most of the increase

in RMSE appears to be due to parameter uncertainty as the RMSE in Case 3 given the true

VARMA parameter values is only 0.05 compared to 0.33 for the estimated VARMA parameters,

suggesting that noisier information has a smaller effect than parameter uncertainty, which

reflects our assumption for the DGP of relatively small measurement error.

Second, despite an important role of parameter uncertainty, model misspecification appears

to have a larger effect on the RMSE given that the RMSE for the misspecified VAR in Case 4

of 0.37 is larger than for the correctly-specified VARMA model with more parameters in Case

3 of 0.33. Crucially, however, our proposed correction with the parsimonious MA(2) model for

the first differences of the preliminary estimated trend in Case 5 is able to completely address

the effects of misspecification, reducing the RMSE to the same level of 0.33 as for the correctly-

specified VARMA model. This reduction from the RMSE for the misspecified model occurs
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even though P ≈ F given a small amount of measurement error. At the same time, when the

much more parameterized ARMA(4,6) model is considered for our proposed correction in Case

6, the RMSE of 0.37 is no better than for the misspecified VAR model. This reflects estimation

of even more parameters than in the true VARMA model. However, a near cancellation of

roots for the true ARMA model given relatively small measurement error means that a more

parsimonious MA model would likely be chosen in practice when conducting our proposed

correction.

Third, the results are considerably worse for the univariate estimates, even when there is no

measurement error and the true ARMA is tightly parameterized in Case 7 with an RMSE of

0.94. Adding in measurement error and additional ARMA parameters in Case 8 slightly worsens

the RMSE to 0.97, but either way, these RMSE given a univariate model is essentially three

times worse than the RMSE of 0.33 for the correctly-specified VARMA model and our proposed

correction with a parsimonious model for the first differences of the preliminary estimated

trend. This dramatic deterioration in the RMSEs makes it clear just how crucial incorporating

multivariate information is for producing a relatively accurate estimate of r∗t .

The fact that our proposed correction can lead to as accurate estimates as if we had the

correctly-specified VARMA model is particularly notable given that our bivariate DGP is such

that the VARMA model is reasonably tightly parameterized. If we considered n > 2 and p > 1

instead, the number of VARMA(p,2) parameters to estimate, which is n2(p+ 2), would rapidly

proliferate. Indeed, even for n = 3, we would have 27 parameters for a VARMA(1,2). When

considering simulated data in this case, we found that the RMSE exploded even given a much

larger sample size of T = 2000, while the RMSE for the parsimonious two-step approach with

11 parameters to estimate remained relatively small given a sample size of T = 200 and better

than for the misspecified VAR model with 9 parameters. Meanwhile, we note that a VARMA

model in our empirical application with n = 15 and p = 4 would have 1,350 parameters, which

we do not consider practicable to estimate, at least without much stronger shrinkage or other

restrictions than we consider in our estimation.

3.4 Other possible sources of misspecification

Despite the focus on measurement error in our example of misspecification, we highlight that

our proposed approach can also handle misspecification due to omitted variables or incorrect
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dynamics. In particular, if only a subset of variables in xt were included in x̌t, it would imply

serial correlation in ět even if there were no measurement error (i.e., ut = 0). It is also possible

that the underlying data generating process for xt simply involves moving-average dynamics

such that the errors for a finite-order VAR will exhibit serial correlation even if there were no

measurement error in the observed data.

Consider, for example, a VAR(p) structure for ∆xt, but x̌t only includes the first m < n

variables in x̌t. Again, assume no measurement error. Then following Corollary 11.1.2 in

Lütkepohl (2005), ∆x̌t will have a VARMA(≤ p(m − n + 1),≤ p(m − n)) structure and the

cyclical terms in (11) will have complicated ARMA dynamics, although there will be a slight

simplification compared to the measurement error case given that u1t = 0. Adding more lags to

the VAR might help address omitted MA dynamics and leave little detectable serial correlation

in the estimated errors, similar to the case of a small amount of measurement error. The point

is that ∆r̂∗t could still exhibit serial correlation given model misspecification and the result in

(12) would still hold. What ultimately matters is the serial correlation in the first difference of

the preliminary estimated trend and the correction for it with a univariate BN decomposition

based on an ARMA model, not what the source of the serial correlation is. Thus, our proposed

correction is more broadly applicable given misspecification than just the case of unaccounted

for measurement error. In our application, the consideration of a large set of variables should

help mitigate concerns about omitted variables, but it is certainly possible that the apparent

serial correlation in the first difference of the preliminary estimated trend could be due to an

incorrect specification of model dynamics as well as, or even instead of, measurement error.

In terms of the Monte Carlo analysis in the previous subsection, these other sources of

misspecification can be thought of as corresponding to the case where the true trend would be

defined as the BN trend for the VARMA(1,2) with population parameters (i.e., Case 3). If we

use the BN trend for this case as defining the true trend, then the RMSE for the preliminary

trend estimate based on a VAR(1) (i.e., Case 4) is 0.38, while the RMSE for the corrected trend

estimate using an MA(2) model for the correction (i.e., Case 5) is 0.34, corresponding to the

same improvement in terms of reducing the RMSE by 0.04 as in the measurement error case

presented in Table 1. Similar to before, the RMSE when estimating the VARMA (i.e., Case 2)

is 0.33, so the corrected estimate is almost as accurate as knowing the true model structure in
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this scenario and, again, can be expected to perform even better comparatively than estimating

a VARMA if there were more variables and lags.

4 Application to estimating r∗

In this section, we show the empirical relevance of our proposed correction when applied to

estimating r∗ using a multivariate BN decomposition based on a medium-scale vector error

correction model (VECM).

4.1 Data

We model both short- and long-term interest rates when conducting our trend-cycle decom-

position because we are interested in a trend that is common across maturities and because

the long-term interest rate can provide information about that trend even when the short-term

nominal rate is constrained by the ZLB, although it should be emphasized that we consider

real, not nominal, interest rates in our analysis. In particular, modeling nominal interest rates

and inflation separately in a linear setting is potentially problematic because nominal interest

rates are subject to the ZLB, while U.S. inflation appears to be subject to structural breaks

(see, for example, Levin and Piger, 2004; Kang et al., 2009) that, given a Fisher effect on

nominal interest rates, should cancel out when considering real interest rates. Meanwhile, to

the extent that the ZLB also alters the behavior of the short-term real rate, estimation of a

common stochastic trend is helped by the inclusion of a long-term real rate that is less affected

by the ZLB, as argued by Del Negro et al. (2017) and Bauer and Rudebusch (2020). Notably,

our results are robust to allowing for a possible structural break in the term premium between

the real interest rates when considering a sample period that includes the ZLB. The key point

is that our linear VECM appears to be a better model to capture a common stochastic trend

in real interest rates than it would be of nominal interest rates and inflation separately.11

We construct the short (long) ex ante real interest rate as the 3-month (10-year) U.S.

Treasury nominal yield minus a short (long) measure of inflation expectations. For inflation,

we consider the year-on-year growth rate of the core personal consumption expenditure (PCE)

11However, see González-Astudillo and Laforte (2020) and Johannsen and Mertens (2021) for approaches that
model nominal interest rates and inflations separately. Also see the discussion in Carriero et al. (2021) how
results suggesting monetary policy is unconstrained by the ZLB given unconventional policies, such as argued
in Swanson and Williams (2014), support the use of constant-parameter linear models even when including data
from the ZLB, such as we do with our VECM.
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price deflator. We then use a 4-quarter (40-quarter) rolling average of past inflation as a proxy

for short (long) inflation expectations. A downside of working with ex ante real interest rates

is that they are subject to measurement error given the need to proxy for inflation expectations

in the bond market. Even given the existence of real bonds, which in any event were not

available for U.S. Treasury debt prior to 1997, there may be liquidity and covariance features

that mean a ‘break-even’ rate formed from the difference between nominal and real yields at

the same maturity does not just reflect inflation expectations and the real yields may not be

cointegrated with the risk-free rate. Meanwhile, we note that the ex post long-term real interest

rate based on U.S. data appears to be affected by nonstationary inflation expectation errors,

likely due to the structural breaks in the inflation process. Unlike with the ex ante real interest

rates, the ex post long-term real interest rate does not test as being cointegrated with the ex

post short-term real interest rate, which itself exhibits sizable structural breaks in volatility

presumably also related to structural breaks in the volatility of inflation expectation errors

given their absence in ex ante real interest rates. Ex post real rates also have the problem of

missing observations at the end of the sample, making estimates of r∗ based on them less useful

for any current analysis in a policy setting.

Given the challenges of measuring ex ante real interest rates, we also consider the robustness

of our results to alternative proxies for inflation expectations, including a 4-quarter-ahead

forecast based on an AR(3) model following Laubach and Williams (2003), a 4-quarter-ahead

SPF forecast of GDP deflator inflation, and a 10-year-ahead SPF forecast of PCE deflator

inflation, as well as 1-month and 10-year real interest rates constructed by the Cleveland Fed

using their model-based measures of expected inflation. Meanwhile, the possibility of some

measurement error in the ex ante real interest rates directly motivates the application of our

proposed correction, as does the inclusion of many other variables in our model, as discussed

next, given that some of these variables may also be subject to measurement error.

The choice of other variables to include in our model used for trend-cycle decomposition is

motivated by the various potential ‘correlates’ of real interest rates outlined in Lunsford and

West (2019), noting that a multivariate BN decomposition only requires variables that have

informational content in forecasting real interest rates, not necessarily causal effects. Although

the variables considered in Lunsford and West (2019) are annual and trace back to the 1890s,
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we focus on those that are available at a quarterly frequency starting at least from the 1970s.

The variables can be placed into two broad categories. First, we consider supply-side produc-

tivity/demographic variables that could help explain changes in real interest rates, specifically

consumption growth per capita, TFP growth, stock returns, real investment growth, employ-

ment growth, hours growth, the change in the unemployment rate, the second difference of age

dependency, and the change in income inequality. Second, we consider safe asset/global savings

glut variables, specifically the change in macroeconomic uncertainty, the change in the excess

bond premium, the U.S. current account deficit, the change in U.S. government debt-to-GDP

ratio, the return on the trade-weighted U.S. dollar exchange rate, and the change in global

central bank foreign reserves-to-GDP. Full details of the specific variables in these categories

and their motivating theoretical links to r∗ from the literature are provided in the appendix,

along with the original data sources and transformations to the raw data.

Our sample period covers 1973Q2 to 2019Q4. We have a balanced panel of the quarterly

variables in our baseline model for the full sample period, although the real interest rates

from the Cleveland Fed considered in our robustness analysis are only available from 1982Q1.12

Also, the variables capturing age dependency, income inequality, and global reserves are only

available at an annual frequency and so are only included in an annual version of our VECM

for the sample period of 1973 to 2019 that is also considered for robustness.

4.2 Estimation

For the purposes of specifying the VECM used to estimate r∗ via a multivariate BN decomposi-

tion, we denote our measures of the short- and long-term ex ante real interest rates as rst and rlt,

respectively, while x3:n,t denotes the vector of other variables (in levels) that are hypothesized

to drive r∗.

To impose cointegration, we add an error-correction term into the equations for the first

differences of the short- and long-term real interest rates, with the error-correction coefficients

denoted as βs and βl, respectively.13 Assuming cointegration between the short- and long-term

12The 10-year-ahead SPF forecast of PCE deflator inflation that is also used in our robustness analysis is only
available from the Philadelphia Fed from 2007Q1. However, we thank Todd Clark for providing earlier data for
this measure used in the Fed’s FRB/US macroeconometric model.

13We impose that the means of the first differences of the real interest rates are zero, corresponding to an
assumption of no deterministic drift in levels. Thus, historical downward movements in r∗ will be attributed to
prediction errors rather than deterministic drift when we conduct the informational accounting in Section 4.4.
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real interest rates implies that both are driven by only one stochastic trend that differs only

by a constant α. The assumption of a (1 − 1)′ cointegrating vector in the model is supported

by the stationarity of the spread between long and short real rates and an estimated coefficient

when regressing the short real rate on the long real rate (including a constant in the regression)

of 1.005 with a standard error of 0.071. The VECM is then specified as follows:

∆xt = µ+ Φ1(∆xt−1 − µ) + . . .+ Φp(∆xt−p − µ) + β
(
rlt−1 − rst−1 − α

)
+ et, (18)

where ∆xt = (∆rst ,∆r
l
t,∆x3:n,t

′)′ and β = (βs, βl,0(n−2)×1
′)′. The model with the error-

correction term in (18) can be cast into companion form and the BN trend for the short-

term real interest rate calculated following (6), where, for the companion form, ∆Xt ={
(∆xt − µ)′, · · · , (∆xt−p − µ)′,

(
rlt − rst − α

)}′
and F and H are as given in the VECM ex-

ample in Morley (2002).

Given possible measurement error in the observed data or some other source of misspec-

ification of the VECM, estimation of the companion matrix for the VECM could actually

correspond to estimation of a linear projection matrix P instead of F, with the preliminary

BN trend estimates {r̂∗t }Tt=1 displaying serial correlation in their first differences. Applying the

simple correction proposed in Section 2, the corrected estimates {r̃∗t }Tt=1 can then be calculated

following (17) and (3) under the assumption that the data are possibly measured with error,

with the companion vector for the data denoted as ∆X̌t instead of ∆Xt.

Because we consider a medium-scale VECM that has a large number of parameters, we

need to take into account the possibility of overfitting in estimation. To address this, we rely

on Bayesian shrinkage following Morley and Wong (2020) using a natural conjugate Normal-

Inverse Wishart prior in conjunction with a Minnesota Prior with the shrinkage hyperparameter,

λ. Given the VECM setup with the error-correction term only appearing in the interest rate

equations, estimation is conducted via MCMC with Gibbs sampling.14 For computational

convenience, then, we set to λ = 0.2, as in Sims and Zha (1998) and Carriero et al. (2015).

We also set an “expectations hypothesis” prior mean for the error-correction coefficient in the

short-rate equation of E[βs] = 0.5, consistent with the short-rate adjusting to restore the long-

14A Bayesian VAR that includes the spread rlt − rst instead of the change in the long-rate ∆rlt and error
correction terms for the interest rate equations can be estimated analytically and produces reasonably similar
estimates of r∗t . However, we take the VECM as our baseline specification to allow for general error correction
in terms of the short and long real interest rates and to impose no adjustment of the other variables to the
error-correction term.
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run cointegrating equilibrium, although this prior is not particularly tight and we find the

results are completely robust to setting the prior mean to zero instead.15 The Bayesian VECM

is estimated with four lags, as is typical for quarterly data. The full details of the Bayesian

estimation for the VECM are reasonably standard and can be found in the appendix.

In terms of inference about r∗, we note the following possible factorization of the joint

posterior distribution of r̂∗ ≡ {r̂∗t }Tt=1, the VECM coefficients F, and the residual variance-

covariance matrix Σ in the case of no measurement error or other source of misspecification:

p(r̂∗,F,Σ|r,∆X) = p(r̂∗|F; r,∆X)p(F,Σ|∆X). (19)

Given an initial Σ(0) and letting the superscript in parentheses denote the ith draw from an

MCMC sampler, we can obtain draws from p(F,Σ|∆X) using a Gibbs sampler and calculate

implied draws of r̂∗ using (6) by repeating the three following steps:

1. Draw from p(F(i)|Σ(i−1); ∆X)

2. Draw from p(Σ(i)|F(i); ∆X)

3. Calculate implied draw from p(r̂∗(i)|F(i); r,∆X)

However, if the preliminary estimated change in trend displays serial correlation, it suggests

some misspecification such as unaccounted for measurement error. Then, the joint posterior

factorization we are interested in is given as follows:

p(r̃∗, θ(L), φ(L),P,Σ|̌r,∆X̌) = p(r̃∗|θ(L), φ(L),P; ř,∆X̌)p(θ(L), φ(L)|P,Σ; ∆X̌)p(P,Σ|∆X̌).

(20)

In this case, given an initial Σ(0), we can obtain draws from p(P,Σ|∆X̌) using a Gibbs sampler,

draws from p(θ(L), φ(L)|P,Σ; ∆X̌) using a Metropolis step, and calculate implied draws of

r̃∗ ≡ {r̃∗t }Tt=1 using (17) and (3) by repeating the four following steps:

15Although we consider an “expectations hypothesis” prior in our baseline estimation, we generally take an
agnostic view in terms of whether or how r∗ is related to supply-side variables that capture a link to productivity
growth or demographics, financial variables that capture global demand for safe assets, or government debt
related to a possible crowding-out effect. Specifically, we do not impose a structural link between r∗ and trend
output growth, as done in Laubach and Williams (2003), but instead we test such links while including a
much larger set of other potential explanatory variables than considered in typical structural or semi-structural
models (although see Fu, 2023). In principle, we could incorporate priors based on Granger causation implied
by structural models in the Bayesian VECM if we wanted to impose more of that structure when estimating
r∗. However, our more agnostic priors allow us to treat posterior inferences about signs of effects as tests of
theoretical predictions, while our inferences about r∗ are precise without having to rely on potentially restrictive
structural assumptions.
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1. Draw from p(P(i)|Σ(i−1); ∆X̌)

2. Draw from p(Σ(i)|P(i); ∆X̌)

3. Draw from p(θ(L)(i), φ(L)(i)|P(i),Σ(i); ∆X̌)

4. Calculate implied draw from p(r̃∗(i)|θ(L)(i), φ(L)(i),P(i); ř,∆X̌)

The potentially problematic aspect of the sampler under misspecification is obtaining the

draws from p(P,Σ|∆X). Specifically, Miranda-Agrippino and Ricco (2021) consider Bayesian

local projections with unmodeled serial correlation in the projection errors and propose using

an “artificial” Gaussian posterior centered at MLE for the pseudo-true value P with a HAC

covariance matrix, following a proposal by Müller (2013). For simplicity, we do not make this

correction in our application given very little detectable serial correlation in the prediction

errors. In particular, the HAC correction is based on sample autocorrelations, which means

that corrected inferences for Σ would be very similar to the inferences assuming no serial

correlation, while the posterior without the HAC correction is still centered at MLE for the

pseudo-true value P. That is, our proposed sampler can be thought of as appropriate when

P ≈ F and there is little detectable serial correlation in the prediction errors, consistent with

the idea that the misspecification is due to a small amount of hard-to-detect measurement error

in any given variable in our VECM and the effects of the measurement error are only evident

in the first differences of the preliminary estimated trend when aggregating prediction errors

across many variables. However, we note that, if one were concerned about more substantial

serial correlation in the projection errors, the HAC adjustment based on Müller (2013) and

Miranda-Agrippino and Ricco (2021) could be applied.

Meanwhile, the relatively non-standard element of the sampler under misspecification is

the third step to draw from p(θ(L), φ(L)|P,Σ; ∆X̌). Noting that r̂∗t in (3) can be calculated

using (6) given P, ř, and ∆X̌, this step can be thought of as estimating a univariate ARMA

model for ∆r̂∗ with a known unconditional variance σ2
∆r̂∗t

= s′k,1(I−P)−1HΣH′((I−P)−1)′sk,1.

Indeed, it may be useful to think more generally about a sampler in terms of a correction for

r̂∗ instead of being based on the factorization in (20) given that this would also be relevant for

some other approaches to the preliminary estimation of trend than just the BN decomposition.

In particular, given a joint posterior for the preliminary trend estimates and the unconditional
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variance of the changes p(r̂∗, σ2
∆r̂∗t
|ΩT ), where ΩT is the relevant information set to conduct

the preliminary trend estimation, we can factorize the joint posterior of the corrected trend

estimates r̃∗, the ARMA parameters, and the preliminary trend estimates r̂∗ as follows:

p(r̃∗, θ(L), φ(L), r̂∗|ΩT ) = p(r̃∗|θ(L), φ(L), r̂∗)p(θ(L), φ(L)|̂r∗, σ2
∆r̂∗t

)p(r̂∗, σ2
∆r̂∗t
|ΩT ). (21)

Then the nonstandard step is to draw from the second conditional distribution in the fac-

torization, p(θ(L)(i), φ(L)(i) |̂r∗, σ2
∆r̂∗t

), given r̂∗(i) and σ2
∆r̂∗t

. We do so using a Metropolis step

given a uniform prior over the stationary and invertible space for the ARMA parameters and

a scaled multivariate Normal proposal for the change in the ARMA parameters centered at

zero and unscaled variance equal to the inverse Hessian from MLE based on ∆r̂∗t calculated

at the posterior mean of the projection matrix P.16 In particular, if a proposed draw of the

ARMA parameters satisfies the stationarity and invertibility conditions (i.e., eigenvalues of the

companion matrix for the AR component are less than one in modulus and the factorization of

the MA polynomial has roots all outside the unit circle), we set the acceptance probability for

the draw to the minimum of either the ratio of the proposed and previous likelihood ordinates

for the ARMA model under the assumption of normal errors or one. Otherwise, if the draw

does not satisfy the stationarity and invertibility conditions, we set the acceptance probability

to zero. The proposed ARMA parameters are drawn from a multivariate Normal distribution

with a tuned scale parameter to achieve an acceptance rate within the 20-30% range.

The complexity for the Metropolis step is in calculating the likelihood ordinates given that

we need the conditional variance σ2
ε , rather than the unconditional variance σ2

∆r̂∗t
, to do so. If

just MA dynamics are considered for the correction, this calculation is straightforward given

that σ2
ε = σ2

∆r̂∗t
/(1 + θ2

1 + · · ·+ θ2
q) for an MA(q) process. However, if we consider ARMA(p,q)

dynamics, then the calculation is somewhat more complicated and can be made using a state-

space form of the ARMA model such that ∆r̂∗t = λ′ζt, where λ includes MA parameters, and

ζt = Φζt−1 + vt, where Φ includes AR parameters and ζt is max(p, q + 1) × 1. Letting Γ

denote the unconditional variance of ζt, the unconditional variance of ∆r̂∗t is σ2
∆r̂∗t

= λ′Γλ,

where vec(Γ) = (I−Φ⊗Φ)−1vec(Q) and vt ∼ (0,Q), with Q[1, 1] = σ2
ε and zeros elsewhere.

16The Gibbs sampler to obtain draws of P and Σ can be run first and then the estimation steps associated
with the correction run conditional on the draws from the Gibbs sampler. Thus, the posterior mean of P is
available when constructing the proposal for this Metropolis step. Note, however, that we inherently consider
the same number of draws of the corrected trend estimates as for the preliminary trend estimates.
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Figure 1: Preliminary BN trends for short- and long-term real interest rates
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Notes: Posterior means are reported. NBER recession dates are shaded.

Thus, we can solve for σ2
ε given λ, Φ, and σ2

∆r̂∗t
by solving for the unconditional variance of

a hypothetical ARMA(p,q) process zt with error variance equal to 1 as σ2
z = λ′Γzλ, where

vec(Γz) = (I−Φ⊗Φ)−1vec(Qz), with Qz[1, 1] = 1, and then solving σ2
ε = σ2

∆r̂∗t
/σ2

z .

4.3 Estimates of r∗

Figure 1 plots the posterior means of the preliminary BN trends for the short- and long-

term real interest rates based on a Bayesian VECM for the available quarter data. Given

cointegration, the trend for the long-term real interest rate only differs from the trend for

the short-term real interest rate by a constant α that reflects the long-run level of the term

premium. The trend estimates appear to be highly informed by the long-rate, suggesting

that the short-rate does most of the adjustment to restore the cointegrating relationship over

time. The presence of a cointegrating relationship between the short- and long-term rates

provides important information in estimating the real interest rates trends during two episodes

in particular: during 1975-1980 and during the ZLB between 2009-2015. First, although the

measured short-rate is quite negative during 1975-1980, the positive long-term real interest rate

helps identify a higher and generally positive level of trend. Second, during the years that the

short-term nominal interest rate was constrained by the ZLB between 2009-2015, the estimated

trend is still persistently higher than the short-term real interest rate, although it is sometimes

negative. Related, the multivariate BN decomposition implies a fair degree of persistence in
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Figure 2: Corrected BN trend for the short-term real interest rate
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Note: Posterior mean and 90% equal-tailed credible intervals are reported. NBER recession dates are shaded.

the estimated deviations of the real interest rates from trend compared to traditional univariate

BN decompositions, a more general finding with multivariate BN decompositions that is similar

to Evans and Reichlin (1994) and Morley and Wong (2020).

Figure 2 presents the posterior mean of the corrected BN trend for the short-term real inter-

est rate, along with the 90% equal-tailed credible intervals.17 Changes in the preliminary trend

estimates in Figure 1 exhibited some serial correlation despite the random walk assumption

when applying the multivariate BN decomposition. We find that an MA(8) model is sufficient

to capture this serial correlation.18 Then, because we find that the MA parameter estimates

imply a substantial amount of negative serial correlation in the change in the preliminary trend

estimates, the corrected BN trend in Figure 2 ends up being considerably smoother than the

preliminary BN trend for the short-rate in Figure 1. However, despite its relative smoothness,

we can observe that r∗ still varies over longer periods of time and has fallen considerably since

the 1980s. The overall pattern of our r∗ estimate is consistent with the previous literature (e.g.,

17The credible intervals capture parameter uncertainty. Specifically, given the observation of the data in (17),
the only uncertainty about the corrected BN trend is due to uncertainty about the population parameters in P,
φ(L), and θ(L). Accounting for any filtering uncertainty about r∗ would require making an assumption about
the number of underlying structural shocks driving r. If it is the same as the number of variables in the model,
then we have the “BN-as-definition” scenario as in Morley (2011) and the Monte Carlo analysis in Section 3.3.
In this case, there is no filtering uncertainty. However, if there are more structural shocks than variables, we
have a “BN-as-estimate” scenario and it would be necessary to specify a UC process and use the Kalman filter
to capture any filtering uncertainty.

18The sample ACF and PACF for the posterior mean of the change in the preliminary BN trend suggest an
MA(8) specification, while allowing for additional lags did not affect inferences about the corrected BN trend.
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Figure 3: Comparison with UC estimates
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Cúrdia et al., 2015; Lubik and Matthes, 2015; Hamilton et al., 2016; Del Negro et al., 2017;

Holston et al., 2017; Fiorentini et al., 2018; Brand and Mazelis, 2019; Brand et al., 2019; Berger

and Kempa, 2019; Lewis and Vazquez-Grande, 2019; Bauer and Rudebusch, 2020; Kiley, 2020a;

Johannsen and Mertens, 2021; Fu, 2023), and it should be emphasized that we do not impose

smoothness in our estimation a priori unlike some other approaches (e.g., Del Negro et al.,

2017). In line with our main motivation for the correction in the previous section, the negative

serial correlation is consistent with the presence of classical measurement error in some of the

variables in the model.

We also highlight that r∗ appears to have been persistently low since the Great Recession and

the estimated level has even been slightly negative since around 2013, although the estimates are

only briefly significantly negative according to the 90% credible intervals. Other estimates of r∗,

such as estimates based on semi-structural models in Brand and Mazelis (2019), Kiley (2020a),

and Fu (2023) turn negative a few years after the Great Recession. We note that a negative r∗

could occur for a variety of possible theoretical reasons, including a very low marginal product

of capital and/or high levels of market power (see, for example, the neoclassical growth model

with market power in Ball and Mankiw, 2023).

In Figure 3, we directly compare our estimated r∗ to two particular estimates based on

UC models, namely the multivariate semi-structural model in Laubach and Williams (2003) as

reported on the New York Fed website and a univariate UC model with a random walk trend
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and AR(2) cycle estimated via MLE.19 The Laubach and Williams (2003) estimate of r∗ behaves

somewhat similarly to our estimate, also declining by about 3.5ppt over the same sample period,

but it has a higher average level in part due to its semi-structural link to trend output growth.

The Laubach and Williams (2003) estimate also displays a similar degree of smoothness as

our estimate, although Kiley (2020b) shows that the smoothness of r∗ is not particularly well-

identified for semi-structural models. Encouragingly, the Laubach and Williams (2003) estimate

does not appear to have any serial correlation in its first difference, implying no need to apply

our correction. Meanwhile, the univariate UC model also produces similar results, although

it is likely misspecified. This is because, as with the Laubach and Williams (2003) model, we

assume a zero correlation between movements in trend and cycle, while this restriction can be

strongly rejected based on a likelihood ratio (LR) test for the univariate model (the LR statistic

is 41.95), similar to the findings for real GDP in Morley et al. (2003). Furthermore, the change

in the preliminary filtered estimate of r∗ for the univariate UC model displays positive serial

correlation, thus leading to a somewhat more volatile estimate after applying our correction,

which is the estimate reported in Figure 3.

In the appendix, we consider the robustness of our estimated r∗, including in terms of (i) al-

ternative priors, (ii) different measures of inflation expectations when constructing real interest

rates, (iii) different information sets, and (iv) time variation in the long-run level of the term

premium. First, we find that estimates are highly robust given a more agnostic prior about the

adjustment of the short-rate to the spread and to optimizing the shrinkage hyperparameter λ to

minimize the one-step-ahead out-of-sample forecast errors for the short-rate, consistent with the

approach for output growth in Morley and Wong (2020). This robustness suggests our results

are not driven by any particularly informative or arbitrary priors. Second, we find that esti-

mates are reasonably robust to consideration of alternative measures of inflation expectations

when constructing real interest rates, suggesting that our proposed correction is successful at

addressing misspecification due to measurement error in real interest rate measures given that

19We should also note that our estimate bears a striking resemblance to the medium-run forecast of r∗ for
the dynamic stochastic general equilibrium (DSGE) model in Del Negro et al. (2017) reported and compared to
the Laubach and Williams (2003) estimate in their Figure 12. This medium-run forecast is a more comparable
estimate to our estimate of r∗ than an infinite-horizon forecast for their Bayesian DSGE model given that the
infinite-horizon forecast is a constant by construction, while our Bayesian VECM suggests that predictable
momentum in the short-term real interest rate dies out over a medium-run horizon. Our estimate is also quite
similar to some of the reported estimates in Fiorentini et al. (2018), Kiley (2020a), and Fu (2023) based on
semi-structural models.
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different implied measurement error for different measures of inflation expectations still results

in similar corrected estimates. Third, the estimates are reasonably robust for smaller informa-

tion sets, being almost identical for a seven-variable VECM that includes the real interest rates

and the five most informative variables according to the procedure in Morley and Wong (2020).

When we consider a bivariate VECM with just the real interest rates, the corrected estimates

are a bit more variable than in our baseline case. But they are still considerably smoother

than the preliminary estimates, suggesting that our correction can also handle misspecification

due to omitted variables and that a likely source of misspecification comes from measurement

error in the ex ante real interest rate measures in particular, although the fact the baseline

estimates are a bit smoother suggests the possible presence of some measurement error in some

of the other variables and a more general benefit of including relevant variables rather than

addressing their omission via the correction. Fourth, the estimates are extremely robust to

consideration of time variation in the long-run level of the term premium α by estimating it

using a backward-looking 40-quarter rolling window, which Kamber et al. (2018) refer to as

‘dynamic demeaning’. Thus, the possibility of changes in the long-run relationship between

short- and long-term real interest rates over time, including during the ZLB, does not appear

to distort our baseline estimates that assume no permanent movements in the spread.

We also conduct three additional exercises in the appendix that are more straightforward

to consider with the bivariate VECM that includes just the short- and long-term real interest

rates. First, we examine the real-time reliability in an Orphanides and van Norden (2002) of

our trend estimates. In this case, we construct the real interest rates using the SPF survey

measures of inflation expectations because they are not subject to revision, thus revealing the

role of estimation uncertainty in the real-time reliability of the trend estimates. We find that

the real-time estimates are highly reliable. Second, we allow for the possibility of stochas-

tic volatility and find that the trend estimates are highly robust to those for the bivariate

VECM assuming constant volatility. There is clear evidence of some time variation in volatil-

ity. However, the BN trend corresponds to a long-horizon point forecast of the the target

variable rather than a density forecast and point forecasts can be quite robust to controlling for

heteroskedasticity, while those based on an assumption of constant volatility are often easier

to calculate, especially given a medium-scale VECM as considered in our baseline analysis.
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Third, we consider frequentist inference with bootstrapping to account for uncertainty in our

corrected trend estimate and show that the inferences are very similar to the Bayesian case for

the bivariate model. The reason we focus on Bayesian inference in our baseline analysis is the

reasonably large number of parameters in the medium-scale VECM that allows us to consider

which variables are informative about movements in r∗, which is what we examine next.

4.4 Why did r∗ change over time?

To examine which variables in our medium-scale Bayesian VECM are informative about the

historical changes in r∗, we conduct an informational decomposition along the lines of Morley

and Wong (2020).20 A complication with doing so is that our proposed correction produces

estimated trend changes that are based on the univariate error εt for ∆r̂∗t from an ARMA

model rather than underlying forecast errors for the different variables in the VECM, as in (8).

However, we note that, given the invertible representation for θ(L), we can solve for the error

in the ARMA model for ∆r̂∗t in terms of current and past projection errors ηt from the linear

projection for ∆X̌t:

εt = θ(L)−1φ(L)∆r̃t = θ(L)−1φ(L)s′k,1(I−P)−1Hηt, (22)

Then the informational contributions of the current projection errors to the corrected estimated

change in trend ∆r̃∗t are given by

∆r̃∗it ≡
θ(1)

φ(1)
ω̃iηit, (23)

where the ω̃i weights are the elements of the 1×n row vector ω̃ ≡ s′k,1(I−P)−1H and, assuming

each individual AR and MA coefficient is relatively small, we have the following approximation:

n∑
i=1

∆r̃∗it ≈ ∆r̃∗t . (24)

20By considering a large set of variables that have been hypothesized to explain changes in r∗, our analysis
is similar to Lunsford and West (2019), although their analysis focused on the sign of long-run correlations
between measured real interest rates and the hypothesized variables using a long sample of annual data from
1870 to 2016, while we focus on estimating r∗ using quarterly data over a more recent sample period starting
from the 1970s and quantifying the contributions of hypothesized variables to historical movements in r∗ in
particular. Our analysis also provides a complement to Rachel and Smith (2017), who apply a simple accounting
framework based on reduced-form elasticity estimates, and Rachel and Summers (2019), who combine evidence
from several structural models, in terms of accommodating a wide range of explanations for why interest rates
are low. Also see Marx et al. (2021) for a decomposition of the role of different driving forces based on a
structural model that nests various hypothesized reasons for the decline in interest rates.
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That is, the informational contributions of the projection errors for each variable to the cor-

rected estimate ∆r̃∗t are approximately proportional to those for the preliminary estimate, with

the factor of proportionality equal to the long-run multiplier θ(1)/φ(1) for the ARMA model.

In practice, we find that the approximation in (24) is quite accurate, consistent with P ≈ F.

Figure 4 plots posterior densities for the contributions of different groups of variables to

changes in r∗. Over the whole sample, the productivity/demographic variables appear to con-

tribute the most to the decline in r∗, with the bulk of the posterior density below zero. Safe

asset supply (i.e., change in government debt as a % of GDP) also seems to have contributed

to at least a small amount of the overall decline, while safe asset demand (all of the other

quarterly variables in the safe asset demand/supply category) shows no obvious evidence of

contributing much to the decline over the full sample period. However, if we look at the

contributions over the three key episodes corresponding to (i) the onset of the Great Moder-

ation (1977Q1-1989Q4), the end of the Great Moderation (1990Q1-2005Q4), and (ii) Secular

Stagnation (2006Q1-2019Q4), we can see that each of the different groups of variables made

substantial contributions to changes in r∗ over time. For example, the posterior densities for

productivity/demographics and safe asset demand/supply all suggest positive contributions

to an estimated 1.4 percentage point increase in r∗ with the onset of the Great Moderation,

with a high probability that productivity/demographics and safe asset supply contribute to

the bulk of this increase. Likewise, productivity/demographics and safe asset supply appear

to contribute to a subsequent estimated 1.4 percentage point decline in r∗ up to the end of

the Great Moderation, with safe asset supply having the highest probability of contributing to

the decline. Finally, productivity/demographics and safe asset demand appear to contribute

sizeable and similar amounts to the estimated 2.1 percentage point decline in r∗ during the

Secular Stagnation era, while safe asset supply appears to have a partially offsetting effect.

To confirm that the variables in the model reflect the underlying forces of productivity/de-

mographics and safe asset demand/supply, we also consider the posterior probability of the

direction of correlation between the projection error for a variable and the implied change in

the estimate of r∗ based on the decomposition in (23). In particular, the sign of the correlation

between the overall change in trend and projection error ηit corresponds to the sign of ω̃i in

(23) and is determined by (I− P)−1. As reported in the appendix, the posterior probabilities
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Figure 4: Contributions to r∗: Posterior densities
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Note: Densities are calculated by applying Matlab ksdensity function to MCMC draws of contributions.

support the theoretically predicted signs for all of the quarterly variables that we consider. In-

dividual contributions of each variable to the estimated r∗ during the three subsample episodes

considered in Figure 4 are also reported in the appendix.21

Because certain variables are only available at an annual frequency, we repeat our analysis

using annual data to check the robustness of our baseline results when also including these

additional variables. For brevity, the results for annual data are also reported in the appendix.

To summarize these results, we find that the corrected estimate of r∗ is even smoother than

in the quarterly case, possibly reflecting overfitting the real interest rates in sample with a

VECM and MA model for the correction given the small number of annual observations, even

given Bayesian shrinkage for the VECM. The key finding, though, is that the variables which

are only available annually and capture income inequality, demographics (i.e., age dependency),

and the global savings glut (i.e., global reserves-to-GDP), are found to only contribute negligibly

to the estimated movements in r∗ and their inclusion in the model does not alter inferences

about contributions of the other variables. Thus, we argue that their omission from the baseline

quarterly VECM is not an issue. In any event, the application of our correction when conducting

21We note that the informational contributions correspond to lower bound effects of driving factors if the
forecast errors for interest rates are correlated with the other forecast errors and the correlation is driven by
causation from other variables to interest rates. In this sense, our informational decomposition can be thought
of as mainly providing information on relative importance of variables rather than their overall importance.
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trend-cycle decomposition using the quarterly model helps address the possibility of omitted

variables, as previously discussed in Section 3.4.

Finally, we extend our estimation of r∗ and informational contributions to cover the onset

of the COVID-19 pandemic. The full results are presented in the appendix. The main finding

for this extension is that there is a sharp decrease in the estimated level of r∗ with the onset

of the pandemic, but a quick recovery to a slightly higher level than the pre-pandemic level.

These movements reflect the behaviour of productivity variables, but also the offsetting effects of

higher asset supply and demand due to debt-financed fiscal stimulus and heightened uncertainty

during the pandemic.

5 Conclusion

We have proposed a simple correction to estimating a random-walk trend of a time series when

there is apparent evidence of misspecification in preliminary estimates in the form of serial cor-

relation in first differences. The correction is based on applying a univariate Beveridge-Nelson

decomposition to the preliminary estimated trend. We show how and why the correction works

based on the law of iterated expectations in the setting of a small amount of otherwise hard-

to-detect measurement error in some of the variables considered for trend-cycle decomposition.

However, the correction is also applicable given other possible sources of misspecification. Our

application to estimating r∗ with a medium-scale vector error correction model reveals the

empirical relevance of the correction, with the corrected estimates for r∗ turning out to be con-

siderably smoother than the preliminary estimates. Given a number of variables and lags for the

model, the likely source of misspecification in the preliminary estimated trend is measurement

error, including in ex ante measures of real interest rates. An informational decomposition

following Morley and Wong (2020) suggests productivity/demographics and safe asset sup-

ply/demand explain major historical movements in r∗. Our estimates are comparable to others

in the literature, but importantly we do not impose smoothness in our estimation, rather we

find it when including a wide range of multivariate information motivated by different theories

of what drives r∗ and applying our correction for misspecification. Future research will apply

the correction to other estimates of random-walk trends that exhibit serial correlation in their

first differences.
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Appendix

A Details of the data

In this appendix, we provide the details of the specific variables hypothesized to drive r∗ in the

broad categories of productivity/demographics and safe asset supply/demand. We then report

the data sources and transformations.

Productivity/demographics

Motivated by an intertemporal IS/Euler-type equation, such as in Lunsford and West (2019), we

consider real consumption growth per capita. Related, we also consider TFP growth (Fernald,

2015) and S&P 500 stock returns on the basis that they might be additionally informative

about expected trend growth for the economy, which Laubach and Williams (2003) highlight

as the key positive determinant of r∗. By contrast, Eichengreen (2015) stresses the importance

of investment-specific technological change and the subsequent decline in the price of capital

goods in driving down real interest rates. Thus, we also consider real investment growth as a

proxy for investment-specific technological change and expect it to have a negative relationship

with r∗, at least when controlling for consumption growth and TFP growth.

Various labor-market variables reflect demographic factors and are hypothesized to influence

r∗ through an effect on the marginal product of capital. For example, Baker et al. (2005) note

that in certain overlapping-generations models, labor-force growth is positively related to the

real interest rate given that higher labor-force participation would lead, all else equal, to a

lower level of capital per worker. Thus, we also consider employment growth, hours growth (to

capture the intensive margin), and the change in the unemployment rate as additional possible

supply-side variables, although clearly decreases in employment and hours and increases in the

unemployment rate could be also be related to a decline in r∗ via insufficient demand, as argued

by Summers (2015). The unemployment rate also serves as a potential control for economic

slack that could distort measures of trend growth and generate short-run deviations in the real

interest rate from r∗.

Possible heterogeneity in marginal propensities to consume motivates consideration of in-

come inequality and age dependency. Dynan et al. (2004) find that higher income families have

1



lower marginal propensities to consume, suggesting that an increase in inequality will shift the

savings schedule out and lower r∗. Gagnon et al. (2021), on the other hand, suggest that an

increase in the dependency (older-to-working) ratio reduces aggregate savings and raises r∗. To

capture these demographic factors, we consider the share of wealth held by the top 1% and the

age dependency ratio, although these series are only available at an annual frequency and so

are only considered in robustness analysis using a VECM with annual data in Appendix F.

Safe asset demand/supply

Caballero et al. (2017) and Del Negro et al. (2017) suggest that demand for safe assets has

played a key role in lowering r∗ in recent decades. To address this, we consider the change

in macroeconomic uncertainty (Jurado et al., 2015), the change in the excess bond premium

(Gilchrist and Zakraǰsek, 2012), and growth of liquid assets held by financial and non-financial

corporate businesses.

Also related to demand for safe assets, Bernanke (2005) suggests a relationship between the

U.S. current account deficit and the global savings glut. Capital inflows are typically associated

with a trade deficit, but the link to r∗ depends on whether those capital flows are induced by a

high real interest rate or reflect excess global savings. To address this, we consider the change

in the U.S. current account balance (as % of GDP), the change in U.S. government debt (as

% of GDP), the trade-weighted U.S. dollar exchange rate growth rate, and global central bank

foreign reserves (as % of world GDP), although the global reserves variable is only available at

an annual frequency and so is only considered in the robustness analysis in Appendix F. An

increase in government expenditure or a decrease in tax revenues that lead to a higher level of

government debt is usually thought to raise real interest rates through a crowding-out effect

(see, for example, Ball and Mankiw, 1995). So the government debt measure can be thought

of as reflecting the supply of safe assets, while the other measures are designed to help capture

demand for safe assets that push the real interest rate in the opposite direction.

Prior to inclusion in the VECM, the data are transformed to be stationary. As discussed in

Morley and Wong (2020), the BN decomposition calculations in (6) and (7) require specification

of the forecasting model in a stationary form. The transformations, along with the original data

sources, are given in Table A1.
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Table A1: Data sources and transformations

Variable Description Source Transformation

3-Month Treasury Bill Secondary Market Rate FRED:TB3MS quarterly avg., ∆
Market Yield on U.S. Treasury Securities at 10-Year Constant Maturity FRED:GS10 quarterly avg., ∆
Personal Consumption Expenditures Excluding Food and Energy (Chain-Type Price Index) FRED:PCEPILFE %∆4

Survey of Professional Forecasters 1-Year-Ahead GDP Deflator Inflation Rate, Median Forecast Phil.Fed:INFPGDP1YR
Survey of Professional Forecasters 10-Year PCE Inflation Rate, Mean Response, Annual Average Phil.Fed:PCE10,T.Clark
Cleveland Fed 1-Month Real Rate using Model-Based Expected Inflation clevelandfed.org quarterly avg., ∆
Cleveland Fed 10-Year Real Rate using Model-Based Expected Inflation clevelandfed.org quarterly avg., ∆
Real personal consumption expenditures per capita FRED:A794RX0Q048SBEA ln,∆
Business Sector TFP (annualized quarterly % growth rate) frbsf.org ln(1 + series/400)
S&P 500 Index FRED:SP500 quarterly avg., ln,∆
Real Gross Private Domestic Investment FRED:GPDIC1 ln,∆
All Employees: Total Nonfarm FRED:PAYEMS quarterly avg., ln,∆
Business Sector: Hours Worked for All Employed Persons FRED:HOABS ln,∆
Unemployment Rate FRED:UNRATE quarterly avg., ∆
Age Dependency Ratio: Older Dependents to Working-Age Population for the United States FRED:SPPOPDPNDOLUSA annual only, ∆2

Top 1% Share of Pre-Tax National Income World Inequality Database annual only, ∆
1-Month-Ahead Economic Macro Uncertainty Index sydneyludvigson.com ∆
Excess Bond Premium federalreserve.gov quarterly avg., ∆
Nonfinancial Corporate Business and Other Financial Corporations, Money Market Funds,
ind Insurance Companies, and Pension Funds; Liquid Assets (Broad Measure), Level

FRED:BOGZ1FL104001005Q,
BOGZ1FL874001005Q

sum, ln,∆

Balance on Current Account as a Percent of Gross Domestic Product FRED:NETFI, GDP ratio, ∆
Nominal Major Currencies U.S. Dollar Index (Goods Only) FRED:TWEXMMTH quarterly avg., ln,∆
Federal Debt: Total Public Debt as Percent of Gross Domestic Product FRED:GFDEGDQ188S ∆
Total reserves comprising holdings of monetary gold, special drawing rights, reserves of IMF:FI.RES.TOTL.CD, annual only, ratio, ∆
indmembers held by the IMF, and holdings of foreign exchange under the control of monetary
indauthorities as a percent of world GDP at purchaser’s prices (data are in current U.S. dollars,
indwith gold component of reserves valued at year-end prices and GDP converted from domestic
indcurrencies using single-year official exchange rates)

NY.GDP.MKTP.CD
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https://www.clevelandfed.org/our-research/indicators-and-data/inflation-expectations.aspx
https://www.clevelandfed.org/our-research/indicators-and-data/inflation-expectations.aspx
https://www.frbsf.org/economic-research/indicators-data/total-factor-productivity-tfp/
https://www.sydneyludvigson.com/macro-and-financial-uncertainty-indexes
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B Bayesian estimation of the VECM

In this appendix, we present the details of the Bayesian estimation of the VECM.

Recall that ∆xt consists of the first differences of the interest rates ∆rst and ∆rlt (which

we now denote as ∆x1t and ∆x2t for convenience) and the ‘correlates’ ∆x3:n,t. Because of the

error correction term, the regressors differ between the ‘interest rate’ and ‘correlates’ blocks of

the VECM. Thus, we specify the ith equation of the VECM as

∆xit = µi + w′itbi + eit, (B1)

where wit = [(∆xt−1 − µ)′, . . . , (∆xt−p − µ)′, rlt−1 − rst−1 − α]′ if i = 1, 2 and wit = [(∆xt−1 −

µ)′, . . . , (∆xt−p −µ)′]′ if i > 2, with bi corresponding to all of the parameters associated with

equation i. The unconditional means µi are based on sample averages, consistent with diffuse

priors on these parameters, except for i = 1, 2 where the means of the changes in real interest

rates are set exactly to zero, implying no drift in levels.

Defining

yt ≡∆xt − µ, β ≡


b1

...

bn

 and Zt ≡



w′1t 0 . . . 0

0
. . . . . .

...

...
. . . . . . 0

0 . . . 0 w′nt


, et ≡


e1t

...

ent

 ,

we can stack all the equations and regressors in (B1) and rewrite the system as

yt = Ztβ + et,

or

y = Zβ +E,

where

yi =


yi1
...

yiT

 , ei =


ei1
...

eiT

 ,
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and

y =


y1

...

yn

 , Z =


Z1

...

ZT

 , E =


e1

...

en

 .
Let Σ be an n×n covariance matrix for the VECM residuals. If one sets a Normal-Wishart

prior on β and Σ (Koop and Korobilis (2010)), where

β ∼ N(β0,Vβ), (B2)

Σ−1 ∼ W (S−1
0 , ν0), (B3)

this implies conditional distributions

p(β | y,Σ−1) ∼ N(β̂, V̂β), (B4)

p(Σ−1 | y,β) ∼ W (Ŝ
−1
, ν̂), (B5)

where

V̂β =

(
Vβ
−1 +

T∑
t=1

Z ′tΣ
−1Zt

)
,

β̂ = V̂β

[
Vβ
−1β0 +

T∑
t=1

Z ′tΣ
−1Zt

]
,

and

Ŝ = S0 +
T∑
t=1

(yt −Ztβ) (yt −Ztβ)′ ,

ν̂ = T + ν0.

We elaborate how priors β0, Vβ, S−1
0 and ν0 are elicited below. Given the priors, (B4)

and (B5) define a Gibbs-sampling scheme, where one can sequentially take draws from these

conditional distributions, conditioning on the previous draw in the chain. We take 12,000 draws

with the sampling scheme, discarding the first 2,000 draws and use the remaining 10,000 draws

to make inferences about the posterior distribution.
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Priors

Our goal in setting the prior is to apply shrinkage to mitigate possible overfitting. To keep

the application of shrinkage as standard as possible, we use a “Minnesota Prior” (e.g., see

Litterman, 1986). The idea behind this type of prior is to shrink parameters for persistent

variables towards a random walk.

Accordingly, given that the variables in the VECM are included in first differences, we set

the prior mean β0 in (B2) to a vector of zeros, except for the element associated with the

error correction term in the short-rate equation. In that case, we set the prior mean to 0.5,

consistent with the expectation hypothesis for the term structure of interest rates (see, for

example, Modigliani and Shiller, 1973) that motivates our assumption of cointegration between

the interest rates. Setting the prior mean for this parameter to zero is somewhat contrary to

the assumption of cointegration. However, we note that our posterior inferences are robust to

setting this prior mean to zero.

In specifying the prior variance, which dictates how tightly we shrink the coefficients towards

zero, we follow the Minnesota prior approach and treat shorter lags as “more important” than

longer lags when applying shrinkage. Let V k
i,j be the prior variance on the parameter in the ith

equation for the jth variable on the kth lag. Accordingly, we set

V k
i,j =

λ2

k2

σ2
i

σ2
j

. (B6)

where σ2
i is the sample variance of the residuals from a univariate AR(4) regression fitted using

least squares on the ith variable and σ2
i /σ

2
j acts as a scaling factor to account for different units

of the variables (note that we set σ2
j = σ2

i in the case of the error correction coefficients). The

overall tightness of the prior is then governed by one hyperparameter, λ. We set λ = 0.2 in our

empirical analysis, which is a fairly common choice within the BVAR literature (e.g., Sims and

Zha, 1998) and corroborated as a reasonable choice in forecasting settings by Carriero et al.

(2015). We stress, however, that our main results are robust to departures from this particular

prior, including optimizing λ to minimize the one-step-ahead out-of-sample RMSFE for the

short-run interest rate equation along the lines of Morley and Wong (2020).

Once V k
i,j in (B6) is specified, V β is constructed as
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Vβ =



V 1 0 . . . 0

0
. . . . . .

...

...
. . . . . . 0

0 . . . 0 V n


,

where

V i =



V 1
i 0 . . . 0

0
. . . . . .

...

...
. . . . . . 0

0 . . . 0 V p
i


and V k

i =



V k
i,1 0 . . . 0

0
. . . . . .

...

...
. . . . . . 0

0 . . . 0 V k
i,n


,

except for V 1 and V 2, which each have an additional row and column of zeros and V 1
i,n+1 = λ2

for i = 1, 2 on the respective last diagonal as the prior variance for the corresponding error

correction coefficient.

For the remaining quantities in (B3), we set

S =



ν0σ
2
1 0 . . . 0

0
. . . . . .

...

...
. . . . . . 0

0 . . . 0 ν0σ
2
n


,

where ν0 is set to n + 1 (i.e., one greater than the total number of variables), σ2
i is obtained

from the same AR(4) regression on the ith variable as what used in (B6), and the variance is

thus scaled up by a factor of ν0 so that the prior on the sum of squared residuals is consistent

with the prior on the degrees of freedom.

C Robustness checks

In this appendix, we consider some robustness checks to demonstrate that our main empirical

findings are not particularly sensitive to choices about priors, proxies for inflation expectations,

variables to include in the VECM, and possible permanent movements in the term premium.

First, we investigate the sensitivity of our r∗ estimates with respect to the prior on the error-

correction coefficient for the short-term interest rate and to the shrinkage hyperparameter used
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in the Bayesian estimation. The results are highly robust to the choice of prior, as seen in the

first panel of Figure C1. Thus, while we see our baseline priors as well justified, we also note

that our main findings, including the smoothness of our r∗ estimates, do not hinge upon them.

Second, we investigate the sensitivity of our r∗ estimates with respect to how we proxy

inflation expectations when measuring ex ante real interest rates. As shown in the second

panel of Figure C1, our estimates are generally robust to three alternative measures of inflation

expectations. In the first case, following Laubach and Williams (2003), we proxy short-run

inflation expectations with the forecast of the four-quarter-ahead percentage change in core

PCE prices generated from a univariate AR(3) of inflation estimated over the prior 40 quarters

(10 year rolling window). In the second case, we proxy the short-run (long-run) inflation expec-

tations by the SPF short-term (long-run) inflation forecast. In the third case, we investigate

the sensitivity of our r∗ estimates with respect to the 1-month and 10-year real interest rates

constructed by the Cleveland Fed based on their model-based expected inflation measures. The

r∗ estimate using the Cleveland Fed data appears to be higher in the early part of the sample

for which it is available, but it soon converges to our baseline r∗ estimate.

Third, to confirm the relevance of different sources of information, we consider two al-

ternative models in terms of which variables are included. In the first case, we consider a

smaller 7-variable model that, in addition to the ‘interest rate’ block, only includes the five

most informationally-relevant variables for deviations of the short-term real interest rate from

its trend following the variable selection process proposed in Morley and Wong (2020). The

selected variables are the change in government debt, hours growth, employment growth, real

consumption per capita growth, and stock returns. In the second case, we consider a bivariate

model that only includes the ‘interest rate’ block. As shown in the third panel of Figure C1, the

estimates are generally robust. Notably, by dropping the less informationally-relevant variables

from the model, the estimated r∗ is barely affected. The estimated r∗ changes a bit more,

however, when we do not include any possible determinants beyond the ‘interest rate’ block.

But the general similarity of the estimates even when only including interest rates has two

important implications: (i) measurement error or other sources of model misspecification that

generate serial correlation in the first-stage estimates of trend growth appear to be primarily

related to the ex ante real interest rates in particular and (ii) one could obtain a reasonably
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Figure C1: Robustness of r∗ estimates

1975 1980 1985 1990 1995 2000 2005 2010 2015
-4

-2

0

2

4

6

8

10

(a) Alternative priors

1975 1980 1985 1990 1995 2000 2005 2010 2015
-4

-2

0

2

4

6

8

10

(b) Alternative real rates
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(c) Alternative information sets
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(d) Time-varying long-run term premium

Note: NBER recession dates are shaded.

robust estimate of r∗ just by considering a bivariate VAR of the change in the short-term real in-

terest rate and the spread between the long- and short-term real rates given that our correction

can handle misspecification due to omitted variables. Of course, our baseline medium-scale

Bayesian VECM has the advantage of allowing us to track which economic forces are most

important in driving changes in r∗, which we consider in Section 4.4.

Fourth, we investigate the robustness of our result with respect to the assumption of no

permanent movements in the term premium. We do so by allowing the long-run level of the term

premium to be time varying, effectively by demeaning the error-correction term dynamically

with a backward-looking 40-quarter average. As seen in the last panel of Figure C1, the results

are robust.
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D Additional exercises

In this appendix, we conduct some additional exercises related to the real-time reliability of

our estimates, allowing for stochastic volatility, and taking a frequentist approach to inference

given our proposed correction.

First, we consider real-time reliability of our estimates of r∗. To abstract from the effect

of data revisions, which Orphanides and van Norden (2002) argue are less important than

trend-cycle decomposition method for reliability of real-time estimates, we focus on r∗ estimates

based on a model using only the ‘interest rate block’ and using SPF survey measures of inflation

expectations so that there are no sources of data revision. The first panel of Figure D1 plots the

real-time estimate using an expanding window of data for the first ten years of the sample period

until the end of the period to estimate r∗ and compares it with the ex post estimate based on

the full sample of data. The real-time estimates are clearly quite reliable, although there is an

upward bias earlier in the sample period compared to the revised estimates. This is likely due to

some changes in the estimated long-run level of the term premium over the sample period. But

the movements and general decline in r∗ implied by the real-time estimates are highly robust

to consideration of the full sample of data. Notably, there is clearly no end-point problem that

plagues other approaches to trend-cycle decomposition such as the Hodrick-Prescott filter.

Second, we consider an additional exercise of allowing for stochastic volatility when estimat-

ing the Bayesian VECM. Again, for tractability, we consider a bivariate VECM. We set up the

bivariate VECM with stochastic volatility as per Carriero et al. (2022).1 The MA parameters

for the correction are estimated using standardized changes in the preliminary estimated trend,

i.e., ∆r̂∗t /σ
2
∆r̂∗t ,t

, where σ2
∆r̂∗t ,t

= s′k,1(I−P)−1HΣtH
′((I−P)−1)′sk,1, with Σt being the residual

variance-covariance matrix for the VECM under stochastic volatility, while the correction is

applied to the raw changes, i.e., ∆r̂∗t . The second panel of Figure D1 plots the results when

allowing for stochastic volatility, as well as the original bivariate VECM estimates. It can be

seen that the estimates are largely robust.

Third, we sketch out how one might conduct frequentist inference about the corrected

trend estimates if one were not inclined to do Bayesian estimation as we do. First, recall that

1The Carriero et al. (2022) approach uses the triangular factorization when it sets up the stochastic volatility
component, and so we set up the model by ordering the ex-ante long-rate before the short-rate in the VECM.
All other specifications remain identical to the baseline setting, and we also retain the prior from our baseline
analysis for the VECM parameters.
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Figure D1: Results for additional exercises
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(b) Allowing for stochastic volatility
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(c) Bayesian versus frequentist inference

Note: NBER recession dates are shaded.

our main motivation for conducting Bayesian inference in our baseline analysis is because we

consider a medium-scale model and applying shrinkage by using Bayesian methods is reasonably

standard to address in-sample overfitting given parameter proliferation in such settings (e.g.,

see Banbura et al., 2010). Nonetheless, if one considered the simpler bivariate model, it would

be straightforward to consider OLS or MLE, as we also do in our Monte Carlo analysis with a

bivariate DGP.

A bootstrap provides a natural approach to conducting frequentist inference about the

corrected trend estimates given the complicated mapping from the preliminary estimates. For

the bootstrap DGP, we obtain an estimate of the projection matrix P̂ and the projection errors

η̂t. Then, we propose the following four bootstrap steps:

11



1. Create an artificial sample of data ∆X
(b)
t based on P̂ and (10) by drawing with replace-

ment from the projection errors η̂t in a block bootstrap with block size of 5 to capture

any small amount of serial correlation due to possible misspecification of the original

forecasting model.

2. Obtain a bootstrap estimate of the projection matrix P̂(b) for the bootstrap sample ∆X
(b)
t .

3. Calculate a preliminary bootstrap estimate of trend r̂∗(b) by using the bootstrap estimate

of P(b) and the original realized data ∆Xt.

4. Apply our proposed correction to r̂∗(b) based on frequentist estimates of ARMA param-

eters for the first differences of the preliminary estimated trend. This step provides a

bootstrap estimate r̃∗(b).

We repeat the above steps for 1000 bootstrap replications from b = 1, . . . , 1000. We then take

the α/2 and (100 − α/2) quantiles across the bootstrapped replications for each r̃∗t within r̃∗

and report these as (100− α)% bootstrapped confidence intervals.

It should be noted that our bootstrapped intervals only reflect parameter uncertainty. If

we had infinite data and the population parameters, there would be no uncertainty about the

corrected estimated changes in trend in (17) as we treat the data as realized values rather than

random variables when making our calculation of the corrected estimated trend. In this sense,

our bootstrapped intervals are confidence intervals rather than prediction intervals even though

the BN decomposition is based on a long-horizon forecast. That is, the forecast is known at

time t given population parameters, even though the realized future path is not. This is related

also to the idea discussed in the main text that there is no filtering uncertainty about the BN

trend, even if there might be about a true underlying r∗ given a UC process. Again, it would

be necessary to specify the UC process to capture any such filtering uncertainty.

The third panel of Figure D1 compares the Bayesian posterior mean and 90% equal-tailed

credible intervals for r̃∗t against estimates based on MLE for the bivariate VECM and an MA(8)

model for the correction with 90% bootstrapped confidence intervals. Even though there are

the obvious conceptual differences, we note that the Bayesian and frequentist estimates and

intervals are similar, which also confirms that the degree of uncertainty with our Bayesian

inferences is not really due to informative priors.
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E Variable-by-variable sign probabilities and informa-

tional contributions

In this appendix, we report on variable-by-variable sign probabilities and informational contri-

butions.

Table E1 presents results for the individual variables in terms of (i) the correlation of the

projection error for each variable and the implied change in the estimate of r∗ based on the

decomposition in (23) and (ii) their contributions to estimated r∗ during the three subsample

episodes considered in Figure 4.

In terms of the signs of correlations, Table E1 reports 62% and 71% posterior probabilities

that consumption and TFP growth have a positive relationship with r∗. The broad finding of a

positive link between trend growth and r∗ corroborates many earlier studies (e.g., Laubach and

Williams, 2003; Hamilton et al., 2016; Holston et al., 2017; Berger and Kempa, 2019; Lunsford

and West, 2019). Investment growth has the predicted negative relationship consistent with

investment-specific technological change with a 60% posterior probability. Consistent with the

theoretical prediction on the effect of the labor force on r∗ (Baker et al., 2005; Lunsford and

West, 2019), there are 69% and 86% posterior probabilities that employment and hours growth

have a positive relationship with r∗, while the unemployment rate has a negative relationship

with 67% posterior probability, which is also consistent with a labor force effect or possibly

insufficient aggregate demand, as suggested in Summers (2015). Meanwhile, consistent with a

safe asset demand/flight-to-safety phenomenon, there are 66% and 83% posterior probabilities

that macroeconomic uncertainty and the excess bond premium have a negative relationship

with r∗. On the contrary, there is only weak evidence that liquid asset growth has a positive

relationship with r∗, with only a 53% posterior probability, reflecting a likely mix of supply

and demand factors driving this variable. Furthermore, consistent with the global savings glut

hypothesis (Bernanke, 2005), there are 88% and 83% posterior probabilities that the current

account and a depreciation in the exchange rate have respective positive and negative relation-

ships with r∗. Last, we find that there is a 84% posterior probability of a positive relationship

between debt-to-GDP and r∗, consistent with a safe asset supply/crowding-out effect (Ball and

Mankiw, 1995).
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Table E1: Accounting for changes in r∗

Informational Contributions (bps)

Sign Probability Onset of Great Moderation End of Great Moderation Secular Stagnation

I. Productivity/Demographics 68 [2, 139] -21 [-85, 43] -43 [-116, 24]
Real consumption growth per capita + 0.62 4 [-14, 23] 3 [-10, 18] -7 [-38, 20]
TFP growth + 0.71 2 [-11, 14] 20 [-14, 56] -18 [-51, 11]
S&P 500 stock returns + 0.74 6 [-11, 23] 14 [-7, 38] -8 [-28, 12]
Real investment growth - 0.60 0 [-10, 9] -8 [-34, 17] 7 [-17, 32]
Employment growth + 0.69 8 [-20, 41] -16 [-49, 14] -8 [-42, 22]
Hours growth + 0.86 38 [1, 78] -27 [-55, 0] -10 [-30, 8]
Unemployment rate (∆) - 0.67 11 [-9, 34] -8 [-29, 10] -1 [-17, 18]

II. Safe Asset Demand 35 [-58, 129] 0 [-46, 47] -39 [-133, 53]
Macroeconomic uncertainty (∆) - 0.66 9 [-13, 33] 1 [-7, 10] -10 [-38, 15]
Excess bond premium (∆) - 0.83 0 [-13, 12] 29 [-1, 60] -31 [-67, 1]
Liquid assets growth - 0.53 -1 [-89, 86] 1 [-20, 23] 0 [-75, 77]
Current account as % of GDP (∆) + 0.88 15 [-3, 34] -34 [-65, -4] 16 [-4, 38]
Exchange rate return - 0.80 12 [-6, 33] 3 [-8, 15] -13 [-35, 7]

III. Safe Asset Supply 52 [-1, 112] -67 [-140, 1] 29 [-5, 67]
Government debt as % of GDP (∆) + 0.84 52 [-1, 112] -67 [-140, 1] 29 [-5, 67]

Changes in r∗ 139 [50, 232] -141 [-192, -90] -213 [-244, -180]

Notes : The posterior probability of each reported sign is reported. For the informational contributions, the posterior mean is reported with
67% equal-tailed credible intervals reported in square brackets.
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In terms of contributions over the subsamples considered in Figure 4, Table E1 suggests

that higher employment and hours growth helped drive the large overall contribution of pro-

ductivity/demographic factors to the rise in r∗ with the onset of the Great Moderation. The

individual variables associated with safe asset demand had somewhat offsetting effects with the

onset of the Great Moderation, while higher safe asset supply in the form of an increase in

government debt-to-GDP during the Reagan years had a clear positive contribution to r∗. The

effects of the key individual variables during the onset of the Great Moderation reversed by the

end of the Great Moderation, especially with the debt consolidation during the Clinton years,

although faster TFP growth and higher stock returns with the so-called ‘New Economy’ at the

time meant the overall drag from productivity/demographic factors was less than otherwise,

while the individual safe asset demand variables had largely offsetting effects, with a large pos-

itive effect from a lower excess bond premium and large negative effect from a current account

deficit due to large capital inflows to the United States related to high savings rates in emerging

market economies, especially after the Asian financial crisis and with high revenues earned by

oil exporters from booming oil prices (Glick, 2020). Finally, with Secular Stagnation, lower

trend growth captured by lower consumption growth, TFP growth, and weaker stock returns,

as well as weaker employment and hours growth, all contributed to the fall in r∗, as did the

key safe asset demand related variables of macroeconomic uncertainty and the excess bond

premium, although the other safe asset demand related variables mostly had offsetting effects,

as did the increase in safe asset supply with a higher debt-to-GDP ratio again.

F Estimating the model using annual data

In this appendix, we re-estimate the model using annual data as some of the possible drivers

of r∗ are only available at an annual frequency, specifically income inequality, age dependency

and global reserves-to-GDP. The final dataset starts from 1975 after transformation and also

includes all of the variables used in the baseline estimation converted to annual measures.

The r∗ estimated using annual data is notably smoother than when using quarterly data as

seen in Figure F1. However, this does not reflect the inclusion of the variables only available

at an annual frequency, as they appear to contribute only negligibly to movements in the

estimated r∗. Instead, the smoothness could reflect possible overfitting in-sample given small
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sample period of annual data and many parameters, although we only consider one lag for the

annual VECM and two lags for the MA model used for the correction.

Figure F1: Corrected BN trend for the short-term real interest rate using annual data
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Note: Posterior mean and 90% equal-tailed credible intervals (dashed lines) are reported. NBER recession dates

are shaded.

As seen in Table E2, we also find that the informational contributions are roughly similar,

but less precise than for the baseline quarterly model. In many cases, variables that were

important in the quarterly case have insignificant contributions and sometimes have higher

posterior probabilities on the wrong sign in terms of predicted theoretical relationships when

considering the annual model. Importantly, because the variables that are only available at

an annual frequency do not appear to contribute significantly, we can infer that their omission

from the baseline quarterly model does not seem to be a source of distortion of our inferences

about informational contributions for our baseline model. In any event, our correction can help

address misspecification due to omitted variables in the quarterly model.
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Table E2: Accounting for changes in r∗ based on annual data

Informational Contributions (bps)

Sign Probability Onset of Great Moderation End of Great Moderation Secular Stagnation

I. Productivity/Demographics 22 [-60, 122] -10 [-109, 83] -40 [-170, 68]
Real consumption growth per capita + 0.59 3 [-21, 25] 2 [-16, 19] -10 [-51, 29]
TFP growth + 0.61 -1 [-20, 19] 8 [-18, 38] -15 [-65, 31]
S&P 500 stock returns - 0.52 0 [-17, 18] -1 [-18, 16] 1 [-24, 27]
Real investment growth + 0.62 4 [-19, 28] 1 [-16, 20] -11 [-62, 33]
Employment growth + 0.63 14 [-25, 54] -10 [-38, 17] -12 [-53, 25]
Hours growth + 0.62 8 [-29, 52] -7 [-43, 24] -7 [-43, 23]
Unemployment rate (∆) - 0.56 5 [-22, 33] -3 [-27, 20] -4 [-32, 23]
Age Dependency (∆2) - 0.53 2 [-23, 26] 8 [-82, 99] -6 [-76, 65]
Inequality (∆) - 0.76 -8 [-30, 13] -9 [-30, 9] 15 [-11, 45]

II. Safe Asset Demand -29 [-156, 80] 22 [-45, 103] 14 [-101, 139]
Macroeconomic uncertainty (∆) + 0.67 -7 [-27, 12] -1 [-15, 13] 16 [-14, 46]
Excess bond premium (∆) - 0.63 1 [-15, 19] 5 [-13, 25] -10 [-47, 22]
Liquid assets growth - 0.57 -17 [-127, 92] 7 [-37, 55] 16 [-77, 111]
Current account as % of GDP (∆) - 0.51 -1 [-17, 16] 0 [-17, 19] 1 [-28, 28]
Exchange rate return - 0.78 12 [-14, 38] 0 [-20, 19] -7 [-31, 19]
Reserves-to-GDP (∆) + 0.80 -24 [-60, 8] 16 [-8, 44] 5 [-19, 32]

III. Safe Asset Supply 0 [-25, 29] -3 [-64, 53] 1 [-41, 47]
Government debt as % of GDP (∆) + 0.53 0 [-25, 29] -3 [-64, 53] 1 [-41, 47]

Changes in r∗ 89 [-20, 210] -195 [-109, -26] -289 [-229, -167]

Notes : The posterior probability of each reported sign is reported. For the informational contributions, the posterior mean is reported with
67% equal-tailed credible intervals reported in square brackets.
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G How did r∗ change during the COVID-19 pandemic?

In this appendix, we extend our analysis to cover the onset of the COVID-19 pandemic. In

particular, we update the dataset to 2020Q4, but we use the pre-Covid parameter estimates

to avoid possible distortions from large outliers in the data.2 The first panel of Figure G1

plots the posterior mean of the corrected BN trend for the short-term real interest rate over

the latter part of the sample period and up to the end of 2020, noting the pre-2020 estimates

of r∗ are the same as in Figure 2 given the same parameter estimates. With the onset of the

pandemic, the estimated r∗ falls sharply to about -2.5% as various indicators related to the

marginal product of capital adjusted dramatically and there was a jump up in macroeconomic

uncertainty. However, the persistence of these variables was very different than normal given

the unusual stop-start nature of economic activity with lockdowns, as well as the unprecedented

fiscal stimulus, and the estimated r∗ quickly jumped back up slightly above its pre-pandemic

level. Looking at the various quarterly variables, we find that demand for safe assets was still

a drag on r∗ by the end of 2020, contributing an estimated 90 basis point decrease over the

year, while supply of safe assets in the form of higher debt-to-GDP mostly offset this effect by

contributing an estimated 75 basis point increase over the same period. These contributions

are plotted in the second panel of Figure G1.

2Lenza and Primiceri (2022) note that excluding data from 2020 when estimating a VAR is a simple ap-
proximation to a GLS-type approach, although their main proposal is to model a rescaling of the residual
variance-covariance matrix during 2020 when constructing density forecasts during this period. Because we are
interested in point forecasts, we take the simpler approach of not including the data from 2020 in parameter
estimation, which is also consistent with the findings in Schorfheide and Song (2020) that forecasts based on
VAR parameters estimated using only data before the pandemic appear “more stable and reasonable” than
those based on updated parameter estimates.
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Figure G1: r∗ during the pandemic
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(a) Corrected BN trend including 2020

COVID-19 and Recovery: 2020Q1-2020Q4
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(b) Informational contributions in 2020

Note: In panel (a), posterior mean is reported and NBER recession dates are shaded. In panel (b), posterior

mean informational contributions are reported.
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