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1 Introduction

In recent years, interest rates have been persistently low and many studies have linked this

to an underlying decline in the long-run “equilibrium” or “natural” real rate of interest, often

referred to as r∗ (or “r-star”); see, for example, Cúrdia et al. (2015); Lubik and Matthes (2015);

Hamilton et al. (2016); Del Negro et al. (2017); Holston et al. (2017); Berger and Kempa (2019);

Lewis and Vazquez-Grande (2019); Bauer and Rudebusch (2020); Kiley (2020); Johannsen and

Mertens (2021). Notwithstanding differences regarding its formal definition, the main debate

has been as to why and how much r∗ has fallen. One prominent view, inspired by the semi-

structural model in Laubach and Williams (2003), is that the decline is primarily a supply-

side phenomenon associated with lower trend growth. A competing explanation considers a

persistent fall in interest rates due to insufficient aggregate demand, as argued by Summers

(2015). Financial market portfolio considerations related to an increase in demand for safe assets

have also been put forward by Caballero et al. (2017) and Del Negro et al. (2017). A basic

quantitative question regardless of the hypothesized source is whether r∗, which was previously

thought to be approximately 2% over long periods of time (see, e.g., Taylor, 1993), has become

negative in the past decade or so as both ex ante and ex post measures of short-term real interest

rates have been persistently below zero. The answer to this question has important implications

for gauging the stance of monetary policy, including during the COVID-19 pandemic.

We define r∗ as the common stochastic trend for any set of real interest rates that includes a

risk-free short-term rate.1 Then, to investigate why and how much r∗ has fallen, we consider a

multivariate version of the Beveridge and Nelson (1981) (BN) decomposition based on Morley

and Wong (2020). This approach allows us to consider a large set of variables that have

been hypothesized to explain changes in r∗ and to account for historical movements in r∗

based on these variables. Our model is a Bayesian VECM that assumes cointegration between

short- and long-term real interest rates. In addition to accommodating a large set of variables

via a shrinkage prior, the Bayesian approach also allows us to incorporate an “expectations

hypothesis” prior consistent with cointegration such that the short-rate is assumed to adjust

1As discussed in Lunsford and West (2019), there are many definitions of r∗. However, most theoretical
settings imply an equivalence between movements in the common long-run level of real interest rates (when the
set of interest rates includes an essentially risk-free measure) and the long-run level of any theoretically-defined
r∗. Thus, we focus on these long-run movements in order to understand persistent changes in the level of r∗

over the past few decades.
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to the long-rate, although our main results are robust to relaxing this prior.

Working with ex ante real interest rates based on U.S. data makes it viable to model our

large system of variables in a linear environment.2 However, constructed ex ante real interest

rates can be subject to measurement error given the need to proxy for inflation expectations

in the bond market, which are generally not directly observed.3 We find evidence of model

misspecification with our trend-cycle decomposition that could be due to a small amount of

measurement error that is hard to detect directly or to capture with an extended model. To

address this, we propose a robust two-step BN decomposition based on the law of iterated

expectations to correct for apparent model misspecification. Our two-step procedure is easy to

apply and leads to a smooth estimated path for r∗ without imposing smoothness a priori, as is

often done when estimating r∗ in the previous literature.4

Although we consider an “expectations hypothesis” prior, we generally take an agnostic

view in terms of whether or how r∗ is related to supply-side variables that capture a link to

productivity growth or demographics, financial variables that capture global demand for safe

assets, or government debt related to a possible crowding-out effect. Specifically, we do not

2Modeling nominal interest rates and inflation separately in a linear environment would be problematic
because nominal interest rates are subject to the nonlinear constraint of the effective or zero lower bound
(ZLB), while U.S. inflation appears to be subject to structural breaks (see, for example, Levin and Piger, 2004;
Kang et al., 2009) that, given a Fisher effect on nominal interest rates, cancel out when considering real interest
rates. Meanwhile, to the extent that the ZLB alters the behavior of the short-term real rate, estimation of a
common stochastic trend is helped by the inclusion of a long-term real rate that is less affected by the ZLB, as
argued by Del Negro et al. (2017) and Bauer and Rudebusch (2020). Notably, however, our results are robust
to allowing for a possible structural break in the term premium when considering a sample period that includes
the ZLB. Put simply, our linear VECM appears to be a much better dynamic model to capture a common
stochastic trend in real interest rates than of nominal interest rates and inflation separately. However, see
González-Astudillo and Laforte (2020) and Johannsen and Mertens (2021) for approaches that model nominal
interest rates and inflations separately and attempt to account for the nonlinearities created by the ZLB.

3Even given real bonds, there may be liquidity and covariance features that mean a ‘break-even’ rate
formed from the difference between nominal and real yields at the same maturity does not just reflect inflation
expectations. Meanwhile, we note that the ex post long-term real interest rate based on U.S. data appears to be
affected by nonstationary inflation expectation errors, likely due to the structural breaks in the inflation process
note in the previous footnote. Unlike with the ex ante real interest rates, the ex post long-term real interest
rate does not test as being cointegrated with the ex post short-term real interest rate, which itself exhibits
sizable structural breaks in volatility presumably also related to structural breaks in the volatility of inflation
expectation errors given their absence in ex ante real interest rates. Ex post real rates also have the problem
of missing observations at the end of the sample, making estimates of r∗ based on them less useful for current
analysis of the stance of monetary policy.

4See Del Negro et al. (2017) for an example of a smoothness prior being imposed to produce a smooth
estimated path of r∗. Also, see Kiley (2020) for a discussion of how the smoothness of r∗ is not well-identified
for the Laubach and Williams (2003) semi-structural model. The smoothness we find is due to being able
to capture the reduced-form serial correlation properties of real interest rates with our VECM that includes
a large amount of multivariate information and the two-step correction for potential model misspecification.
We note that, in principle, the second step correction based on the BN decomposition could be applied given
predictability in first-stage estimates of changes in trend for any trend-cycle decomposition method that assumes
the trend follows a random walk, including semi-structural models estimated using the Kalman filter.
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impose a structural link between r∗ and trend growth, as done in Laubach and Williams (2003),

but instead we test this link while including a much larger set of other potential explanatory

variables than considered in typical structural or semi-structural models (although see Fu,

2020). In principle, we could incorporate priors based on Granger causation implied by DSGE

models in the Bayesian VECM if we wanted to impose more structure when estimating r∗.

However, our agnostic priors allow us to treat posterior inferences about signs of effects as

statistical tests of theoretical predictions, while our inferences about r∗ are precise without

having to rely on potentially restrictive structural assumptions.

By considering a large set of variables that have been hypothesized to explain changes in r∗,

our analysis is similar to Lunsford and West (2019), although their analysis focused on the sign

of long-run correlations between measured real interest rates and the hypothesized variables

using a long sample of annual data from 1870 to 2016, while we focus on estimating r∗ using

quarterly data over a more recent sample period starting from the 1970s and quantifying the

contributions of hypothesized variables to historical movements in r∗ in particular.5 Because

some hypothesized variables are only available at an annual frequency, including some that

Lunsford and West (2019) identify as being important, we also consider cointegration analysis

in terms of annual variables related to income inequality, age dependency, and global reserves-

to-GDP and movements in r∗ that are not explained by our quarterly variables.

Our main empirical results can be summarized as follows: First, we find that, given

equal prior odds, the posterior probabilities suggest that all quarterly variables have their

theoretically-predicted effects on r∗ over the full sample period from 1973-2019. Second, r∗ was

generally estimated to be above 2% during the Great Moderation from 1982-2005 due in part

to faster trend growth and persistently lower levels of risk and volatility at the time. Third, r∗

appeared to fall with the Great Recession and during its aftermath due to slower trend growth

and increased global demand for safe assets, the effect of which is almost completely offset

by higher levels of government debt. Notably, the estimated r∗ took on persistently negative

values from mid 2011, falling to about -1% from mid 2015, although zero almost always lies

within the 95% credible intervals when the point estimate is negative. Supply-side variables

5Our approach also provides a complement to Rachel and Smith (2017), who applied a simple accounting
framework based on reduced-form elasticity estimates, and Rachel and Summers (2019), who combined evidence
from several structural models, in terms of accommodating a wide range of explanations for why interest rates
are low. Also see Marx et al. (2021) for a decomposition of the role of different driving forces based on a
structural model that nests various hypothesized reasons for the decline in interest rates.
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related to productivity and demographics accounted for an estimated 41 basis point drop since

2006, while variables related to safe asset demand accounted for an estimated 26 basis point

drop, but a rising government debt-to-GDP ratio accounts for an offsetting estimated 25 basis

point increase. Fourth, the cointegration analysis with annual data suggests income inequality

and age dependency do not play any definitive role in driving r∗, but global reserves-to-GDP

ratio appears to be cointegrated with the residual component of r∗ that is not explained by

quarterly variables and, consistent with the global savings glut hypothesis of Bernanke (2005),

is estimated to contribute about 30 basis points to the decline in r∗ since the late 1990s.

We highlight that our estimated r∗ appears reliable in the Orphanides and van Norden

(2002) sense and can be used to help gauge the stance of monetary policy, including during the

COVID-19 pandemic. Extending our estimation of r∗ to 2020, we find a sharp decrease in the

estimated r∗ of a similar scale to the decline in the ex ante short-term real interest rate with

the onset of the crisis, but an immediate recovery back to a similar level around -1% as before

the crisis, which is, notably, back above the ex ante short-term real interest rate. The behavior

of supply-side variables accounted for the quick reversal, while higher government debt again

offset increased demand for safe assets, as it did following the Great Recession. These estimates

imply that monetary policy has been at least somewhat accommodative during the pandemic

despite the ZLB, but not nearly as much as it would have been if r∗ were closer to its historical

levels of 2% instead of -1%.

The rest of the paper is organized as follows. Section 2 presents our robust two-step BN

decomposition and shows how it can correct for model misspecification such as could possibly

be due to even a small amount of measurement error. Section 3 describes the data and the

VECM estimation. Section 4 reports our empirical results, including an extension out of sample

to consider the behavior of r∗ during the COVID-19 pandemic. Section 5 concludes.

2 A robust two-step Beveridge-Nelson trend-cycle decomposition

that addresses model misspecification

As described in this section, we develop a robust two-step version of the Beveridge and Nelson

(1981) trend-cycle decomposition that can be applied when there appears to be model misspecification
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due to measurement error or possibly other sources such as omitted variables. The BN

decomposition has proven a useful approach to separate trend from cycle in a wide variety

of settings (see, for example, Evans and Reichlin, 1994; Morley and Piger, 2012; Kamber

et al., 2018; Kamber and Wong, 2020). Our proposed two-step procedure to address model

misspecification is the first to our knowledge for the BN decomposition.

2.1 General framework for the BN decomposition

The key assumption motivating our use of the BN decomposition in the first place is that the

natural rate of interest r∗t corresponds to the driftless random walk trend component of a risk-

free short-term real interest rate rt, with cyclical deviations from trend having an unconditional

mean of zero (i.e., E [rct ] = 0, where rct ≡ rt−r∗t ).
6 Under this assumption, the BN decomposition

calculates an estimate of trend as follows:

E [r∗t |Ωt] = lim
h→∞

E [rt+h|Ωt] , (1)

where Ωt = {xt, . . . ,x1; f({xt}+∞
−∞)} includes all relevant information at time t for calculating

the long-horizon expectation given an assumed data generating process f({xt}+∞
−∞), with xt

denoting an n × 1 vector that includes the target variable rt, which is assumed to be in the

first row for convenience. The logic of the BN decomposition is that, because the long-horizon

conditional expectation of the cyclical deviation from trend is zero, the long-horizon conditional

expectation of the overall time series will only reflect an expectation of its trend component.

Therefore, in principle, one only needs to specify a forecasting model for a time series to estimate

its trend based on the implied long-horizon conditional expectation.

Following Morley and Wong (2020), we further assume that conditional expectations for

the first difference of the target variable of interest, in our case ∆rt, can be fully captured

by a stationary linear forecasting model of ∆xt ∼ I(0) with the following companion-form

6In a more structural setting, there may be a model-implied short-run natural rate of interest that is itself
subject to transitory dynamics. However, this short-run rate should converge to a long-run level that is robust
to structural assumptions used to identify transitory movements in the natural rate of interest as distinct from
other transitory movements in rt. This point is related to a more general one motivating the use of the BN
decomposition highlighted by Rotemberg and Woodford (1996) and Kiley (2013), amongst others. We note
that the random walk assumption is standard in the empirical literature on r∗t including Laubach and Williams
(2003) and Del Negro et al. (2017).
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representation:

∆Xt = F∆Xt−1 +Het, (2)

where ∆Xt is a k × 1 vector of stationary demeaned variables with ∆xt − µ in the first n

rows, F is a k × k companion matrix with eigenvalues strictly less than one in modulus, et

is a n × 1 vector of serially uncorrelated forecast errors for the variables in ∆xt, and H is

a k × n matrix mapping forecast errors to the companion form with n ≤ k. We note that

this companion form can capture many forecasting models, including multivariate models such

as VARs and VECMs (see, for example, Morley, 2002). We also note that such forecasting

models provide reduced-form representations of many dynamic structural models, with the BN

decomposition producing a robust estimate of the random walk trend for a time series across

different structural identifications that lead to the same reduced-form representation (see Kiley,

2013).

Following Morley (2002) and Morley and Wong (2020), the BN estimates of trend and cycle

for rt given the forecasting model for ∆xt can be calculated as

E [r∗t |Ωt] = rt + s′k,1F(I− F)−1∆Xt, (3)

E [rct |Ωt] = −s′k,1F(I− F)−1∆Xt, (4)

where we let sk,j denote a k × 1 selection vector that contains zeros in all rows except for a 1

in the jth row. Note that, given the forecasting model in (2), the relevant information set can

be simplified to Ωt = {rt,∆Xt;F}.

A key feature of the BN estimate of trend is that changes in it should inherit the same lack

of serial correlation as the changes in true random walk trend. In particular, following Morley

and Wong (2020), the change in the BN estimate of trend is

E [r∗t |Ωt]− E
[
r∗t−1

∣∣Ωt−1] = s′k,1(I− F)−1Het =
n∑

i=1

ωieit, (5)

where we let ωi denote a weight that is equal to the ith element of the 1 × n row vector

ω ≡ s′k,1(I−F)−1H and the resulting linear combination of serially-uncorrelated forecast errors

in (5) will itself be serially uncorrelated. However, if, in practice, changes in a BN estimate
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of trend display nontrivial serial correlation, we note this could reflect model misspecification

due to the presence of measurement error in some variables in the model or other sources such

as omitted variables. Next, we consider what happens if there is such model misspecification,

focusing on the case of measurement error, and propose a two-step procedure to address it.

2.2 Measurement error and a robust two-step procedure

To consider the effects of measurement error, let x̌t = xt + ut denote a vector of observed

variables in their accumulated levels with stationary and unconditionally mean-zero measurement

error ut ∼ I(0) and E [ut] = 0.7 For example, it is quite likely that our measure of the real

interest rate contains some measurement error as we have to proxy for inflation expectations

when constructing an ex ante real interest rate. Thus, in practice, we only observe řt = rt+u1t.

As we will show, such measurement error could imply serial correlation in the changes in the

BN estimate of trend for řt due to model misspecification. However, assuming this implied

serial correlation can be captured by an ARMA model, we also show how to correct for it.

To see how we propose correcting for the effects of measurement error, first consider the

misspecified forecasting model applied to the observed data with measurement error:

∆X̌t = F∆X̌t−1 +Hět, (6)

where ∆X̌t = ∆Xt + H∆ut and ět = et + ∆ut − S′FH∆ut−1 given the k × n selection

matrix S = (s′k,1, s
′
k,2, ..., s

′
k,n)

′. Note that the ∆ut − S′FH∆ut−1 term means elements of ět

will be serially correlated even if the measurement error ut is serially uncorrelated. As a result,

estimates of F based on the false assumption that ět is serially uncorrelated will generally not

converge to the true value F but instead to the population projection of ∆X̌t on ∆X̌t−1, which

we denote as P.8

7It is worth noting that the BN decomposition approach even allows the measurement error to be correlated
with the underlying structural shocks. The key distinction that defines ut as measurement error and distinct
from forecast errors reflecting structural shocks is that error-adjusted variables (i.e., xt = x̌t − ut) are block
exogenous with respect to the measurement error. In addition to the standard classical errors-in-variables ‘noise’
case, this block exogeneity could correspond to the ‘news’ case in Dungey et al. (2015) where the measurement
error is positively correlated with future changes in observed variables instead of negatively correlated. In
both cases, the measurement error, if it could be observed, would Granger cause future changes in the actual
observed variables, but not in the error-adjusted variables. Meanwhile, Anderson et al. (2019) show that a
high signal-to-noise ratio in the errors-in-variables setting leads to only small distortions in Granger causality
inferences for the observed variables compared to the error-adjusted variables.

8The difference between the population projection P of ∆X̌t on its lag and F is analogous to how
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Next, note the following decomposition based on identities for the real interest rate measured

with error:

řt = rt + u1t,

= E [r∗t |Ωt] + E [rct |Ωt] + u1t,

= E [r∗t |Ωt] + E [rct |Ωt] + řct − řct + u1t,

where řct ≡ −s′k,1P(I − P)−1∆X̌t is the first-stage BN estimate of the cycle for řt given the

misspecified forecasting model for ∆x̌t. Then, we can construct a “BN-cycle-adjusted” measure

of the real interest rate:

r̃t ≡ řt − řct = E [r∗t |Ωt] + E [rct |Ωt]− řct + u1t. (7)

Note that both BN cycle estimates in (7) (i.e., hypothetical E [rct |Ωt] if data were observed

without measurement error and actual řct given observed data with measurement error) will be

stationary and mean zero by construction and the measurement error is I(0) and mean zero by

assumption. Thus, the key point is that the random walk component of BN-cycle-adjusted r̃t

is the BN estimate of trend E [r∗t |Ωt]. As a result, we can apply a BN decomposition to r̃t as a

second step following the first-stage estimation of řct from řt in order to estimate the trend for

rt:

E
[
E [r∗t |Ωt] |Ω̌t

]
= E

[
r∗t |Ω̌t

]
= lim

h→∞
E
[
r̃t+h|Ω̌t

]
, (8)

where Ω̌t = {x̌t, . . . , x̌1;P,µ, ϕ(L), θ(L)}, with ϕ(L) and θ(L) corresponding to lag polynomials

from an ARMA forecasting model for ∆r̃t.
9 As can be seen from the law of iterated expectations,

the BN estimate of trend for r̃t is equivalent to a BN estimate of trend for rt even if we do not

the population projection for a variable following an ARMA(1,1) process on its lag (i.e., the first-order
autocorrelation of the process) depends on both the autoregressive and moving-average parameters and will be
different from the autoregressive parameter given a non-zero value of the moving-average parameter. Specifically,
the first-order autocorrelation for an AR(1) process is simply the autoregressive parameter ϕ, while for an
ARMA(1,1) process, it is ϕ+ θ(1− ϕ2)/(1 + 2ϕθ+ θ2), where θ is the moving-average parameter on the lagged
shock to the ARMA(1,1) process.

9Alternatively, one could consider an unobserved components (UC) model of r̃t, but we note that there could
be correlation between permanent and transitory movements in r̃t, so a BN decomposition will be appropriate
even if this correlation is not identified for a UC model. Meanwhile, the BN decomposition can always be
applied as a second step correction even if the first-stage estimation is based on a UC model, including the
semi-structural model of Laubach and Williams (2003), or any alternative trend-cycle decomposition method
that assumes the trend follows a random walk.
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directly observe rt due to measurement error.

We note that the presence of measurement error will generally imply a complicated ARMA

structure for the serial correlation in ∆r̃t. For example, consider a VAR(p) structure for ∆xt

and assume that at least some of the variables including the real interest rate are measured

with MA(q) error – i.e., u1t ∼ MA(q) and ujt ∼ MA(≤ q) for j > 1. Then, ∆x̌t will have a

VARMA(p, q + 2) structure and, following Corollary 11.1.1 in Lütkepohl (2005), we can solve

for ARMA orders of the cyclical terms in r̃t:

E [rct |Ωt] = −s′k,1F(I− F)−1∆Xt ∼ ARMA(≤ pn,≤ pn− 1), (9)

řct = −s′k,1P(I−P)−1∆X̌t ∼ ARMA(≤ pn,≤ pn+ q + 1), (10)

where the orders follow from an ability to re-write the terms in equations (9) and (10) in terms

of the VAR(p) as s′n,1ct and s′n,1čt, with ct ≡ −ΓF,1(∆xt −µ)− . . .−ΓF,p(∆xt−p+1 −µ), čt ≡

−Γ̌P,1∆(x̌t−µ)− . . .− Γ̌P,p(∆x̌t−p+1−µ), and ΓF,j and ΓP,j denoting the jth set of n columns

of H′F(I − F)−1 and H′P(I − P)−1, respectively. In particular, given ∆xt ∼ VAR(p) and

∆x̌t ∼ VARMA(p, q+2), ct will be VARMA(p, p−1) and čt will be VARMA(p, p+q+1), with

the ARMA orders for s′n,1ct and s′n,1čt given by Corollary 11.1.1 in Lütkepohl (2005). Although

the ARMA orders provide upper bounds given that roots for the implied autoregressive and

moving-average polynomials may cancel for some paramaterizations, the point is that these are

highly complicated processes and imply the following even more complicated process for ∆r̃t

when combined with the other terms in r̃t and first differences are taken:

∆r̃t ∼ ARMA(≤ 2pn,≤ 2pn+ q + 2). (11)

In practice, we tend not to know the process for measurement error and it may be hard to

detect it using tests for serial correlation in specific elements of the projection error ět if the

measurement error is relatively small compared to the forecast errors in et. To see the issue,

consider a case where the measurement error is small enough (i.e., var(∆ut) << var(∆xt))

9



such that P ≈ F. In this case, we get the following expression for ∆r̃t:

∆r̃t ≈ s′k,1(I− F)−1Het + s′k,1F(I− F)−1H∆ut − s′k,1F(I− F)−1H∆ut−1 +∆u1t

=
n∑

i=1

ωieit +
n∑

i=1

γi(∆uit −∆uit−1) + ∆u1t, (12)

where we let γi denote a weight that is equal to the ith of the 1× n row vector γ ≡ s′k,1F(I−

F)−1H. This expression suggests that ∆r̃t will have an MA(q + 2) structure given MA(q)

measurement error and the effects of measurement error may be easier to detect than in ∆řt =

∆rt + ∆u1t given a very different signal-to-noise ratio.10 In particular, if r∗t is smoother than

rt (i.e., var(∆r∗t ) < var(∆rt)), the equivalence between the variance of trend shocks and the

variance of changes in the BN trend (see Morley, 2011; Kamber et al., 2018) implies that the

signal in ∆r̃t (i.e.,
∑n

i=1 ωieit) is weaker than the signal in ∆řt (i.e., ∆rt). Furthermore, the∑n
i=1 γi(∆uit−∆uit−1) term in (12) suggests additional noise related to the measurement error,

strictly so given independent measurement error across variables and a positive relationship

between the forecast error for rt and its long-horizon forecast such that γ1 > 0. Thus, the

lower signal-to-noise ratio for ∆r̃t than ∆řt means that serial correlation could be considerably

easier to detect in ∆r̃t than in the projection error ě1t, which is what we find in our empirical

analysis.

To implement the second step of our proposed procedure using an ARMA forecasting model

for ∆r̃t, we determine the AR and MA orders by empirical examination of the “BN-cycle-

adjusted” data implied by the first-stage estimation of řct . The model is given by

ϕ(L)∆r̃t = θ(L)ϵt, (13)

where ϵt is a serially-uncorrelated forecast error. Then, assuming direct observation of the ϵt

forecast errors, the second-stage BN estimate of the change in trend is

∆r̂∗t ≡
θ(1)

ϕ(1)
ϵt, (14)

10In our application, we find evidence for MA dynamics in ∆r̃t instead of a more general ARMA structure
such as implied in (11). However, we note that a lack of evidence for AR dynamics does not, on its own, mean
the measurement error is particularly small, as there could be near cancellation of some AR and MA roots for
some paramaterizations and measurement error processes.
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where assuming the deviations from trend average to zero over the sample, we can estimate the

level of r∗t as

r̂∗t = r̂∗0 +
t∑

τ=1

∆r̂∗τ ,where r̂∗0 =
1

T

T∑
t=1

r̃t −
1

T

T∑
t=1

t∑
τ=1

∆r̂∗τ . (15)

We note that level of r∗t can also be estimated by casting the ARMA model into state-space

form and following the calculation for the BN estimate of trend in Morley (2002) using the

Kalman filter, which would also address the lack of direct observation of ϵt if we were unwilling

to make an assumption about initial values when conducting maximum likelihood estimation.

In practice, the two approaches lead to very similar estimates.

The key point is that as long as we can approximate the serial correlation in ∆r̃t with a

simple forecasting model, we can refine the estimate of r∗t compared the basic BN decomposition

for řt or, for that matter, a first-stage estimate from any trend-cycle decomposition method

that assumes the trend follows a random walk given the reliance only on the law of iterated

expectations for our proposed two-step approach.11 Meanwhile, if there were actually very

little measurement error in the first place, then ∆r̃t should be close to serially uncorrelated

and the second-stage BN estimate of trend would be quite similar to the first-stage estimate.12

Conversely, if ∆r̂∗t continues to display serial correlation given a misspecified ARMA model

in the second step, then another iteration of our proposed procedure could be conducted or

the original forecasting model for ∆r̃t could be improved until the estimated forecast errors

appear serially uncorrelated. Given the calculation in (14), it is straightforward to see that

the estimated change in r∗t will be serially uncorrelated if the forecast errors for the ARMA

model are serially uncorrelated. It is also worth noting that it would be more feasible to

consider time-varying parameter versions of univariate ARMA models for ∆r̃t than for high-

dimensional multivariate models used in the first-stage estimation if there is any evidence of

structural change in the ARMA parameters for ∆r̃t.
13

11There remains an open question about what is the best estimate of the cyclical component of rt. If we use
the second-stage estimate r̂ct ≡ řt − r̂∗t , it will clearly include some of the measurement error in řt in addition
to the true cyclical component, while the first-stage BN cycle řct may be closer to E [rct |Ωt]. To the extent that
the measurement error appears to be small given an apparent lack of serial correlation in the projection error
ě1t, we suggest using the second-stage estimate r̂ct .

12For example, trend growth based on the multivariate BN decomposition used to estimate the output gap in
Morley and Wong (2020) with log real GDP as the target variable in a large Bayesian VAR displays very little
serial correlation. Therefore, applying the two-step procedure would have no material impact on the estimates
of trend and cycle in that case.

13In our application, we find that ϵ̂t from our MA(8) model for ∆r̃t appear to be serially uncorrelated in both
the first and second halves of the sample period, suggesting that a stable MA(8) model is sufficient to capture
serial correlation in ∆r̃t.
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2.3 Misspecification due to omitted variables or dynamics

We note that our two-step approach can also handle model misspecification due to omitted

variables or dynamics. In particular, if only a subset of variables in xt is included in x̌t, it

will imply serial correlation in ět even if there is no measurement error (i.e., ut = 0). It is

also possible that the underlying data generating process for xt simply involves moving-average

dynamics such that ět inherits these even if there is no measurement error.

Consider, for example, a VAR(p) structure for ∆xt, but x̌t only includes the first m < n

variables in x̌t. Again, assume no measurement error. Then following Corollary 11.1.2 in

Lütkepohl (2005), ∆x̌t will have a VARMA(≤ p(m − n + 1),≤ p(m − n)) structure and the

cyclical terms in (7) will have complicated ARMA dynamics, although there will be a slight

simplification compared to the measurement error case given that u1t = 0. Adding more lags to

the VAR might help address omitted MA dynamics and leave little detectable serial correlation

in the estimated projection errors, similar to the case of a small amount of measurement error.

The point is that ∆r̃t could still exhibit serial correlation given model misspecification and

the result in (7) would still hold. Thus, our two-step procedure is more broadly robust to

model misspecification than just the case of misspecification due to measurement error. In our

application, the consideration of a large set of variables should help assuage concerns about

omitted variables, but it is certainly possible that the apparent serial correlation in the changes

in the first-stage estimate of the BN trend for rt is due to misspecification of model dynamics

as well as, or even instead of, measurement error.

2.4 Comparison with other approaches

In general, the two-step approach will not produce as precise of an estimate of r∗t as if we knew

Ωt (i.e., we observed the data without measurement error) or even as an estimate based on

a correctly-specified multivariate model for ∆x̌t that captures the serial correlation in ět, at

least given population parameters. For example, if the model for ∆xt is a VAR, the correctly-

specified forecasting model for the data measured with error ∆x̌t would be a VARMA for a

range of assumptions about stationary processes for the measurement error, including even if

it is serially uncorrelated. However, our proposed two-step approach is feasible given we do

not actually observe Ωt and is much more practicable to implement than consideration of a
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VARMA given challenges in specifying and estimating parameters for such models. Meanwhile,

by incorporating multivariate information in the first step of our proposed approach, it should

be more precise than the BN decomposition based on even the correctly-specified univariate

model ∆řt (or, equivalently, ∆rt under the assumption of no measurement error in the target

variable). In particular, our two-step approach can be thought of as partitioning the parameter

space into two, using multivariate information {X̌t, X̌t−1} to estimate the projection parameters

P and univariate information {r̃t, r̃t−1 . . . , r̃1} for a constructed series that more strongly reflects

measurement error than ∆řt to estimate univariate ARMA parameters for ∆r̃t implied by the

multivariate VARMA process.14 The tradeoff is less information than the full multivariate

approach (but still more than a full univariate approach) in return for far fewer parameters to

estimate than for the full multivariate model.

For purposes of comparison, we conduct a Monte Carlo experiment to consider different

approaches to estimating the BN trend in the presence of measurement error. We focus on

the case where the measurement error is small in the sense that the projection errors for the

misspecified model will not display much serial correlation on their own.

For simplicity, we consider a data generating process (DGP) in which there are implicitly

the same number as structural shocks as observable variables. In this setting, we get the “BN-

as-definition” scenario in Morley (2011) where r∗t = E [r∗t |Ωt] and rct = E [rct |Ωt]. Specifically,

consider a bivariate VAR(1) for the underlying data process ∆xt with µ = 0. In this case,

∆Xt = ∆xt, with the following simplified form:

∆rt

∆x2t


︸ ︷︷ ︸

∆Xt

=

0 −0.05

0 0.95


︸ ︷︷ ︸

F

∆rt−1

∆x2t−1


︸ ︷︷ ︸

∆Xt−1

+

e1t

e2t


︸ ︷︷ ︸

et

, et ∼ N


0

0

 ,

0.1125 0.1

0.1 0.1


︸ ︷︷ ︸

Σ

 .

Then, rt = r∗t + rct , where r∗t = r∗0 +
∑t

τ=1 ∆r∗τ , with r∗0 = 0 and ∆r∗t = s′2,1(I − F)−1et,

and rct = −s′2,1F(I − F)−1∆Xt. For the observed data x̌t = xt + ut, where řt = rt + u1t

and x̌2t = x2t + u2t, we assume the addition of serially-uncorrelated measurement – i.e., ut ∼
14In a recent paper, Dufour and Pelletier (2021) develop some practical methods for specifying and estimating

VARMA models, including considering diagonal MA equations. Estimation of the VAR and MA parameters
is split into parts, not unlike our two-step approach, although we focus on univariate ARMA estimation for
∆r̃t instead of MA estimation for univariate projection errors ěit, i = 1, . . . , n, from long autoregressions. See
Dufour and Pelletier (2021) for full details of how to estimate VARMA models with diagonal MA equations.
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N (0, 0.05×Σ). Again following Corollary 11.1.1 in Lütkepohl (2005), we note that this DGP

implies the following processes: ∆rt ∼ ARMA(2, 1), ∆x̌t ∼ VARMA(1, 2), ∆řt ∼ ARMA(2, 3),

and ∆r̃t ∼ ARMA(4, 6). However, given the small degree of measurement error and P ≈ F,

we get ∆r̃t ≈ MA(2).

To evaluate the accuracy of different estimates of r∗t , we calculate the root-mean-squared-

error (RMSE) for r̂∗t based on the following model or models given a sample size of T = 200:

1. VAR(1) for ∆xt, where r̂∗t = E[r∗t |rt,∆Xt; F̂]. This scenario corresponds to the case

where the underlying data without measurement error is observed and the RMSE only

reflects estimation uncertainty about the n2 = 4 parameters in F. Parameter estimation

is conducted via OLS and the BN trend is calculated based on (3).

2. VARMA(1,2) for ∆x̌t, where r̂
∗
t = E[r∗t |x̌t, . . . , x̌1; F̂, Θ̂], with Θ corresponding to the

MA parameters in the VARMA model. This scenario allows us to consider the effects

of measurement error and additional parameters to estimate, but assuming the correct

model specification for ∆x̌t. The RMSE reflects noisy information about {xt, . . . ,x1} and

estimation uncertainty about the n2 = 4 parameters in F and the 2n2 = 8 parameters

in Θ. The VARMA model is cast into state-space form and parameter estimation is

conducted via exact MLE based on the Kalman filter and the prediction error decomposition

of the likelihood. The BN trend is calculated following Morley (2002).

3. True VARMA(1,2) for ∆x̌t, where r̂
∗
t = E[r∗t |x̌t, . . . , x̌1;F,Θ]. This scenario considers

the effects of information loss from only observing the data with measurement error, but

assumes the correct model specification for ∆x̌t and the true parameter values for the

model. Note that the Θ parameters depend on F and r̂∗t can be calculated based on their

implicit values by casting the model in (6) into state-space form and using the Kalman

filter following Morley (2002).

4. VAR(1) for ∆x̌t, where r̂∗t = E[r∗t |∆X̌t;F = P̂,Θ = 0]. This scenario considers what

happens if first-stage estimates are used despite model misspecification. That is, P̂ is

incorrectly used to estimate F and ∆x̌t is incorrectly assumed to have no measurement

error (i.e., ∆xt = ∆x̌t and Θ = 0). As this scenario is completely analogous to the first

one, just with the incorrect assumptions, parameter estimation is conducted via OLS and
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the BN trend is calculated based on (3).

5. VAR(1) for ∆x̌t + MA(2) for ∆r̃t, where r̂∗t = E[r∗t |x̌t, . . . , x̌1; P̂, θ̂1, θ̂2]. This

scenario considers our proposed two-step procedure using the parsimonious MA(2) model

to capture serial correlation in ∆r̃t. P̂ is estimated via OLS and the MA parameters are

estimated via conditional MLE.

6. VAR(1) for ∆x̌t + ARMA(4,6) for ∆r̃t, where r̂
∗
t = E[r∗t |x̌t, . . . , x̌1; P̂, ϕ̂1, . . . , ϕ̂4, θ̂1,

. . . , θ̂6]. This scenario considers our proposed two-step procedure using the full true

ARMA(4,6) model specification to capture serial correlation in ∆r̃t. P̂ is estimated via

OLS and the ARMA parameters are estimated via exact MLE using the Kalman filter.

7. ARMA(2,1) for ∆rt, where r̂
∗
t = E[r∗t |rt, rt−1, . . . , r1; ϕ̂1, ϕ̂2, θ̂]. This scenario corresponds

to the case where only the target variable is observed, but without measurement error.

The RMSE reflects the loss of multivariate information and estimation uncertainty about

the ARMA(2,1) parameters. The ARMAmodel is cast into state-space form and parameter

estimation is conducted via exact MLE based on the Kalman filter and the prediction

error decomposition of the likelihood. The BN trend is calculated following Morley (2002).

8. ARMA(2,3) for ∆řt, where r̂∗t = E[r∗t |řt, řt−1, . . . , ř1; ϕ̂1, ϕ̂2, θ̂1, θ̂2, θ̂3]. This scenario

consider the effects of measurement error and additional parameters, but assumes the

correct univariate model specification for ∆řt. The RMSE reflects the effects of measurement

error and estimation uncertainty, in addition to the loss of multivariate information. The

ARMA model is cast into state-space form and parameter estimation is conducted via

exact MLE based on the Kalman filter and the prediction error decomposition of the

likelihood. The BN trend is calculated following Morley (2002).

The results for our Monte Carlo experiment are reported in Table 1 and illuminate the

roles of parameter uncertainty, measurement error, model specification, and univariate versus

multivariate information in determining the precision of trend estimates. We note that the scale

of the reported RMSEs can be related to the fact that, in the absence of measurement error,

the error in estimating trend is the same size as the error in estimating the cycle, while the

implied standard deviation of the cycle is 1.03 for the DGP. So the RMSEs are approximately
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Table 1: Accuracy of r̂∗t in Monte Carlo experiment

Model(s) # of parameters to estimate RMSE

VAR(1) for ∆xt 4 0.18
VARMA(1,2) for ∆x̌t 12 0.33
True VARMA(1,2) for ∆x̌t 0 0.05
VAR(1) for ∆x̌t 4 0.37
VAR(1) for ∆x̌t + MA(2) for ∆r̃t 6 0.33
VAR(1) for ∆x̌t + ARMA(4,6) for ∆r̃t 14 0.37
ARMA(2,1) for ∆rt 3 0.94
ARMA(2,3) for ∆řt 5 0.97

Notes: Results are for a Monte Carlo experiment based on a bivariate VAR(1) DGP for ∆xt with serially

uncorrelated measurement error in ∆x̌t where the variance-covariance for ut is equal to 0.05 times the

conditional variance-covariance of ∆xt. The RMSE for an estimate of r̂∗t based on a given model(s) is relative

to r∗t based on the true VAR(1) for ∆xt. Given the error r̂∗t − r∗t in estimating trend is equivalent (but opposite

sign) to the error r̂ct − rct in estimating the cycle in the absence of measurement error, the RMSE can naturally

be compared in scale to the implied standard deviation of the cycle, which is 1.03. The sample size is T = 200

and the number of Monte Carlo simulations is 100.

equal to percentages of the standard deviation of the cyclical component of the simulated real

interest rate.

First, even given the correct model and no measurement error (i.e., VAR(1) for ∆xt),

parameter estimation introduces a nontrivial amount of error in the estimates of r∗t due to

the sample size and the persistence in the DGP leading to bias in OLS estimates of VAR

parameters (see, for example, Kilian, 1998). Introducing measurement error, but assuming the

correct model (i.e., VARMA(1,2) for ∆x̌t), almost doubles the error in estimating r∗t due the

noisier information given the measurement error and the increase in parameter uncertainty

given 12 parameters instead of 4. However, most of the increase in RMSE seems to be due to

parameter uncertainty as the RMSE given the true parameter values is only 0.05 compared to

0.33 for the estimated VARMA model, suggesting that noisier information has a smaller effect

than parameter uncertainty, reflecting the assumption of relatively small measurement error.

Second, model misspecification has a larger effect on the RMSE than parameter uncertainty

given that the RMSE for the misspecified model (i.e., VAR(1) for ∆x̌t) is larger than for the

correctly-specified VARMA model with more parameters. The proposed two-step procedure

with the parsimonious second-stage model (i.e., VAR(1) for ∆x̌t + MA(2) for ∆r̃t) offsets the

effects of misspecification and reduces the RMSE to the same level as for the more highly-

parameterized VARMA model.15 This reduction compared to the misspecified model occurs

15We note that the relatively good performance of the VARMA model is quite specific to this bivariate DGP.
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even though P ≈ F given a small amount of measurement error. Meanwhile, if the full ARMA

model is considered in the second stage (i.e., VAR(1) for ∆x̌t + ARMA(4,6) for ∆r̃t), the

RMSE is higher than with the parsimonious second-stage model and is the same as for the

misspecified VAR model as a result of the parameter proliferation to even more parameters

than in the true VARMA model in this case. However, a near cancellation of roots for the true

ARMA model given relatively small measurement error means that a more parsimonious MA

model would likely be chosen in practice.

Third, the results are considerably worse for the univariate estimates, even when there is

no measurement error and the true ARMA is tightly parameterized (i.e., ARMA(2,1) for ∆rt).

Adding in measurement error and additional ARMA parameters (i.e., ARMA(2,3) for ∆řt)

slightly worsens the RMSE from 0.94 to 0.97, but the fact that this is essentially three times

worse than the RMSE of 0.33 for the two-step procedure with the parsimonious second-stage

model, which also involves measurement error and has an additional parameter, makes it clear

just how crucial incorporating multivariate information is for producing a relatively accurate

estimate of r∗t .

2.5 Informational accounting given the two-step procedure

One issue with our proposed two-step approach that needs to be addressed is how to conduct

an informational accounting (or a more structural variance decomposition given identification

assumptions) of changes in trend along the lines presented in Morley and Wong (2020) for

the multivariate BN decomposition, but allowing for model misspecification. The challenge is

that the second step of our proposed procedure produces estimated changes in trend that are

based on the univariate forecast error for ∆r̃t rather than underlying forecast errors for different

variables, as in (5). However, we note that, given the invertible representation for θ(L), we

can solve for the forecast error from the ARMA model for ∆r̃t in terms of current and past

projection errors ět from the multivariate forecasting model for ∆X̌t:

ϵt = θ(L)−1ϕ(L)∆r̃t = θ(L)−1ϕ(L)s′k,1
(
(I−P)−1Hět + (F−P)(I−P)−1∆X̌t−1

)
, (16)

When considering n > 2, the number of VARMA(p,2) parameters proliferates (i.e., the number of parameters
to estimate is n2(p+2)), with the RMSE increasing substantially with 27 parameters for a VARMA(1,2) given
n = 3 and even given a much larger sample size of T = 2000, while the RMSE for the parsimonious two-step
approach with 11 parameters to estimate remains relatively small and better than for the misspecified VAR
model with 9 parameters.
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Then the informational contributions of the current projection errors from the multivariate

model to ∆r̂∗t are given by

∆r̂∗it ≡
θ(1)

ϕ(1)
ω̌iěit, (17)

where the ω̌i weights are the elements of the 1×n row vector ω̌ ≡ s′k,1(I−P)−1H and, assuming

each individual AR and MA coefficient is relatively small, we get

n∑
i=1

∆r̂∗it ≈ ∆r̂∗t . (18)

That is, the informational contributions of the projection errors for each variable in the multivariate

model to the two-step estimate ∆r̂∗t are approximately proportional to those for the first-stage

estimate of the BN trend based on the possibly misspecified multivariate forecasting model

for ∆x̌t, with the factor of proportionality equal to the long-run multiplier θ(1)/ϕ(1) for the

ARMA model. In practice, we find that the approximation in (18) is quite accurate.

3 Data and VECM estimation

We consider both short- and long-term interest rates in our analysis because we are interested

in a trend that is common across maturities and because the long-term interest rate can provide

information about that trend even when the short-term nominal rate is constrained by the ZLB,

although it should be emphasized that we consider real, not nominal, interest rates. The short

(long) ex ante real interest rate is constructed as the 3-month (10-year) U.S. Treasury nominal

yield minus a short (long) measure of inflation expectations. For inflation, we consider the year-

on-year growth rate of the core personal consumption expenditure (PCE) price deflator. We

then use a 4-quarter (40-quarter) rolling average of past inflation as a proxy for short (long)

inflation expectations in our baseline model. In robustness analysis, we consider alternative

measures of inflation expectations, including a 4-quarter-ahead forecast based on an AR(3)

model following Laubach and Williams (2003), a 4-quarter-ahead SPF forecast of GDP deflator

inflation, and a 10-year-ahead SPF forecast of PCE deflator inflation, as well as 1-month and

10-year real interest rates constructed by the Cleveland Fed using their model-based measures

of expected inflation.

The choice of other variables to consider in our analysis is motivated by the various potential
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‘correlates’ of real interest rates outlined in Lunsford andWest (2019), noting that a multivariate

BN decomposition only requires variables that have informational content in forecasting real

interest rates, not necessarily causal effects. Although the variables considered in Lunsford

and West (2019) are annual and trace back to the 1890s, we primarily focus on those that are

available at a quarterly frequency starting at least from the 1970s. The variables can be placed

into two broad categories. The first category corresponds to supply-side productivity/demographic

type factors. The second category corresponds to safe assets and the global savings glut

explanation for changes in real interest rates.

Productivity/demographics

Motivated by an intertemporal IS/Euler-type equation, such as in Lunsford and West (2019), we

consider real consumption growth per capita. Related, we also consider TFP growth (Fernald,

2015) and S&P 500 stock returns on the basis that they might be additionally informative

about expected trend growth for the economy, which Laubach and Williams (2003) highlight

as the key positive determinant of r∗. By contrast, Eichengreen (2015) stresses the importance

of investment-specific technological change and the subsequent decline in the price of capital

goods in driving down real interest rates. Thus, we also consider real investment growth as a

proxy for investment-specific technological change and expect it to have a negative relationship

with r∗, at least when controlling for consumption growth and TFP growth.

Various labor-market variables reflect demographic factors and are hypothesized to influence

r∗ through an effect on the marginal product of capital. For example, Baker et al. (2005) note

that in certain overlapping-generations models, labor-force growth is positively related to the

real interest rate given that higher labor-force participation would lead, all else equal, to a

lower level of capital per worker. Thus, we also consider employment growth, hours growth (to

capture the intensive margin), and the change in the unemployment rate as additional possible

supply-side variables, although clearly decreases in employment and hours and increases in the

unemployment rate could be also be related to a decline in r∗ via insufficient demand, as argued

by Summers (2015). The unemployment rate also serves as a potential control for economic

slack that could distort measures of trend growth and generate short-run deviations in the real

interest rate from r∗.
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Possible heterogeneity in marginal propensities to consume motivates our consideration of

income inequality and age dependency. Dynan et al. (2004) find that higher income families

have lower marginal propensities to consume, suggesting that an increase in inequality will shift

the savings schedule out and lower r∗. Gagnon et al. (2021), on the other hand, suggest that an

increase in the dependency (older-to-working) ratio reduces aggregate savings and raises r∗. To

capture these demographic factors, we consider the share of wealth held by the top 1% and the

age dependency ratio in our analysis, although not in our main model to estimate r∗ as these

series are only available at an annual frequency. Instead, we include these annual variables in

subsequent cointegration analysis.

Safe asset demand/supply

Caballero et al. (2017) and Del Negro et al. (2017) suggest that demand for safe assets has played

a key role in lowering r∗. To address this, we consider the change in macroeconomic uncertainty

(Jurado et al., 2015), the change in the excess bond premium (Gilchrist and Zakraǰsek, 2012),

and growth of liquid assets held by financial and non-financial corporate businesses.

Also related to demand for safe assets, Bernanke (2005) suggests a relationship between the

U.S. current account deficit and the global savings glut. Capital inflows are typically associated

with a trade deficit, but the link to r∗ depends on whether those capital flows are induced by a

high real interest rate or reflect excess global savings. To address this, we consider the change

in the U.S. current account balance (as % of GDP), the change in U.S. government debt (as

% of GDP), the trade-weighted U.S. dollar exchange rate growth rate, and global central bank

foreign reserves (as % of world GDP). An increase in government expenditure or a decrease

in tax revenues that lead to a higher level of government debt is usually thought to raise real

interest rates through a crowding-out effect (see, for example, Ball and Mankiw, 1995). So the

government debt measure can be thought of as reflecting the supply of safe assets, while the

other measures are designed to help capture demand for safe assets that push the real interest

rate in the opposite direction. We note that the global central bank foreign reserves measure

is only available at an annual frequency, so is not in our main model to estimate r∗, but is only

considered with the other annual variables in subsequent cointegration analysis.
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Details of the various data series are given in the Appendix. Our sample period covers

1973Q2 to 2019Q4.16 For the purposes of specifying our VECM, we denote the short- and

long-term ex ante real interest rates as rst and rlt, respectively, while x3:n,t denotes the vector of

quarterly variables (in levels) that are hypothesized to drive r∗.

To impose cointegration, we add an error-correction term into the equations for the first

differences of the short- and long-term real interest rates, with the error-correction coefficients

denoted as βs and βl, respectively.17 Assuming cointegration between the short term nominal

interest rate and the long term nominal interest rate implies that both are driven by only one

stochastic trend that differs only by a constant α. The VECM can then be specified as follows:

∆xt = µ+Φ1(∆xt−1 − µ) + . . .+Φp(∆xt−p − µ) + β
(
rlt−1 − rst−1 − α

)
+ et, (19)

where

∆xt =


∆rst

∆rlt

∆x3:n,t

 , β =


βs

βl

0

 .

The model with the error-correction term in (19) can be cast into companion form and the

BN trend for the interest rates calculated and decomposed as described above, where, for the

companion form, ∆Xt =
{
(∆xt − µ)′, · · · , (∆xt−p − µ)′,

(
rlt − rst − α

)}′
and F and H are as

implied by the VECM example in Morley (2002).

Because we are dealing with a medium-scale VECM with a large number of parameters, we

need to take into account the possibility of overfitting. To address this, we rely on Bayesian

estimation using a natural conjugate Normal-Inverse Wishart prior in conjunction with a

Minnesota Prior with the shrinkage hyperparameter, λ, set to 0.2, as in Sims and Zha (1998)

and Carriero et al. (2015). We also set an “expectations hypothesis” prior that the short-rate

16We have a balanced panel of the quarterly variables in our baseline model for the full sample period,
although the real interest rates from the Cleveland Fed considered in our robustness analysis are only available
from 1982Q1. The 10-year-ahead SPF forecast of PCE deflator inflation that is also used in our robustness
analysis is only available from the Philadelphia Fed from 2007Q1. However, we thank Todd Clark for providing
earlier data for this measure used in the Fed’s FRB/US macroeconometric model. Variables only available at
an annual frequency and therefore not included in our VECM, but only considered in followup cointegration
analysis, are the measures of age dependency, income inequality, and central bank reserves of foreign currency
as a percentage of world GDP, which are available for the full 1973 to 2019 sample period.

17We impose that the means of the first differences of the real interest rates are zero, corresponding to an
assumption of no deterministic drift in the levels. Thus, the historical downward movements in r∗ will be
attributed to prediction errors rather than deterministic drift when we conduct our informational accounting
analysis based on (17).
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adjusts to its spread from the long-rate, consistent with cointegration between the short- and

the long-term rates. Because of the VECM setup, estimation is conducted via MCMC with

Gibbs sampling.18 The Bayesian VECM is estimated with four lags, as is typical for quarterly

data. Details of the Bayesian estimation can be found in the Appendix.

4 Empirical results

4.1 Estimates of r∗

Figure 1 plots the first-stage estimates of BN trends for the short- and long-term real interest

rates.19 The first-stage trend estimate (i.e., what we refer to as r̃ in the assumed presence of

measurement error or another source of model misspecification) appears to be highly informed

by the long-rate, suggesting that the short-rate adjusts to the term spread. The presence

of a cointegrating relationship between the short- and long-term rates provides important

information in estimating the first-stage interest rates trends during two episodes in particular:

during 1975-1980 and during the ZLB between 2009-2015. First, although the measured short-

rate is quite negative during 1975-1980, the positive long-term real interest rate helps identify

a higher and generally positive level of trend. Second, during the years that the short-term

nominal interest rate was constrained by the ZLB between 2009-2015, the estimated trend is

still persistently higher than the short-term real interest rate, although it is sometimes negative.

Related, the multivariate BN decomposition allows for persistence in the estimated deviations

of the real interest rates from trend compared to the traditional univariate BN decomposition,

a result that follows from Evans and Reichlin (1994) and Morley and Wong (2020).

Figure 2 presents the second-stage BN trend for the short-term real interest rate, along with

the 95% credible intervals.20 The second-stage BN trend estimate for the short-rate (i.e., our

18A Bayesian VAR that includes the spread rlt − rst instead of the change in the long-rate ∆rlt and error
correction terms for the interest rate equations can be estimated analytically and produces very similar estimates
of r∗t . However, we take the VECM as our baseline specification even though estimation is more complicated.

19For the first-stage trend estimates, we take the Bayesian VECM parameter estimates at the posterior mean
and cast the model into companion form, as in (2). We then use (3) to get an estimate of the trend in the
short-term real interest rate. Given cointegration, the level of the BN trend for the long-term real interest rate
only differs from the BN trend for the short-term real interest rate by the constant α that presumably reflects
a long-run term premium.

20For the second-stage trend estimate, we again take the Bayesian VECM parameter estimates at the posterior
mean and cast the model into companion form, but now conceptually given potential misspecification, as in (6).
We then calculate an estimate of r∗ following (15) given (14) based on an ARMA model of ∆r̃t, as in (13). As
noted previously, we find that an MA(8) model estimated via conditional MLE is sufficient to capture the serial
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Figure 1: First-stage BN trends for short- and long-term real interest rates
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estimate of r∗) is noticeably smoother than the first-stage BN trend estimate for the short-

rate (r̃) in Figure 1. Despite its relative smoothness, we can observe that r∗ still varies over

longer periods of time and has fallen considerably since the 1980s. The overall pattern of

our estimates is consistent with the previous literature (see, for example, Cúrdia et al. (2015);

Lubik and Matthes (2015); Hamilton et al. (2016); Del Negro et al. (2017); Holston et al. (2017);

Berger and Kempa (2019); Lewis and Vazquez-Grande (2019); Bauer and Rudebusch (2020);

Kiley (2020); Johannsen and Mertens (2021), but it should be emphasized that we do not

impose smoothness in our estimation a priori. We also highlight that r∗ has been persistently

low since the Great Recession and has even been slightly negative since around 2013, although

it is only briefly significantly negative according to the 95% credible intervals.

Robustness checks

For robustness, we investigate the sensitivity of our r∗ estimates with respect to the prior on the

error-correction coefficient for the short-term interest rate and to the shrinkage hyperparameter

used in the Bayesian estimation. The results are highly robust to the choice of prior, as seen in

Figure 3a. Thus, while we see our baseline priors as well justified, we also note that our main

findings, including the smoothness of our r∗ estimates, do not hinge upon them.

correlation in ∆r̃t.
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Figure 2: Second-stage BN trend for the short-term real interest rate
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We also investigate the sensitivity of our r∗ estimates with respect to how we proxy inflation

expectations when measuring ex ante real interest rates. As shown in Figure 3b, our estimates

are generally robust to three alternative measures of inflation expectations. In the first case,

following Laubach and Williams (2003), we proxy short-run inflation expectations with the

forecast of the four-quarter-ahead percentage change in core PCE prices generated from a

univariate AR(3) of inflation estimated over the prior 40 quarters (10 year rolling window). In

the second case, we proxy the short-run (long-run) inflation expectations by the SPF short-term

(long-run) inflation forecast. In the third case, we investigate the sensitivity of our r∗ estimates

with respect to the 1-month and 10-year real interest rates constructed by the Cleveland Fed

based on their model-based expected inflation measures. The r∗ estimate using the Cleveland

Fed data appears to be higher in the early part of the sample for which it is available, but it

soon converges to our baseline r∗ estimate.

Next, to confirm the relevance of different sources of information, we consider two alternative

models in terms of which variables are included. In the first case, we consider a smaller model

that, in addition to the ‘interest rate’ block, only includes the five most informationally-relevant

variables for deviations of the short-term real interest rate from its trend following the variable

selection process proposed in Morley and Wong (2020). The selected variables are the change

in government debt, hours growth, employment growth, real consumption per capita growth,
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Figure 3: Robustness of r∗ estimates
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and stock returns. In the second case, we consider a model that only includes the ‘interest rate’

block. As shown in Figure 3c, the estimates are generally robust. Notably, by dropping the

less informationally-relevant variables from the model, the estimated r∗ is barely affected. The

estimated r∗ changes a bit more, however, when we do not include any possible determinants

beyond the ‘interest rate’ block. But the general similarity of the estimates even when only

including interest rates has two important implications: (i) any measurement error or other

source of model misspecification that generates serial correlation in the first-stage estimates of

trend growth must be primarily related to the ex ante real interest rates in particular and (ii)

one could obtain a reasonably robust estimate of r∗ just by considering a bivariate VAR of the

change in the short-term real interest rate and the spread between the long- and short-term

real rates. Of course, the baseline medium-scale VECM has the advantage of allowing us to
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track which economic forces are most important in driving changes in r∗, which we consider in

the next subsection.

Finally, we consider real-time reliability of our estimates of r∗. To abstract from the effect

of data revisions, which Orphanides and van Norden (2002) argue are less important than

trend-cycle decomposition method for reliability of real-time estimates, we focus on r∗ estimates

based on a model using only the ‘interest rate block’ and using SPF survey measures of inflation

expectations so that there are no sources of data revision. Figure 3d plots the real-time estimate

using an expanding window of data for the first ten years of the sample period until the end of

the period to estimate r∗ and compares it with the ex post estimate based on the full sample

of data. The real-time estimates are clearly quite reliable, although there is an upward bias

earlier in the sample period compared to the revised estimates. This is likely due to some

changes in the estimated long-run term premium over the sample period. But the movements

and general decline in r∗ implied by the real-time estimates are highly robust to consideration

of the full sample of data. There is clearly no end-point problem that plagues other approaches

to trend-cycle decomposition such as the Hodrick-Prescott filter. Thus, the r∗ estimates appear

reliable enough to be useful for gauging the stance of monetary policy in a real-time setting.

4.2 Why did r∗ change?

Having estimated r∗ using a multivariate trend-cycle decomposition, we now look at the

evidence for possible sources of changes in it over time. Figure 4 plots posterior densities

for the contributions of different groups of variables to changes in r∗. Over the whole sample,

the productivity/demographic variables appear to contribute to the fall in r∗, with most of the

posterior density below zero, although the probability that these variables contributed more

than 50 basis points to the overall estimated decline of about 3 percentage points appears to

be reasonably low. Safe asset supply (i.e., change in government debt as a % of GDP) also

seems to have contributed to at least a small amount of the overall decline, while safe asset

demand (all of the other quarterly variables in the safe asset demand/supply category) shows

no obvious evidence of contributing much to the decline over the full sample period. However,

if we look at the contributions over the three key episodes corresponding to (i) the onset of

the Great Moderation (1977Q1-1989Q4), the end of the Great Moderation (1990Q1-2005Q4),
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and (ii) Secular Stagnation (from 2006Q1), we can see that the different groups of variables

made more substantial contributions to large changes in r∗ within the full sample period. For

example, the posterior densities for productivity/demographics and safe asset demand/supply

all suggest positive contributions to the 1.3 percentage point increase in r∗ with the onset

of the Great Moderation, with a high probability that productivity/demographics variables

contributed more than 50 basis points. Likewise, productivity/demographics and safe asset

supply appear to contribute to the 1.4 percentage point decline in r∗ up to the end of the

Great Moderation, with safe asset supply having the highest probability of contributing more

than 50 basis points to the decline. Finally, productivity/demographics and safe asset demand

appeared to contribute sizeable and similar amounts to the 2.1 percentage point decline in r∗

during the Secular Stagnation era, although safe asset supply clearly has at least a partially

offsetting effect.

Figure 4: Contributions to r∗: Posterior densities

-200 -150 -100 -50 0 50 100 150 200
Basis Pts

0

5

D
en

si
ty

Whole sample: 1973Q2-2019Q4

Productivity/Demographics
Safe Asset Demand
Safe Asset Supply

-200 -150 -100 -50 0 50 100 150 200
Basis Pts

0

0.5

1

D
en

si
ty

Onset of Great Moderation: 1977Q1-1989Q4

-200 -150 -100 -50 0 50 100 150 200
Basis Pts

0

0.5

1

D
en

si
ty

End of Great Moderation: 1990Q1-2005Q4

-200 -150 -100 -50 0 50 100 150 200
Basis Pts

0

1

D
en

si
ty

Secular Stagnation: 2006Q1-2019Q4

Note: Densities are calculated by applying Matlab ksdensity function to MCMC draws of contributions.

To get a sense of significance, we also consider the posterior probability of the direction of

correlation between the projection error for a variable and the implied change in the estimate

of r∗ based on the decomposition in (17).21 We find that there are 63% and 73% posterior

21The sign of the correlation between the overall change in trend and each projection error is ultimately
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probabilities that consumption and TFP growth have a positive relationship with r∗. The broad

finding of a positive link between trend growth and r∗ corroborates many earlier studies (e.g.,

Laubach and Williams, 2003; Hamilton et al., 2016; Holston et al., 2017; Berger and Kempa,

2019; Lunsford and West, 2019). Investment growth has the predicted negative relationship

consistent with investment-specific technological change, but with only a 59% posterior probability.

Consistent with the theoretical prediction on the effect of the labor force on r∗ (Baker et al.,

2005; Lunsford andWest, 2019), there are 68% and 85% posterior probabilities that employment

and hours growth have a positive relationship with r∗, while the unemployment rate has a

negative relationship with 69% posterior probability, which is also consistent with a labor force

effect or possibly insufficient aggregate demand, as suggested in Summers (2015). Meanwhile,

consistent with a safe asset demand/flight-to-safety phenomenon, there are 67% and 85%

posterior probabilities that macroeconomic uncertainty and the excess bond premium have

a negative relationship with r∗. On the contrary, there is only weak evidence that liquid asset

growth has a positive relationship with r∗, with only a 55% posterior probability, reflecting a

likely mix of supply and demand factors driving this variable. Furthermore, consistent with the

global savings glut hypothesis (Bernanke, 2005), there are 89% and 81% posterior probabilities

that the current account and a depreciation in the exchange rate have respective positive

and negative relationships with r∗. Last, we find that there is a 84% posterior probability of a

positive relationship between debt-to-GDP and r∗, consistent with a safe asset supply/crowding-

out effect (Ball and Mankiw, 1995).

In addition to the posterior probabilities for direction of correlation, individual contributions

of each variable to the estimated r∗ during the three subsample episodes considered in Figure

4 are reported in the Appendix. To highlight the key results, we find that higher employment

and hours growth helped drive the large overall contribution of productivity/demographic

factors to the rise in r∗ with the onset of the Great Moderation. The individual variables

associated with safe asset demand had somewhat offsetting effects with the onset of the Great

Moderation, while higher safe asset supply in the form of an increase in government debt-to-

GDP during the Reagan years had a clear positive contribution to r∗. The effects of the key

determined by the sign of particular elements of (I − P)−1. Given P reflects parameters of a reduced-form
forecasting model, we emphasize then that this is a correlation only and not necessarily a causal link. However,
we find that the signs are consistent with the causal effects discussed in the previous section. We also note that
a more structural analysis could be considered given identification restrictions for a structural VAR. However,
we leave such analysis for future research.
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individual variables during the onset of the Great Moderation reversed by the end of the Great

Moderation, especially with the debt consolidation during the Clinton years, although faster

TFP growth and higher stock returns with the so-called ‘New Economy’ at the time meant

the overall drag from productivity/demographic factors was less than otherwise, while the

individual safe asset demand variables had largely offsetting effects, with a large positive effect

from a lower excess bond premium and large negative effect from a current account deficit

due to large capital inflows to the United States related to high savings rates in emerging

market economies, especially after the Asian financial crisis and with high revenues earned by

oil exporters from booming oil prices (Glick, 2020). Finally, with Secular Stagnation, lower

trend growth captured by lower consumption growth, TFP growth, and weaker stock returns,

as well as weaker employment and hours growth, all contributed to the fall in r∗, as did the

key safe asset demand related variables of macroeconomic uncertainty and the excess bond

premium, although the other safe asset demand related variables mostly had offsetting effects,

as did the increase in safe asset supply with a higher debt-to-GDP ratio again.

Table A2 suggests that

Although the various informational variables explain some of the major movements in r∗

over time, we note that there remain large movements in r∗ related to the prediciton errors for

the interest rates and, therefore, are unexplained by the other informational variables. To see

this, we construct a residual unexplained component of r∗ by removing the contributions of the

other informational variables as follows:

r̂∗residt ≡ r̂∗t −
∑
i>2

r̂∗it (20)

Figure 5 then compares our r∗ estimate with the residual r∗. The difference between the

residual r∗ and r∗ confirms the role the various quarterly variables in driving r∗ also evident

in Figure 4 and Table A2. Before the onset of the Great Moderation, the other informational

variables act to lower r∗ compared to otherwise, but this is reversed for most of the Great

Moderation, at least until near its end. Meanwhile, the quarterly variables clearly reduce r∗

compared to otherwise during the Secular Stagnation era. However, the general decline in r∗

over the whole sample period is evident in the residual measure and, therefore, is not explained

by the quarterly variables. This motivates us to consider additional variables for which only
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annual data is available in the next subsection.

Figure 5: Residual r∗ not explained by quarterly variables
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4.3 Cointegration analysis with annual variables

To investigate possible connections between r∗ and the annual variables, we consider cointegration

analysis of long-run relationships given that there are relatively few observations with which

to determine any higher-frequency links. It should be noted that our previous analysis with

quarterly variables implicitly assumed no cointegration other than between the real interest

rates. This assumption is confirmed by apparent omitted I(1) variables given that the residual

r∗resid measure tests as being I(1). Also, we find evidence of possible cointegration between

annual variables and the residual r∗resid rather than with r∗ itself.

The annual variables that we consider are income inequality, age dependency, and global

reserves-to-GDP, all of which we assume to be exogenous with respect to r∗. We note that using

ADF tests and Engle-Granger cointegration analysis, age dependency actually tests as trend

stationary and has the theoretically ‘wrong’ (i.e., negative) sign when included in cointegration

regressions despite not testing as having a unit root.22 Inequality appears to have a unit root

and has the predicted positive sign, but cointegration tests with the residual r∗resid measure

are insignificant. Only global reserves-to-GDP appears to have a unit root and tests as having

22Gagnon et al. (2021) suggests that an increase in the dependency ratio will reduce aggregate savings and
raise r∗.
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a cointegrating relationship with the residual r∗resid measure, with the predicted negative sign

corresponding to it being a proxy for the global savings glut. This significance holds even when

including a deterministic time trend in the cointegration test regression. The Engle-Granger

test for cointegration has a p-value of 0.03 and the cointegration regression results are given as

follows:

r̂∗residt = 2.86− 0.06 · t− 2.83 · globalreserves t + ẑt,

where t is a time trend, globalreserves t denotes global reserves-to-GDP, and ẑt is the cointegrating

error. As seen in Figure 6, these estimates imply global reserves explain an additional 30 basis

point decline in r∗ beyond the quarterly variables since the Great Moderation. The fact that

age dependency and income inequality are insignificant, while the global savings glut as proxied

by global reserves-to-GDP is significant is consistent with the findings in Marx et al. (2021)

using a calibrated OLG model that suggests higher risk aversion increased risk premia, while

longevity and inequality had negligible effects on interest rates.

Figure 6: Estimated contribution of global reserves to r∗
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4.4 How has r∗ changed since COVID-19?

We extend our analysis to cover the onset of the COVID-19 pandemic. In particular, we

update the dataset to 2020Q4, but we use the pre-Covid parameter estimates to avoid possible

distortions from large outliers in the data. Figure 7a plots the estimate of r∗ over the latter part

of the sample period and up to the end of 2020.23 At the start of the pandemic, the estimated

23Given the same parameter estimates, the pre-Covid estimates of r∗ are the same as in Figure 2.
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r∗ falls sharply to about -2.5% as various indicators related to the marginal product of capital

adjusted dramatically and there was a jump up in macroeconomic uncertainty. However, the

persistence of these effects was different than in the previous sample given the unusual stop-

start nature of economic activity with lockdowns, as well as the massive fiscal stimulus, with

the estimated r∗ quickly returning to its pre-pandemic level of around -1%. Looking at the

various quarterly variables, we find that demand for safe assets was still a drag on r∗ by the

end of 2020, contributing a 43 basis point decrease over the year, while supply of safe assets

in the form of higher debt-to-GDP mostly offset this effect by contributing a 33 basis point

increase over the same period. These contributions are plotted in Figure 7b.

Figure 7: r∗ during the pandemic
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As noted in the introduction, the estimated r∗ can be used to help gauge the stance of

monetary policy during the pandemic. The initial sharp decrease in r∗ is estimated to be of

a similar scale to the decline in the ex ante short-term real interest rate, but the immediate

recovery back to a similar level around -1% as before the pandemic is back above the ex ante

short-term real interest rate. These estimates imply that, after little initial change in the

positive real interest rate gap, monetary policy quickly became somewhat accommodative with

a negative gap despite the ZLB, although not nearly as much as if r∗ were closer to its historical

levels of 2% instead of -1%. Furthermore, given a low inflation target, the lower value of r∗

clearly implies a higher probability of the nominal interest rate hitting the ZLB over time, as

we have seen play out with the pandemic.

32



5 Conclusion

In this paper, we have measured r∗ as the common stochastic trend in real interest rates

using a multivariate BN decomposition based on a Bayesian VECM. We have developed a

robust two-step approach to multivariate trend-cycle decomposition that addresses the apparent

predictability of changes in the first-stage estimate of the BN trend (or, for that matter, the

changes in estimated trend for any trend-cycle decomposition method that assumes the trend

follows a random walk) and leads to a smooth second-stage estimate of r∗. We provide a

comprehensive explanation for why r∗ has declined over the past few decades by measuring

informational contributions of different variables to its historical movements. We find that

the decline in r∗ is related to supply-side productivity/demographic factors and to safe asset

demand/supply. Slower trend growth and higher safe asset demand as part of the global savings

glut both contributed to lower r∗ during the recent Secular Stagnation era, with some offsetting

positive effects from crowding out due to increase safe asset supply in the form of increased

government debt-to-GDP. These offsetting effects continued during the COVID-19 pandemic.
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Appendix

A Data sources and transformations

Morley and Wong (2020) find that the multivariate BN decomposition can be sensitive to

including nonstationarity or highly persistent time series. Thus, we transform the data to

ensure stationarity. Details of data sources and transformations are given in Table A1.
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Table A1: Data sources and transformations

Variable Description Source Transformation

3-Month Treasury Bill Secondary Market Rate FRED:TB3MS quarterly avg., ∆
Market Yield on U.S. Treasury Securities at 10-Year Constant Maturity FRED:GS10 quarterly avg., ∆
Personal Consumption Expenditures Excluding Food and Energy (Chain-Type Price Index) FRED:PCEPILFE %∆4

Survey of Professional Forecasters 1-Year-Ahead GDP Deflator Inflation Rate, Median Forecast Phil.Fed:INFPGDP1YR
Survey of Professional Forecasters 10-Year PCE Inflation Rate, Mean Response, Annual Average Phil.Fed:PCE10
Cleveland Fed 1-Month Real Rate using Model-Based Expected Inflation clevelandfed.org quarterly avg., ∆
Cleveland Fed 10-Year Real Rate using Model-Based Expected Inflation clevelandfed.org quarterly avg., ∆
Real personal consumption expenditures per capita FRED:A794RX0Q048SBEA ln,∆
Business Sector TFP (annualized quarterly % growth rate) frbsf.org ln(1 + series/400)
S&P 500 Index FRED:SP500 quarterly avg., ln,∆
Real Gross Private Domestic Investment FRED:GPDIC1 ln,∆
All Employees: Total Nonfarm FRED:PAYEMS quarterly avg., ln,∆
Business Sector: Hours Worked for All Employed Persons FRED:HOABS ln,∆
Unemployment Rate FRED:UNRATE quarterly avg., ∆
Age Dependency Ratio: Older Dependents to Working-Age Population for the United States FRED:SPPOPDPNDOLUSA annual only
Top 1% Share of Pre-Tax National Income World Inequality Database annual only
1-Month-Ahead Economic Macro Uncertainty Index sydneyludvigson.com ∆
Excess Bond Premium federalreserve.gov quarterly avg., ∆
Nonfinancial Corporate Business and Other Financial Corporations, Money Market Funds,
ind Insurance Companies, and Pension Funds; Liquid Assets (Broad Measure), Level

FRED:BOGZ1FL104001005Q,
BOGZ1FL874001005Q

sum, ln,∆

Balance on Current Account as a Percent of Gross Domestic Product FRED:NETFI, GDP ratio, ∆
Nominal Major Currencies U.S. Dollar Index (Goods Only) FRED:TWEXMMTH quarterly avg., ln,∆
Federal Debt: Total Public Debt as Percent of Gross Domestic Product FRED:GFDEGDQ188S ∆
Total reserves comprising holdings of monetary gold, special drawing rights, reserves of IMF:FI.RES.TOTL.CD, ratio, annual only
indmembers held by the IMF, and holdings of foreign exchange under the control of monetary
indauthorities as a percent of world GDP at purchaser’s prices (data are in current U.S. dollars,
indwith gold component of reserves valued at year-end prices and GDP converted from domestic
indcurrencies using single-year official exchange rates)

NY.GDP.MKTP.CD
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B Bayesian estimation

Recall that ∆xt consists of the first differences of the interest rates ∆rst and ∆rlt (which we

now denote as ∆x1t and ∆x2t for convenience) and the ‘correlates’ ∆x3:n,t.

Because of the error correction term, the regressors differ between the ‘interest rate’ and

‘correlates’ blocks of the VECM. Thus, we specify the ith equation of the VECM as

∆xit = µi +w′
itbi + eit, (B1)

where wit = [(∆xt−1 − µ)′, . . . , (∆xt−p − µ)′, rlt−1 − rst−1 − α]′ if i = 1, 2 and wit = [(∆xt−1 −

µ)′, . . . , (∆xt−p −µ)′]′ if i > 2, with bi corresponding to all of the parameters associated with

equation i. The unconditional means µi are based on sample averages, consistent with diffuse

priors on these parameters, except for i = 1, 2 where the means of the changes in real interest

rates are set exactly to zero, implying no drift in levels.

Defining

yt ≡ ∆xt − µ, β ≡


b1

...

bn

 and Zt ≡



w′
1t 0 . . . 0

0
. . . . . .

...

...
. . . . . . 0

0 . . . 0 w′
nt


, et ≡


e1t
...

ent

 ,

we can stack all the equations and regressors in (B1) and rewrite the system as

yt = Ztβ + et,

or

y = Zβ +E,

where

yi =


yi1
...

yiT

 , ei =


ei1
...

eiT

 ,
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and

y =


y1

...

yn

 , Z =


Z1

...

ZT

 , E =


e1

...

en

 .

Let Σ be an n×n covariance matrix for the VECM residuals. If one sets a Normal-Wishart

prior on β and Σ respectively (Koop and Korobilis (2010)), where

β ∼ N(β0,Vβ), (B2)

Σ−1 ∼ W (S−1
0 , ν0), (B3)

this implies conditional distributions

p(β | y,Σ−1) ∼ N(β̂, V̂β), (B4)

p(Σ−1 | y,β) ∼ W (Ŝ
−1
, ν̂), (B5)

where

V̂β =

(
Vβ

−1 +
T∑
t=1

Z ′
tΣ

−1Zt

)
,

β̂ = V̂β

[
Vβ

−1β0 +
T∑
t=1

Z ′
tΣ

−1Zt

]
,

and

Ŝ = S0 +
T∑
t=1

(yt −Ztβ) (yt −Ztβ)
′ ,

ν̂ = T + ν0.

We elaborate how priors β0, Vβ, S
−1
0 and ν0 are elicited below. Given the priors, (B4)

and (B5) define a Gibbs-sampling scheme, where one can sequentially take draws from these

conditional distributions, conditioning on the previous draw in the chain. We take 2,000 draws

with the sampling scheme, discarding the first 1,000 draws and use the remaining 1,000 draws

to make inferences about the posterior distribution.
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Priors

Our goal in setting the prior is to apply shrinkage to mitigate possible overfitting. To keep

the application of shrinkage as standard as possible, we use a “Minnesota Prior” (e.g., see

Litterman, 1986). The idea behind this type of prior is to shrink parameters for persistent

variables towards a random walk.

Accordingly, given that the variables in the VECM are included in first differences, we set

the prior mean β0 in (B2) to a vector of zeros, except for the element associated with the

error correction term in the short-rate equation. In that case, we set the prior mean to 0.5,

consistent with the expectation hypothesis for the term structure of interest rates (see, for

example, Modigliani and Shiller, 1973) that motivates our assumption of cointegration between

the interest rates. Setting the prior mean for this parameter to zero would contradict the

assumption of cointegration. However, we note that our results are robust to setting this prior

mean to zero (see ‘ECM prior’ case in Figure 3a).

In specifying the prior variance, which dictates how tightly we shrink the coefficients towards

zero, we follow the Minnesota prior approach and treat shorter lags as “more important” than

longer lags when applying shrinkage. Let V k
i,j be the prior variance on the parameter in the ith

equation for the jth variable on the kth lag. Accordingly, we set

V k
i,j =

λ2

k2

σ2
i

σ2
j

. (B6)

where σ2
i is the sample variance of the residuals from a univariate AR(4) regression fitted using

least squares on the ith variable and σ2
i /σ

2
j acts as a scaling factor to account for different units

of the variables (note that we set σ2
j = σ2

i in the case of the error correction coefficients). The

overall tightness of the prior is then governed by one hyperparameter, λ. We set λ = 0.2 in our

empirical analysis, which is a fairly common choice within the BVAR literature (e.g. Sims and

Zha, 1998) and corroborated as a reasonable choice in forecasting settings by Carriero et al.

(2015). We stress, however, that our main results are robust to departures from this particular

prior, including optimizing λ to minimize the one-step-ahead out-of-sample RMSFE for the

short-run interest rate equation along the lines of Morley and Wong (2020) (see ‘optimized λ’

case in Figure 3a).
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Once V k
i,j in (B6) is specified, V β is constructed as

Vβ =



V 1 0 . . . 0

0
. . . . . .

...

...
. . . . . . 0

0 . . . 0 V n


,

where

V i =



V 1
i 0 . . . 0

0
. . . . . .

...

...
. . . . . . 0

0 . . . 0 V p
i


and V k

i =



V k
i,1 0 . . . 0

0
. . . . . .

...

...
. . . . . . 0

0 . . . 0 V k
i,n


,

except for V 1 and V 2, which each have an additional row and column of zeros and V 1
i,n+1 = λ2

for i = 1, 2 on the respective last diagonal as the prior variance for the corresponding error

correction coefficient.

For the remaining quantities in (B3), we set

S =



ν0σ
2
1 0 . . . 0

0
. . . . . .

...

...
. . . . . . 0

0 . . . 0 ν0σ
2
n


,

where ν0 is set to n + 1 (i.e., one greater than the total number of variables), σ2
i is obtained

from the same AR(4) regression on the ith variable as what used in (B6), and the variance is

thus scaled up by a factor of ν0 so that the prior on the sum of squared residuals is consistent

with the prior on the degrees of freedom.
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C Variable-by-variable sign probabilities and informational

contributions

Table A2 presents results for the individual variables in terms of (i) the correlation of the

projection error for each variable and the implied change in the estimate of r∗ based on the

decomposition in (17) and (ii) their contributions to estimated r∗ during the three subsample

episodes considered in Figure 4.
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Table A2: Accounting for changes in r∗

Contribution (bps)
Sign Probability Onset of Great Moderation End of Great Moderation Secular Stagnation

I. Productivity/Demographics 63 -15 -41
Real consumption growth per capita + 0.63 5 4 -9
TFP growth + 0.73 2 18 -16
S&P 500 stock returns + 0.75 4 12 -5
Real investment growth - 0.59 0 -5 5
Employment growth + 0.68 11 -12 -12
Hours growth + 0.85 33 -23 -8
Unemployment rate (∆) - 0.69 9 -9 4

II. Safe Asset Demand 20 2 -26
Macroeconomic uncertainty (∆) - 0.67 9 1 -10
Excess bond premium (∆) - 0.85 0 24 -28
Liquid assets growth - 0.56 -10 2 9
Current account as % of GDP (∆) + 0.89 12 -28 13
Exchange rate return - 0.81 10 3 -10

III. Safe Asset Supply 46 -59 25
Government debt as % of GDP (∆) + 0.84 46 -59 25
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