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Abstract

Financial data typically exhibit asymmetry and heavy tails, which makes fore-
casting the entire density of the returns critically important. We investigate the
effects of aggregating, or combining, predictive densities and find that even if the
individual densities are skewed and/or heavy-tailed, the combined density often has
significantly reduced skewness and kurtosis. This phenomenon has important impli-
cations for measuring downside risk in financial assets. When forecasting financial
risk, recently proposed combination methods have focused on specific regions of the
density support. We propose an alternative approach, which modifies the popular
Log-Score weighting scheme by introducing data-driven constraints on the combi-
nation weights that control the skewness and kurtosis of the resulting predictive
density. An empirical application using S&P 500 daily index returns demonstrates
that the corresponding skewness and kurtosis successfully track the respective sam-
ple characteristics of the returns over time. Moreover, the proposed approach out-
performs its natural competitors at forecasting the 1% Value-at-Risk for a broad
range of estimation-window sizes.
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1 Introduction

For risk managers, investors, and regulators alike, forecasting financial risk and asset

returns is central to their market activities. When forecasting risk, point forecasts rarely

suffice, and the entire density is often required. A predictive density allows for one to

capture all of its characteristics, including its tails. For example, measures of downside

risk for investments, such as Value-at-Risk (VaR) and Expected Shortfall (ES) forecasting

(Polanski and Stoja, 2010), require information on the left tail of the distribution of asset

returns. This requirement implies that when modeling the entire density, preserving

characteristics such as the degree of asymmetry and the thickness of the tails measured

by high moments, such skewness and kurtosis, respectively, is crucial.

As density forecasts can be produced from a large range of financial models, forecasters

are typically faced with multiple options to construct a predictive density. Rather than

restricting the choice to one density, a popular strategy is to combine the forecasts into

a consensus forecast. Empirical applications of forecast combination often produce sig-

nificant improvements in forecast accuracy. Concerning the recent M4 competition that

included 100,000 series, Makridakis et al. (2018) found that out of the 17 most accurate

methods, 12 were combinations. Since the introduction forecast combination by Bates

and Granger (1969), the literature on combination has grown substantially. Timmer-

mann (2006) and Wang et al. (2023) provide an extensive overview.

We ask the question: what happens to the moments of the combination when mul-

tiple predictive densities are combined? Specifically, what are the implications for high

moments such as the skewness and kurtosis of the combination? The question is very

important because the majority of financial returns on assets exhibits asymmetry and

heavy tails as shown in Table 1 with some sample moments of some of the main stock

market indices.1

Table 1: Sample skewness and kurtosis in market returns

S&P 500 DJIA 30 Nikkei 225 FTSE 100

Skewness -0.215 -0.063 -0.522 -0.366
Kurtosis 11.315 11.389 14.171 10.223

Notes: The values reported are for the daily returns of the
market indices from January 3, 2000, until December 4, 2020.
The data are from the “Realized Library” of the Oxford-Man
Institute.

We answer the question by analyzing the impact of combining densities on high moments

theoretically and numerically. We find that combinations with equal weights or optimal

log score weights significantly reduce the skewness and kurtosis of the combination when

the individual densities are skewed and/or fat-tailed.

1A similar table is reported in Jondeau and Rockinger (2009).
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We propose to overcome this issue by restricting high-order moments when estimating

the combination weights. We provide a general method for combining predictive densities

by maximizing the average logarithmic score subject to constraints that allow one to focus

on specific characteristics of the combined density, such as the thickness of the tails or the

asymmetry. In other words, we propose computing the optimal weights under additional

high moments restrictions. We name these optimal weights derived under high moment

constraints HMC weights. The benefit of this approach is that the resulting combined

density is suitable not only for the tails but also for the entire support of the distribution.

We show the validity of this approach both theoretically and numerically. First, we

derive the statistical properties of the HMC combination density and the HMC weights,

namely, consistency and the rate of convergence. These results are also applicable to the

weights proposed by Hall and Mitchell (2007) and Geweke and Amisano (2011). Second,

we provide an empirical illustration in forecasting the density of the conditional returns

of the S&P 500 index. The conditional returns are forecast using several GARCH-type

models, which are regularly employed in the applied financial econometrics literature. This

illustration is especially relevant as the S&P 500 exhibits heavy tails and skewness (see

Table 1). We evaluate the proposed combined predictive density on its overall performance

in terms the log-score and demonstrate that the skewness and kurtosis of this density

are successful at tracking their sample counterparts over time. We also evaluate the

performance of the proposed HMC approach in the tails, in terms of forecasting Value-

at-Risk, demonstrating that HMC outperforms its natural competitors with respect to

the accuracy of the 1% VaR forecasts. Overall, the empirical results provide convincing

support for the proposed methodology.

Until recently, most of the literature focused on point forecasts, and the treatment of

predictive density combinations was sparse. Some of the earliest contributions addressing

the problem of combining predictive densities are Genest and Zidek (1986), DeGroot

and Mortera (1991), Wallis (2005) and Hall and Mitchell (2007). Hall and Mitchell

(2007) proposed a practical way to select optimal weights by maximizing the average

logarithmic score of the combined density forecast to minimize the “distance” between

the forecasted and the (unknown) true density, as measured by the Kullback–Leibler

information criterion (KLIC). Geweke and Amisano (2011) used Bayesian methods and

provided some theoretical justifications for using optimal weighting schemes in linear pools

of models. The linear pool approach has recently been generalised and extended, with

beta transformations in Ranjan and Gneiting (2010) and Gneiting and Ranjan (2013),

beta-mixtures for calibration and combination in Bassetti et al. (2018), and nonlinear

pools and generalised weights in Kapetanios et al. (2015). Furthermore, Billio et al.

(2013) and Del Negro et al. (2016) allow the weights of the combination to account for

time instabilities and estimation uncertainty. On the theoretical front, Kapetanios et al.

(2015) establish asymptotic normality for the proposed generalised weights, however, their
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result also covers the case of fixed weights considered in Hall and Mitchell (2007) and

Geweke and Amisano (2011). Diks et al. (2011) proposes a censored likelihood scoring

rule, which is demonstrated by Opschoor et al. (2017) to outperform other methods if the

tail of the distribution is the main feature of interest. Smith and Vahey (2016) investigates

methodologies to forecast densities by using a copula model with asymmetric margins.

These asymmetric margins are produced from the empirical and skew-t distributions.

The remainder of this paper is organized as follows. Section 2 investigates the im-

pact of combining densities on the moments of the combination. Section 3 proposes a

new approach for constructing a forecast density combination under higher-order mo-

ment constraints and studies its statistical properties. Section 4 discusses an empirical

application for the S&P 500 index, and Section 5 provides a conclusion.

2 Motivation

2.1 Behavior of high moments in combinations

We start by describing the behavior of the moments of a density combination. A simple

way to combine k densities is to aggregate them linearly into one density as follows:

pc(·;ω,θ) =
k∑

j=1

ωjpj(·;θj), (1)

where ω = (ω1, . . . , ωk)
⊤ ∈ Rk is the vector of weights, θ = (θ⊤

1 , . . . ,θ
⊤
k )

⊤ is the combined

vector of all parameters, and θj is a vector of parameters of the jth density, pj(·;θj).

For pc(·;ω,θ) to be a density, the weights need to be nonnegative, ωj ≥ 0, and sum

up to one,
∑k

j=1 ωj = 1. The restrictions on weights are necessary when combining

densities but for point forecasts the restrictions can be relaxed: see Radchenko et al.

(2023), which investigates negative weights, and Granger and Ramanathan (1984), which

does not require summation to one.

A priori, the kind of impact that combining k densities (or models) would have on

the higher moments of the resulting combined density is not obvious. Whereas the first

moment of the combination, µc, is simply a linear combination of k individual density

means, other moments have a more complicated nonlinear dependence on the parameters

of the individual densities.2 The simple numerical illustration below shows that the high

moments of the density combination relevant in empirical finance, such as skewness and

kurtosis, can change considerably even when combining models with the same skewness

and kurtosis. Suppose that the j-th density has mean µj, variance σ2
j , skewness γj and

kurtosis κj. Figure 1a demonstrates the behavior of combination skewness, γc, for different

2Proposition A.1 in the online supplement provides formulas for the moments of the aggregate density.
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values of the weight ω1 when combining two similar distributions, such as a skewed normal.

The individual density parameters are set to σ1 = σ2 = 1, γ1 = γ2 = 1, and κ1 = κ2 = 3,

but feature different means, µ1 and µ2. If µ1 = −1 and µ2 = 1, γc is lower than 0.5 for ω1

between 0.10 and 0.65. If µ1 = 0.1 and µ2 = 1, then for ω1 = 0.35, the skewness of the

combination is approximately 0.75.

(a) Skewness (b) Kurtosis

Figure 1: The values of γc are depicted as a function of ω1 for µ1 = −1, µ2 = 1 (blue) and
µ1 = 0.1, µ2 = 1 (orange) with σ1 = σ2 = 1, γ1 = γ2 = 1, and κ1 = κ2 = 3. The values
of κc are graphed as a function of ω1 for µ1 = −1, µ2 = 1 (blue) and µ1 = −5, µ2 = 1
(orange) with σ1 = σ2 =

√
5/3, γ1 = γ2 = 0, and κ1 = κ2 = 9.

Similarly, Figure 1b displays the behavior of the kurtosis, κc, for different values of the

weight ω1 when combining two t5 distributions. The parameters of the individual t5 are

set to σ1 = σ2 =
√
5/3, γ1 = γ2 = 0, and κ1 = κ2 = 9, and the means, µ1 and µ2, differ.

When the means are µ1 = −1, µ2 = 1 and ω1 = 0.5, the kurtosis of the combination

reduces to approximately 5. Additionally, if µ1 = −5, µ2 = 1, then the same weight

as before, ω1 = 0.5, removes the heavy tails altogether. Naturally, when ω1 is close to

the boundary (0 or 1), only one density is selected, and the moments of the combination

essentially equal those of the individual density.

2.2 Equally weighted combinations

The previous section showed the potential undesirable effect that combining densities can

have on the skewness and kurtosis. Here, we examine a setting in which the densities are

combined using equal weights, and the number of models grows toward infinity.

Suppose that we have k density forecasts. The mean, variance, skewness, and kurtosis

parameters of these forecasts are µj, vj, γj, and κj, respectively, for j = 1, ..., k (for

compactness, we use v instead of σ2 to denote the variance in this section.) We write

µ∗, v∗, γ∗, and κ∗ for the corresponding parameters of the true density. We assume that

{µj}, {vj}, {γj}, and {κj} are independent collections of i.i.d. random variables, such
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that E[µj] = µ∗ and E[vj] = v∗ (we do not require that γj and κj are unbiased). We

let µµ, vµ, γµ, and κµ denote the mean, variance, skewness, and kurtosis, respectively, of

the underlying distribution for µj, and we define the corresponding quantities for vj, γj

and κj analogously. We define R = vµ/v
∗ and write ξ for a random variable with the same

distribution as
√

vj/v∗. We let γc and κc denote the skewness and kurtosis, respectively,

of the equally weighted combination of the k density forecasts. The following result on

the behavior of γc and κc is proved in the online supplement.

Theorem 2.1. As k → ∞,

γc
P→ µγ E

[
ξ3
][
1 +R

]−3/2
+ γµ

[
1 +R−1

]−3/2

κc
P→ µκ

[
1 + vv/v

∗2][1 +R
]−2

+ κµ

[
1 +R−1

]−2
+ 6R

[
1 +R

]−2
.

Theorem 2.1 implies that that the limiting skewness and kurtosis of the combination

can be significantly different from the corresponding parameters of the true density, γ∗

and κ∗. To illustrate this point, we now consider two specific asymptotic scenarios.

Corollary 2.2. If vµ/v
∗ → ∞ as k → ∞, then γc

P→ γµ and κc
P→ κµ. Alternatively, if

vµ/v
∗ → 0 and vv/v

∗2 → 0, then γc
P→ µγ and κc

P→ µκ.

The above result shows that when the variance of the mean forecasts, vµ, is large

relative to the variance of the true density, v∗, the kurtosis of the combination is close to

the kurtosis of the mean forecasts, κµ, rather than the kurtosis of the true density, κ∗.

Alternatively, when the variances of the forecasts for both the mean and the variance are

small relative to the variance of the true density, the kurtosis of the combination is close

to the average kurtosis of the individual density forecasts. This average will be different

from the true kurtosis unless the collection of individual densities is curated carefully.

Similar observations hold for the skewness of the combination.

Numerical example. Figure 2 illustrates the discussion above by presenting the dis-

tributions (i.e., estimated densities) of the skewness (γc) and kurtosis (κc) resulting from

combining k = 10 densities using three sets of weights ω. In the first set, ω1 = 0.5, while

in the second set, ω1 = 0.25. The remaining weights, j = 2, . . . , k, are spread equally:

ωj =
1−ω1

k−1
. The third set weights all k densities equally: ωj = 1/k. The estimated den-

sities are produced based on 5000 replications. For the kurtosis experiment, half of the

individual distributions are mean zero tν distributions, where the degrees of freedom ν

are drawn uniformly from the interval [5, 6], and the other half are mean zero Normal

with variances drawn uniformly from [0.5, 1.5]. For the skewness experiment, we use the

skewed t distribution of Hansen (1994), with mean zero, variance 1, and skewness that

uniformly varies between 0.5 and 1. The left panel of Figure 2 illustrates how including

symmetric densities in the combination decreases the resulting skewness; the right panel
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of Figure 2 displays a similar phenomenon for the kurtosis. These observations are in line

with the results of Corollary 2.2.

Figure 2: Distribution of the skewness (γc) and kurtosis (κc) of k = 10 combined densities
with three sets of weights: ω1 = 0.50, 0.25, and equal weights, where ωi = 1−ω1

k−1
for

i = 2, . . . , k. The distributions are drawn with 5000 replications.

Special case: regression setup. We now focus on the linear regression model

yt = x⊤
t β + εt, t = 1, . . . , T − 1, (2)

with xt = (x1t, . . . , xkt)
⊤ and β = (β, . . . , β)⊤. The regressors xt are i.i.d. zero mean

random vectors independent from the errors εt, which are also i.i.d. with a zero mean.

We produce k conditional mean forecasts for yT using µ̂j = β̂jxjT , j = 1, . . . , k, where

β̂j is the estimate of the slope coefficient in the simple linear regression model with only

the j-th predictor. Then, we let pj(y) = p(y− µ̂j) be the j-th individual density forecast,

where p is a known density with a zero mean. For example, p could be the density of

the errors in model (2). We consider the equally weighted combination of these k density

forecasts and let γc and κc denote its skewness and kurtosis, respectively.

We denote the standard deviation, skewness, and kurtosis of density p by vp, γp, and

κp, respectively. Suppose that the predictors are independent and can be split into finitely

many (asymptotically) equally sized groups, such that the predictors within each group

are identically distributed. We assume that the number of predictor groups, G, stays

constant as the number of predictors tends to infinity. We write vX,g for the variance of

each predictor in group g ∈ {1, ..., G} and let vX denote the average variance across the

predictor groups: vX =
∑G

g=1 vX,g/G. We define γX and κX by analogy, as the average

predictor skewness and kurtosis, respectively. Note that if G = 1, then vX , γX , and κX are

simply the variance, skewness, and kurtosis of each individual predictor. Let R = vX/vp,

and assume that all of the quantities defined in this paragraph are finite. The following

result is proved in the online supplement.
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Theorem 2.3. Suppose that T → ∞, k → ∞ and k/
√
T → 0. Then:

γc
P→ γp

[
1 + βR

]−3/2

+ γX

[
1 + (βR)−1

]−3/2

κc
P→ κp

[
1 + βR

]−2

+ κX

[
1 + (βR)−1

]−2

+ 6βR
[
1 + βR

]−2

.

In addition, if we also let β → 0 as T → ∞, then γc
P→ γp and κc

P→ κp. Alternatively, if

β → ∞, then γc
P→ γX and κc

P→ κX .

Theorem 2.3 shows that when the true regression coefficients are large, the kurtosis of

the combination is close to the average kurtosis of the predictors rather than the kurtosis

of the true density. A similar observation holds for the skewness of the combination.

Numerical example. We now numerically illustrate the aforementioned effect of sig-

nificant changes in the skewness and kurtosis when densities are combined. We focus on

the linear regression setup described above, where xjt are i.i.d. N(0, 1) and εt are i.i.d.

errors, generated independently of the regressors. When forecasting, we suppose that the

distribution of εt is known, so we take p as the true density of the errors in the formula

pj(y) = p(y − µ̂j). We run this experiment 5000 times, for three different values of k.

We estimate the parameters with a sample size of T = 100, and produce one-step ahead

forecasts for the moments of the predicitive densities. For the kurtosis part of the ex-

periment, we use (symmetric) t5 as the density of the errors, while for the skewness part

we use skewed-t5, with the skewness value of 1. Figure 3 depicts the distributions (i.e.,

estimated densities) of the skewness and the kurtosis of the combination that uses equal

weights. Both the skewness and the kurtosis of the combination decrease when the num-

ber of predictors, k, increases: the skewness shifts towards zero and the kurtosis shifts

towards 3, which is the Normal kurtosis.

Figure 3: Distribution of the skewness (γc) and kurtosis (κc) of the equally weighted
density combination.

8



3 Methodology

We now return to the general case, where the density combination is given by equation (1)

and the weights are not necessarily equal. As a starting point for our proposed method-

ology, we consider the weights of Hall and Mitchell (2007) and Geweke and Amisano

(2011), which are based on the idea that, in practice, the combination close to the true

but unknown density f of the predicted outcome yT is desirable. The Kullback–Leibler

information criterion (KLIC) can be employed to gauge the distance from the combined

to the true density,

KLIC(ω,θ) = E

[
log

[
f(yT )

pc(yT ;ω,θ)

]]
. (3)

Given a density function of the form g(y) = pc(y;ω,θ), we extend the notation by some-

times writing KLIC(g) in place of KLIC(ω,θ). The KLIC criterion can be estimated by

its sample analogue,

KLIC(ω,θ) =
1

T

T∑
t=1

log

[
f(yt)

pc(yt;ω,θ)

]
, (4)

using the observed realizations yt. Because the true density f does not depend on ω, the

weight that minimizes KLIC can be found by solving the following optimization problem:

max
ω

T∑
t=1

log

[
k∑

j=1

ωjpj(yt;θj)

]
subject to

k∑
j=1

ωj = 1, ωj ≥ 0, j = 1, . . . , k. (5)

For convenience, the optimal weights that solve equation (5) are named Log-Score weights.

3.1 HMC optimization problem

In Section 2.2 we observed the undesirable effects that equally weighted density com-

binations have on skewness and kurtosis. In Appendix C of the online supplement we

demonstrate similar effects for the Log-Score weights. However, we can modify optimiza-

tion problem (5) by introducing additional restrictions on weights that provide control

over the skewness and kurtosis of the combination. To this end, we propose solving the

following High Moment Constraints (HMC) optimization problem:

maximize
T∑
t=1

log

[
k∑

j=1

ωjpj(yt;θj)

]

subject to
k∑

j=1

ωj = 1, ωj ≥ 0, j = 1, . . . , k

κc ≥ κ and/or γc ≥ γ or γc ≤ γ,

(6)
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where the skewness and kurtosis of the combination, κc and γc, are functions of either the

first three or the first four moments, respectively, of the individual densities. Closed-form

expressions for κc and γc are provided, respectively, in equations (A.18) and (A.19) of

the online supplement. The exact structure of the constraints can be selected to suit the

problem. The optimal weights obtained by solving the HMC optimization problem (6)

are named HMC weights for brevity.

We use the data to guide our selection of the thresholds κ and γ. We take the kurtosis

threshold as κ = κ̂T − δT , where κ̂T is the sample kurtosis and δT is a small positive

constant that depends on T . More specifically, we set the kurtosis threshold κ somewhat

below the sample kurtosis, so that the true kurtosis is above κ with high probability. In

practice, we let δT = z0.995 × SE(κ̂), where

SE(κ̂) =
√
24n(n− 2)(n− 3)(n+ 1)−2(n+ 3)−1(n+ 5)−1

is the standard error of the sample kurtosis (Wright and Herrington, 2011) and z0.995

is the 99.5% quantile of the standard normal distribution. If the sample skewness, γ̂T ,

is positive, we impose the constraint γc ≥ γ and set the threshold as γ = γ̂T − ϵT ,

where ϵT = z0.999 × SE(γ̂) and

SE(γ̂) =
√

6(n− 2)(n+ 1)−1(n+ 3)−1

is the standard error of the sample skewness (Wright and Herrington, 2011). Alternatively,

if γ̂T is negative, we impose the constraint γc ≤ γ with γ = γ̂T + ϵT .

3.2 Comparison with existing methods

If one is interested only in a particular region of the density Bt, e.g., the tails, then Diks

et al. (2011) and Opschoor et al. (2017) offer an alternative to our HMC approach. Instead

of maximizing the complete log score, one can use the censored likelihood (CSL) scoring

rule

Scsl =
T∑
t=1

I(yt ∈ Bt) log

[
k∑

j=1

ωjpj(yt;θj)

]
+ I(yt ∈ Bc

t ) log

∫
Bc

t

[
k∑

j=1

ωjpj(y;θj)

]
dy (7)

instead of imposing the restriction κc ≥ κ. The CSL approach produces an accurate den-

sity estimate for the focus region Bt but might be inadequate outside of it as demonstrated

by Opschoor et al. (2017) in their Figure 1. The advantage of our proposed approach is

that it aims to produce a density that is accurate on its entire support.
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Kapetanios et al. (2015) model the weights using a known basis {ηs(y, ζs)}∞s=1, which

is parameterized by ζs and is non-negative: ηs(y, ζs) ≥ 0. In our notation, they consider

ωj(yt) = νj0 +
∞∑
s=1

νjsηs(yt, ζs) (8)

with positive parameters νjs ≥ 0 that still guarantee a well-defined combined density, i.e.,

∫ k∑
j=1

ωj(y)pj(y;θj)dy = 1. (9)

This setup allows estimation of the parameters νjs and ζs with the usual Normal asymp-

totics as given by Theorem 1 in Kapetanios et al. (2015). In contrast, our constraints

on the kurtosis and the skewness restrict the parameter space and result in non-standard

asymptotics (see the online supplement for the details). We do not model the weights as

functions of yt but rather focus on the effects of the high moment restrictions.

Bassetti et al. (2018) give another alternative for correcting the distortion produced

by the combination. They introduce a beta mixture transformed linear pool and use

Bayesian methods to estimate the parameters. We cannot compare their approach directly

to our optimization problem (6); however, their aggregated cdf admits the following pdf

representation (see equation 5 in Bassetti et al., 2018),

pB(y;ω,θ,w,µ,ν) =
S∑

s=1

wspc(y;ω,θ)Bµs,νs(Pc(y;ω,θ)), (10)

where Bµ,ν(x) = B(µν, (1−µ)ν)−1xµν−1(1−x)(1−µ)ν−11[0,1](x) is the pdf of a beta function

with mean µ and precision ν, Pc is the cdf of the combination corresponding to pc, ws is the

weight assigned to the s-th function in the beta mixture, and w, µ, and ν are the vectors

that collect the additional parameters across all mixtures. The correction (10) is flexi-

ble enough to recover the underlying distribution, including a heavy-tailed distribution,

however, it comes at the expense of the tractability of the combination weights ω.

3.3 Theoretical results: consistency and rate of convergence

In this section, we establish consistency and the rate of convergence of the HMC density

combination, which is defined by solving optimization problem (6). Our results cover the

corresponding unconstrained estimator as a special case. All the proofs are provided in

the online supplement.

Suppose that the estimates of the model parameters converge in probability as T

tends to infinity: θ̂T
P→ θ∗, for some fixed finite vector θ∗, which can be thought of as the

“population” vector of the model parameters. We first focus on the case where κ and γ
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are constants. We define C(θ) as the constraint set for the weights ω in optimization

problem (6) and denote by ω̂T the HMC optimal weights, that is, the solution to (6) but

with θ replaced by θ̂T . The corresponding population solution is:

ω∗ = argmin
ω∈C(θ∗)

KLIC(ω,θ∗), (11)

where KLIC is defined in (3). Estimated weights ω̂T and population weights ω∗ result in

the following estimated and population versions of the density combination:

f̂T (yT ) =
k∑

j=1

ω̂Tjpj(yT ; θ̂Tj) and f ∗(yT ) =
k∑

j=1

ω∗
jpj(yT ;θ

∗
j ). (12)

We let ∥ · ∥1 denote the functional L1 norm. Theorem 3.1 establishes consistency of f̂T

under mild regularity and continuity assumptions, which we provide and discuss in the

appendix. This result does not require that the true density is represented as a linear

combination of the individual densities under consideration.

Theorem 3.1. Suppose that assumptions A1–A6 in the appendix are satisfied. Then,

KLIC(f̂T )
P→ KLIC(f ∗) as T → ∞. Moreover, if the solution to the population prob-

lem (11) is unique, then ∥f̂T − f ∗∥1
P→ 0 as T → ∞.

We now consider the setting where the true density can be represented as a combina-

tion of the individual densities. More specifically, suppose that

f(yT ) =
k∑

j=1

ω∗
jpj(yt;θ

∗
j ), (13)

for some weight vector ω∗. We also allow κ and γ to change with T , matching the

implementation of the HMC approach in Section 3.1: κ = κ̂T−δT and γ = γ̂T−sign(γ̂T )ϵT .

The following result demonstrates that HMC can asymptotically recover the true density,

and establishes the T−1/2 rate of convergence.

Theorem 3.2. Suppose that the true density f admits a unique representation (13). If

assumptions A1–A6 in the appendix are satisfied, then ∥f̂T − f∥1
P→ 0 as T → ∞. If

assumptions A7–A12 are also satisfied, then ∥f̂T − f∥1 = OP

(
T−1/2

)
.

In the online supplement we provide additional results on the limiting distribution of

the HMC weights. The constraints on kurtosis and skewness imply non-standard asymp-

totics, where the limiting normal distribution is projected onto a tangent cone.
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4 An application to forecasting volatility

Density forecast combination methods are often applied to financial data due to its size

and availability. Recent examples include Geweke and Amisano (2010), Geweke and

Amisano (2011), Kapetanios et al. (2015), Crisóstomo and Couso (2017), and Bassetti

et al. (2018). We follow their suit and use S&P 500 returns in our empirical application,

which illustrates the benefits of the proposed HMC approach.

4.1 Empirical methodology

Data. We use the daily percent log returns of the Standard and Poors 500 index (S&P

500). The sample covers the S&P 500 returns from January 3, 2000, until December 4,

2020. Daily returns and realized volatility measures are from the “Realized Library” of

the Oxford-Man Institute.3 As recommended in Shephard and Sheppard (2010), we use

the realized kernel as the realized volatility measure. For more information on realized

kernels, see Barndorff-Nielsen et al. (2008) and Barndorff-Nielsen et al. (2009).

Volatility models. The returns at time t can be expressed as

yt = µ+
√
vtηt, ηt|Ft−1 ∼ F (0, 1), (14)

where F (0, 1) is a distribution with mean 0 and variance 1, and Ft−1 is a filtration up

to time t − 1. We use two main volatility model sets to forecast the returns and the

conditional volatility of the S&P 500 returns. The first set is based on the GARCH model

introduced by Bollerslev (1986):

vGARCH
t = ω + α(yt−1 − µ)2 + βvGARCH

t−1 , (15)

which is the workhorse of volatility models. The statistical properties relevant to GARCH

models are discussed in Ling and McAleer (2003). Our second model set is based on the

EGARCH approach of Nelson (1991):

log vEGARCH
t = ω + γεt−1 + α(|ηt−1| − E |ηt−1|) + β log vEGARCH

t−1 . (16)

One of the main problems with EGARCH models is that they have no established an-

alytical asymptotic properties that are independent of the error distributions considered.

Specifically, the statistical properties of the (quasi-) maximum likelihood estimator of the

EGARCH parameters are not available under general conditions. This issue is discussed

in McAleer and Hafner (2014). Typically the properties of EGARCH models have to be

investigated empirically, as, for example, in Anyfantaki and Demos (2016). Despite these

3All the data for this section were obtained from the Oxford-Man Institute’s Realized Library.
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known problems, EGARCH models have remained popular in empirical finance. In our

empirical analysis, we include the EGARCH approach whilst acknowledging its pitfalls.

We also consider two more recent models for vt that explicitly include a model-free

estimator of the variance, namely, the realized measure of daily volatility: the HEAVY

model of Shephard and Sheppard (2010) and the realized GARCH (RGARCH) model

of Hansen et al. (2012). The reason for incorporating realized measures in the GARCH

model is that they tend to provide a better estimate of daily volatility than the traditional

squared daily returns. The dynamics for the conditional variance vt are similar in the

HEAVY and RGARCH models: both feature the realized measure instead of the squared

realized returns in the variance equation (15) of the GARCH model. More specifically,

vRGARCH
t = c+ α(yt−1 − µ)2 + βvRGARCH

t−1 + δ rvt−1, and

vHEAVY
t = ch + βhv

HEAVY
t−1 + δhrvt−1,

where rvt−1 is the realized measure of volatility. The above equaitons are sufficient for

producing one-step-ahead forecasts that we need for our analysis. The two models differ

in their treatment of the realized measure’s dynamics: HEAVY features GARCH-type

dynamics for the expectation of realized volatility whereas RGARCH models realized

volatility as a function of the conditional variance, vt, plus a leverage component.

Distributions. We consider several distributions F for the GARCH, EGARCH, HEAVY,

and RGARCH models. In addition to the Gaussian, we also use fat-tailed distributions:

Student-t, Laplace, and skewed-t (Hansen, 1994). In all the volatility models, we set the

mean, µ, of the distribution to zero. The standard deviation of the distribution is σt =
√
vt, where vt are estimated for each model. For the Gaussian, t, and Laplace distributions

the skewness is zero, while the kurtosis is 3, 6/[(df − 4) + 3], or 6, respectively, where df

are the degrees of freedom for each t-distribution used in our GARCH-type models. We

take the skewness and kurtosis for each model with the Hansen skewed-t distribution

directly from Hansen (1994). The moments described above are needed for two purposes:

first, they are used to specify the constraint set in the HMC optimization problem (6);

and second, they are used to compute the moments of the density combinations.4

HMC Estimation. We compute three versions of the HMC weights by maximizing the

criterion in optimization problem (6) subject to either a skewness constraint (HMCS),

a kurtosis constraint (HMCK), or both constraints simultaneously (HMC). To speed up

the computation of the solution to problem (6), we supply the optimization solver with

“warm start” solutions - HMC0, HMCK0, and HMCS0 - one for each of the three versions

4Given an individual model and a weight-estimation window, we average the corresponding moments
over the window in order to arrive at one set of moments for the model.
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of the HMC weights.5 For a given choice of the constraint set in problem (6), we produce

the “warm start” solution using the following approach:

Step 1: From the set available individual models, we identify the ones that satisfy the

constraint set in (6).

Step 2: On the reduced set of models identified in Step 1, we compute the optimal combi-

nation weights according to the CSL scoring rule of Opschoor et al. (2017) using

a 15% tail threshold.6

Step 3: We assign zero weights to the models that were not selected in Step 1.

Forecasting method. We use rolling samples of 1250 trading days (5 years of trad-

ing data) to estimate all of the volatility model parameters and produce one-step-ahead

forecasts. In total, we consider 16 forecasting models: as described above, we use four

conditional volatility models and for each we use four possible distributions. We construct

one-step-ahead individual predictive densities with the parameter estimates of each model

over the remaining sample, thus covering the period from January 2005 to December

2020. Each evaluated density combination method combines these individual predictive

densities by estimating the weights over windows with Twin = 250, 500, 750, and 1000

observations, which roughly correspond to between 1 and 4 years of trading data. This

last step is repeated by moving the weight-estimation window over the entire forecast-

ing sample. For example, with the 250-observation window, the first combined predictive

density combination is produced for January 5, 2006, and the last – for December 4, 2020.

The sample skewness and kurtosis required to specify the thresholds are computed using

the weight-estimation window.

4.2 Empirical results

We compare our methodology with the equally weighted approach (EW), JMV weights

of Jore et al. (2010), Log-Score combination weights of Geweke and Amisano (2011)

computed using the Conflitti et al. (2015) algorithm, and two version (CSL15 and CSL25)

of the censored likelihood approach proposed in Diks et al. (2011) and Opschoor et al.

(2017). Armed with these weights, we compute the corresponding log-score, measure

Value-at-Risk (VaR), as well as plot the skewness and kurtosis of the density combinations

and compare them with the corresponding sample estimates.

First, the log-score of each of density combination is computed for every forecast time

period. The second column of Table 2 reports the average log-score for each approach

(relative to the maximum) over all the out-of-sample forecast periods. Naturally, the

Log-Score weights perform the best when evaluated using their own objective criterion.

5We use MATLAB’s nonlinear programming solver fmincon with the default ‘interior-point’ algorithm.
6We compute the optimal weights using the Conflitti et al. (2015) algorithm.
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Table 2: Relative log-score, skewness and kurtosis of 1-day density forecasts
for S&P 500

Average Skewness Kurtosis
Weights log-score min(γc) γ̄c max(γc) min(κc) κ̄c max(κc)

Twin = 250 obs. (1 year)
Sample – -2.76 -0.36 0.71 2.83 5.78 25.72
Log-Score 1 -0.14 -0.01 0 3.20 4.17 6.44
HMC 0.962 -0.44 -0.08 0 2.99 6.23 10.83
HMCK 0.984 -0.30 -0.03 0 3.00 6.06 10.85
HMCS 0.964 -0.49 -0.07 0 3.00 5.14 10.83
CSL15 0.992 -0.17 -0.01 0 2.99 4.86 7.90
CSL25 0.994 -0.21 -0.01 0 3.01 5.09 8.69
JMV 0.972 -0.12 -0.07 -0.01 4.00 5.66 6.94
EW 0.968 -0.14 -0.08 -0.01 3.99 5.66 7.14

Twin = 500 obs. (2 years)
Sample – -1.35 -0.40 0.29 3.45 6.85 15.85
Log-Score 1 -0.08 -0.01 0 3.34 4.18 6.31
HMC 0.950 -0.39 -0.10 0 3.07 6.73 9.21
HMCK 0.987 -0.23 -0.03 0 3.07 6.56 11.30
HMCS 0.922 -0.49 -0.17 0 3.24 6.01 9.33
CSL15 0.994 -0.07 0.00 0 3.05 4.83 7.03
CSL25 0.994 -0.05 0.00 0 3.16 5.04 7.15
JMV 0.975 -0.12 -0.07 -0.01 4.02 5.65 6.79
EW 0.972 -0.12 -0.08 -0.01 4.00 5.63 6.52

Twin = 750 obs. (3 years)
Sample – -1.16 -0.38 0.06 4.03 7.71 18.56
Log-Score 1 -0.03 0 0 3.54 4.19 5.61
HMC 0.934 -0.35 -0.11 0 3.25 7.32 9.85
HMCK 0.984 -0.24 -0.05 0 3.25 6.72 9.85
HMCS 0.934 -0.49 -0.15 0 3.52 6.40 9.42
CSL15 0.991 -0.03 0 0 3.25 4.76 6.50
CSL25 0.993 -0.04 0 0 3.47 4.95 6.83
JMV 0.971 -0.12 -0.07 -0.02 4.07 5.67 6.57
EW 0.968 -0.12 -0.08 -0.02 4.06 5.65 6.30

Twin = 1000 obs. (4 years)
Sample – -1.18 -0.37 -0.03 4.42 8.42 16.11
Log-Score 1 -0.04 0 0 3.65 4.18 5.84
HMC 0.915 -0.33 -0.13 0 3.44 7.26 10.13
HMCK 0.975 -0.21 -0.05 0 3.43 6.78 10.13
HMCS 0.913 -0.46 -0.17 0 3.73 6.14 9.07
CSL15 0.991 -0.04 0 0 3.41 4.82 6.44
CSL25 0.993 -0.04 0 0 3.80 5.01 6.62
JMV 0.970 -0.10 -0.07 -0.02 4.59 5.72 6.45
EW 0.967 -0.11 -0.08 -0.03 4.58 5.70 6.13

Notes: Twin is the number of observations used to estimate the combination
weights.
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The HMC weights, specifically HMCK, perform better than the EW and JMV weight-

ing schemes. However, the average log-scores of CSL15 and CSL25 are closer to that of

the Log-Score combination than the HMC ones. This phenomenon can be explained by

the greater (in magnitude) average skewness and kurtosis produced by the HMC combi-

nations relative to the other weighting schemes, as seen in columns 4 and 7 of Table 2. As

shown by in columns 3 and 8 in Table 2, relative to the CSL and Log-Score approaches,

HMC and HMCS have lower (negative) minimum skewness, min(γc), while HMC and

HMCK have higher maximum kurtosis, min(κc). Furthermore, their averages, γ̄c and

κ̄c, are consistently closer to the corresponding sample averages. Compared to the HMC

approach, weighting schemes such as EW and Log-Score tend to produce less skewness

and kurtosis. These observations hold for all windows Twin.

(a) Twin = 250 obs (1 year) (b) Twin = 250 obs (1 year)

(c) Twin = 500 obs (2 years) (d) Twin = 500 obs (2 years)

Figure 4: Sample skewness versus skewness of the combination for different weight-
estimation windows Twin. Graphs in the left panel illustrate the skewness of the HMC and
HMCS combinations. Graphs in the right panel illustrate the skewness of the Log-Score
and CSL15 combinations. The sample skewness is estimated over Twin data points.

Next, we construct the skewness and kurtosis of each combined density forecast, which

are implied by the estimated weights and the moments of the individual model densities.
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Figures 4 and 5 plot the sample skewness and kurtosis, respectively, and compare them

to the skewness and kutosis of the density combinations corresponding to the HMC(K/S)

weights, the Log-Score weights, and the CSL15 weights.7

(a) Twin = 250 obs (1 year) (b) Twin = 250 obs (1 year)

(c) Twin = 500 obs (2 years) (d) Twin = 500 obs (2 years)

Figure 5: Sample kurtosis versus kurtosis of the combination for different weight esti-
mation windows Twin. The left panel illustrates the kurtosis of the HMC and HMCK
combinations. The right panel illustrates the kurtosis of the Log-Score and CSL15 com-
binations. The sample kurtosis is estimated over Twin data points.

HMC weighting schemes produce densities with skewness and kurtosis that closely

track their sample counterparts. As expected, HMCK is better at tracking kurtosis while

HMCS is better at tracking skewness, however, the HMC approach does well at tracking

both. The tracking performance of the HMC approach is much better than that of other

weighting schemes such as CSL15, Log-Score, or JMV. As illustrated by Figure 4, this

difference in performance is especially striking in the case of skewness, where CSL15

and Log-Score combined densities are nearly symmetric. Whilst Log-Score and CSL15

combined densities do produce some kurtosis, it is lower than that of HMC and HMCK.

7For brevity, we focus on Twin = 250 and 500. Similar results hold for Twin = 750 and 1000.
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Importantly, the observations presented above hold regardless of the sample size used to

estimate the weights, demonstrating that constrained log-score optimization provides a

solid density combination methodology that can achieve a comparable level of skewness

and kurtosis to what is observed in the data.

Finally, we evaluate the performance of the forecast combinations in the left tail of

the distribution by considering the 99% 1-day Value-at-Risk (VaR) estimates:

V̂aR
i,1−q

t = µ̂+
√

v̂it ηq, (17)

where ηq is the q
th quantile of the assumed conditional distribution. Here, µ̂ is the forecast

conditional mean return, as expressed in (14), and v̂it is the forecast conditional variance

with i = GARCH, EGARCH, HEAVY, and RGARCH. We set µ̂ to zero for all models

and distributions. The weighted average of the VaR forecasts from individual predictive

densities is not generally equal to the VaR forecast of the combination density. We over-

come this difficulty by simulating ten thousand returns in proportion to the combination

weights. Each return is randomly generated using the relevant forecast moments of the

corresponding model for one of the four distributions considered. The 1% quantile of the

distribution of the simulated returns is compared to the actual returns for each period in

the forecasting sample. We compute the number of violations, i.e., the number of times

that the actual returns are to the left of the corresponding VaR forecasts. We also report

the Christoffersen (1998) conditional coverage test, which assesses whether violations are

happening in clusters.

The results for the 1% VaR are presented in Table 3. HMC combination weights

outperform the other weighting schemes, exhibiting violation rates that are consistently

the closest to the 1% target. This observation is true whether the weights are optimized

over a small or large sample (Twin). When the weight-estimation window is small, i.e., 1 to

2 years, the best performing HMC scheme is HMCK. When the weight-estimation window

is large, the HMC scheme with both constraints performs the best. This observation

reinforces the notion that fat-tails caused by excess kurtosis are a dominant problem in

financial returns time-series, more so than skewness. As seen from the earlier graphs,

there is much more variation in excess kurtosis than in skewness.

The CLS weighting scheme consistently overestimates the 1% target violation rate

for small weight-estimation windows, with values between 1.25 and 1.34 for Twin = 1

and 2 years, respectively. JMV and EW forecast combinations produce violation rates

that are consistently below the 1% target threshold, while the violation rates of the Log-

Score weighting scheme are consistently above 1.45%. All weighting schemes pass the

conditional coverage test for all values of Twin.

We also consider the 2.5% VaR. The HMC weights, especially HMCK, perform con-

sistently well relative to the other combination methods, and outperform the competitors
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Table 3: 1-day forecast 99% VaR estimates for S&P 500

Combinations # viol. at 1% CC test # viol. at 1% CC test

Twin = 250 (1 year) Twin = 500 (2 years)
Log-Score 59 (1.57) 0.76 57 (1.63) 0.74
HMC 46 (1.23) 0.18 52 (1.49) 0.63
HMCK 41 (1.09) 0.75 38 (1.09) 0.74
HMCS 64 (1.71) 0.58 59 (1.69) 0.16
CSL15 47 (1.25) 0.76 47 (1.34) 0.83
CSL25 48 (1.28) 0.78 47 (1.34) 0.87
JMV 24 (0.64) 0.87 30 (0.86) 0.85
EW 27 (0.72) 0.87 33 (0.94) 0.79

Twin = 750 (3 years) Twin = 1000 (4 years)
Log-Score 48 (1.48) 0.84 46 (1.53) 0.86
HMC 43 (1.32) 0.65 30 (1.00) 0.72
HMCK 35 (1.08) 0.75 29 (0.97) 0.74
HMCS 38 (1.17) 0.75 32 (1.07) 0.76
CSL15 36 (1.11) 0.92 29 (0.97) 0.94
CSL25 35 (1.08) 0.90 27 (0.90) 0.92
JMV 23 (0.71) 0.88 19 (0.63) 0.92
EW 23 (0.71) 0.88 19 (0.63) 0.92

Notes: Twin is the number of observations used to estimate the combination
weights. The table reports both the number and the proportion of times that
the VaR forecast exceeds the 1% quantile (the corresponding percentage of
violations is provided in parentheses). The CC tests report the p-value for
the conditional coverage test (Christoffersen, 1998).

for most estimation-window sizes Twin (see Table 6 in the online supplement).

5 Concluding remarks

In this paper, we show that combining many density forecasts tends to have a signifi-

cant impact on higher moments of the combination, namely, skewness and kurtosis, even

when the individual densities are skewed and/or heavy-tailed. We propose a solution

that preserves the characteristics of the distribution, such as fat tails or asymmetry, by

constraining the weights of the combination to achieve a minimum level of kurtosis or a

certain level of skewness.

We provide a general methodology to combine multiple density forecasts based on

optimizing the average sample Kullback–Leibler information criterion subject to a con-

straint on the skewness and/or kurtosis of the combination. The proposed High Moment

Constraint (HMC) approach delivers a solution that is accurate in forecasting the overall

distribution, including characteristics such as heavy tails. Moreover, we derive the statis-

tical properties of the resulting density combinations, including consistency and the rate
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of convergence.

We evaluate the weights through an empirical illustration of forecasting the conditional

returns of the S&P 500 index. We observe that our proposed HMC approach is consistently

on par with the competing density combination methods, outperforming them for smaller

weight-estimation windows. Moreover, our approach produces densities with skewness

and kurtosis that closely track their sample counterparts.

Appendix: theoretical assumptions

We impose mild continuity and regularity assumptions for the consistency result in The-

orem 3.1. We write B(θ∗) for a closed ball around θ∗ whose positive radius is allowed to

be arbitrarily small. Vector θ∗ is defined in assumption A2 and can be thought of as the

“population” vector of the model parameters.

A1: {yt}∞t=1 is a stationary ergodic sequence.

A2: The estimates of the model parameters converge in probability as T tends to infinity:

θ̂T
P→ θ∗, for some fixed finite vector θ∗.

A3: For θ ∈ B(θ∗) and all j ≤ k, the first four moments of densities pj(·;θj) are well-

defined continuous functions of θj, and the corresponding variances are nonzero.

A4: For θ ∈ B(θ∗), j ≤ k and each fixed y, functions log pj(y;θj) are continuous in θj.

A5: E supθ∈B(θ∗)

∣∣ log pj(y1;θ)∣∣ < ∞ for j = 1, . . . , k.

A6: E supθ∈B(θ∗) pj(y1;θ) < ∞ for j = 1, . . . , k.

We note that A3 and A4 are standard continuity assumptions relating to function KLIC(ω,θ)

and constraint set C(θ). If the constraint in optimization problem (6) involves only the

skewness of the density combination, then assumption A3 can be relaxed to only concern

the first three moments. Assumptions A5 and A6 are needed to control the behavior

of function KLIC(ω,θ) near its expected value. For our rate of convergence result in

Theorem 3.2, we impose additional assumptions.

A7: {yt}∞t=1 is an m-dependent sequence for some finite m.

A8: θ̂T = θ∗ +Op(T
−1/2).

A9: min{δT , ϵT} ≥ 0, max{δT , ϵT} = o(1), and T−1/2 = o
(
min{δT , ϵT}

)
.

A10: For θ ∈ B(θ∗) and all j ≤ k, the first four moments of densities pj(·;θj) are

continuously differentiable functions of θj.

A11: All of the elements of the vector ω∗ are positive.
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A12: Function KLIC(ω,θ) admits a quadratic Taylor approximation at (ω∗,θ∗).

We note that A7-A12 are standard dependence, regularity and smoothness assumptions

that are needed to establish the T−1/2 rate of convergence.
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ONLINE SUPPLEMENT

Appendix A

Whereas the first moment of the combination, µc, is simply a linear combination of

the k individual density means, other moments have more compicated expressions. Sup-

pose that the j-th density has mean µj, variance σ2
j , skewness γj, kurtosis κj, and s-th

centered moment mj,s. The following proposition uses the definition of the moments and

provides formulas for the moments of the aggregate density.

Proposition A.1. The moments of the combined density pc(·;ω,θ) are

(a) the mean: µc =
∑k

j=1 ωj µj,

(b) the variance: σ2
c =

∑k
j=1 ωj (σ

2
j + (µj − µc)

2),

(c) the skewness:

γc =
k∑

j=1

ωj

[
γj σ

3
j + 3(µj − µc) σ

2
j + (µj − µc)

3
]
σ−3
c , (A.18)

(d) the kurtosis:

κc =
k∑

j=1

ωj

[
κj σ

4
j + 4(µj − µc) γj + 6 (µj − µc)

2 σ2
j + (µj − µc)

−4
]
σ−4
c , (A.19)

(e) the s-th centered moment: mc,s =
∑k

j=1 ωj

∑s
l=0

(
s
l

)
(µj − µc)

l mj,s−l, where
(
s
l

)
is the

binomial coefficient given by s!/
[
l!(s− l)!

]
.

Appendix B

In this section, we provide proofs for all of the theoretical results in the paper. We

also establish an additional result on the limiting distribution of the HMC weights.
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B.1 Proof of Theorem 2.1 and Corollary 2.2

Proof. We start with the result for γc, the skewness of the combination. We define

µ̄ =
1

k

k∑
j=1

µj, v̂µ =
1

k

k∑
j=1

(
µj − µ̄

)2

, γ̂µ =
1

k

k∑
j=1

(
µj − µ̄

)3

v̂
3/2
µ

, v̂∗ =
1

k

k∑
j=1

vj

and let R̂ = v̂µ/v̂
∗. It follows from (A.18) that

γc =
1

k

k∑
j=1

γj
[
vj/v̂

∗]3/2[1 + R̂
]−3/2

+
4

k

k∑
j=1

(µj − µ̄)vj + γ̂µ

[
1 + R̂−1

]−3/2

. (B.20)

By the law of large numbers and the continuous mapping theorem, we have

R̂ = R + op(1), γ̂µ = γµ + op(1), v̂∗ = v∗ + op(1), (B.21)

1

k

k∑
j=1

γj
[
vj/v̂

∗]3/2 = µγ E
[
ξ3
]
+ op(1) and

1

k

k∑
j=1

(µj − µ̄)vj = op(1),

as T → ∞. Thus, we can rewrite (B.20) as

γc = µγ E
[
ξ3
][
1 +R

]−3/2
+ γµ

[
1 +R−1

]−3/2
+ op(1),

which gives the desired result.

We now move to κc, the kurtosis of the combination. It follows from (A.19) that

κc =
(1
k

k∑
j=1

κj

[
vj/v̂

∗]2)[1 + R̂
]−2

+ 4
(1
k

k∑
j=1

(µj − µ̄)γj

)
(B.22)

+6
(1
k

k∑
j=1

(µj − µ̄)2vj

)[
v̂µv̂

∗]−1
R̂
[
1 + R̂

]−2

+ κ̂µ

[
1 + R̂−1

]−2

.

By the law of large numbers and the continuous mapping theorem, we have

v̂µ = vµ + op(1), κ̂µ = κµ + op(1), v̂∗ = v∗ + op(1),

1

k

k∑
j=1

κjv
2
j = µκ

(
v∗2 + vv

)
+ op(1),

1

k

k∑
j=1

(µj − µ̄)γj = op(1),

and
1

k

k∑
j=1

(µj − µ̄)2vj = vµv
∗ + op(1).

Combining these stochastic bounds with those in (B.21), and applying the continuous
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mapping theorem again, we can rewrite (B.22) as

κc = µκ

[
1 + vv/v

∗2
][
1 +R

]−2

+ κµ

[
1 +R−1

]−2

+ 6R
[
1 +R

]−2

+ op(1),

which yields the desired result.

The first result of Corollary 2.2 follows from Theorem 2.1 and the fact that vµ/v
∗ → ∞

implies R → ∞. To establish the second result, we note that(
E[ξ2]

)3/2

≤ E[ξ3] ≤
(
E[ξ4]

)3/4

,

which we can rewrite as

1 ≤ E[ξ3] ≤
(vv + v∗2

v∗2

)3/4

.

Consequently, when vv/v
∗2 → 0, we have E[ξ3] → 1. The second result of Corollary 2.2

then follows from Theorem 2.1 and the fact that vµ/v
∗ → 0 implies R → 0.

B.2 Proof of Theorem 2.3

Proof. For brevity of the exposition, we focus on the skewness and derive the result for

G = 1 and β fixed at a positive value. The remaining cases and the derivations for the

kurtosis follow by analogous arguments with only minor modifications. We define

µ̄ = (1/k)
k∑

j=1

µ̂jT , σ2
µ = (1/k)

k∑
j=1

(
µ̂jT − µ̄

)2

, γµ = (1/k)
k∑

j=1

(
µ̂jT − µ̄

)3

σ3
µ

and R̃ = σ2
µ/σ

2. We note that µ̄ = op(1) by the law of large numbers. It follows

from (A.18) that

γc = γp

[
1 + R̃

]−3/2

+ γµ

[
1 + (R̃)−1

]−3/2

. (B.23)

We define x̄j =
∑T−1

t=1 xjt/[T − 1] and ηjT = [T − 1](
∑T−1

t=1 (xjt − x̄j)
2)−1. We write µ̂jT

in the form µ̂jT = βXjT + ηjT ξjT and note that maxj≤k Eξ2jT = O(k/T ). The last bound

implies that maxj≤k |ξjT | = Op(kT
−1/2), for example, by Lemma 2.2.2 in van der Vaart and

Wellner (1996). The above stochastic bound simplifies to op(1) by the assumptions on k

and T . A similar argument, together with the law of large numbers, gives maxj≤k |ηjT | =
Op(1). It follows that

σ2
µ = β2(1/k)

k∑
j=1

X2
jT + op(1).
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Another application of the law of large numbers gives σ2
µ = β2σ2

X + op(1), which implies

R̃ = βR + op(1). Similarly,

γµ = (1/k)
k∑

j=1

(βXjT

σµ

)3

+ op(1) = (1/k)
k∑

j=1

(XjT

σX

)3

+ op(1) = γX + op(1).

We conclude the proof by combining the expressions for R̃ and γµ with (B.23).

B.3 Proof of Theorem 3.1

Proof. To simplify the presentation, we will write θ̂ instead of θ̂T . We will also use nota-

tion from the empirical process theory: given a function h, we let PTh = (1/T )
∑T

t=1 h(yt).

Similarly, we will write Ph for Eh(y1), i.e., we let P denote the underlying marginal dis-

tribution of the observed yi. For the remainder of the proof, all of the ω are assumed to

lie in the set W = {ω :
∑

j≤k ωj = 1, ωj ≥ 0, j = 1, ..., k}.
To simplify the notation, we let pω,θ denote the function pc(·;ω,θ) and define

G(ω,θ) = P log

[
pω,θ

pω∗,θ∗

]
, GT (ω,θ) = PT log

[
pω,θ

pω∗,θ∗

]
.

We note that

G(ω,θ) = KLIC(ω∗,θ∗)−KLIC(ω,θ) and (B.24)

GT (ω,θ) = KLIC(ω∗,θ∗)−KLIC(ω,θ).

Thus, ω∗ maximizes function G(·,θ∗) over the constraint set C(θ∗), while ω̂ maximizes

function GT (·, θ̂) over C(θ̂). Noting that θ̂ ∈ B(θ∗) with probability tending to one and

G(ω∗,θ∗) = 0, and taking into account parts (i) and (ii) of Lemma B.1, we derive

G(ω̂, θ̂) = GT (ω̂, θ̂) + op(1) = max
ω∈C(θ̂)

GT (ω, θ̂) + op(1) = max
ω∈C(θ̂)

G(ω, θ̂) + op(1)

= max
ω∈C(θ∗)

G(ω,θ∗) + op(1) = G(ω∗,θ∗) + op(1)

= op(1). (B.25)

Equality (B.24) then implies KLIC(ω̂, θ̂) = KLIC(ω∗,θ∗)+op(1) or, equivalently, KLIC(f̂T ) =

KLIC(f ∗) + op(1), which establishes the first result of Theorem 3.1.

We now move to the part of Theorem 3.1 where the solution to problem (11) is

assumed to be unique. We fix an arbitrary positive δ and let Bδ(ω
∗) denote an open ball

of radius δ around ω∗. It follows from part (iii) of Lemma B.1 that there exists a positive

constant cδ, such that maxω∈C(θ̂)\Bδ(ω∗) G(ω, θ̂) < −cδ with probability tending to one.

However, stochastic bound (B.25) implies G(ω̂, θ̂) > −cδ with probability tending to one.
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Hence, with probability tending to one, ω̂ ∈ Bδ(ω
∗). As this argument holds for every

positive δ, we have established that ω̂ converges to ω∗ in probability.

Pointwise continuity of functions y 7→ pj(y,θ) with respect to θ and integrability of

the density functions pj(·,θ) imply, by the dominated convergence theorem, that function

(ω,θ) 7→
∫
|
∑k

j=1 ωjpj(y,θ) −
∑k

j=1 ω
∗
jpj(y,θ

∗)|dy is continuous in (ω,θ). Since (ω̂, θ̂)

converges to (ω∗,θ∗) in probability, we derive that

∫ ∣∣ k∑
j=1

ω̂jpj(y, θ̂)−
k∑

j=1

ω∗
jpj(y,θ

∗)
∣∣dy = op(1)

by the continuous mapping theorem. This establishes ∥f̂T − f ∗∥1 = op(1), which is the

second result of Theorem 3.1.

B.4 Proof of Theorem 3.2

Proof. Let γ∗ and κ∗ denote the skewness and kurtosis of the true density f . Because κ

and γ depend on T , we will write CT (θ̂) for the constraint set in the HMC optimization

problem (6). We will also write C(θ∗) for the “population” version of the constraint

set where κ and γ are replaced by κ∗ and γ∗, respectively. We note that κ ≤ κ∗ and

|γ| ≤ |γ∗| by the classical rate of convergence results for the sample skewness and kurtosis,

together with the assumption imposed on δT and ϵT . Thus, the weights of the true

density combination (13) are also the solution to optimization problem (11). We also

note that CT (θ̂) converges to C(θ∗) in probability with respect to the Hausdorff distance.

Consequently, despite the dependence of the constraint set CT (θ̂) on T , the proof of proof

of Theorem 3.1 still goes through, leading to ω̂ = ω∗ + op(1) and ∥f̂T − f∥1 = op(1).

As before, we only consider weights ω in the set W , so that the elements of ω are

nonnegative and sum to one. Note that for all the ω under consideration, we can write

ω1 = 1 −
∑k

j=2 ωj, and thus, every function of ω can be expressed in terms of ω−1 =

(ω2, ..., ωk)
⊤. Because ω∗

−1 is a maximum of the function ω−1 7→ G(ω,θ∗), we have
∂G

∂ω−1
(ω∗,θ∗) = 0. Hence, restricting out attention to ω ∈ W , we can write a Taylor

expansion for G(ω,θ) at (ω∗,θ∗) in the following form:

G(ω,θ) = G(ω∗,θ∗) + (θ − θ∗)⊤
[∂G
∂θ

(ω∗,θ∗)
]

(B.26)

+
1

2
(ω−1 − ω∗

−1)
⊤
[ ∂2G

∂ω2
−1

(ω∗,θ∗)
]
(ω−1 − ω∗

−1)

+O
(
∥ω − ω∗∥ ∥θ − θ∗∥

)
+O

(
∥θ − θ∗∥2

)
+ o

(
∥ω − ω∗∥2

)
.
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Because θ̂ = θ∗ +Op(T
−1/2), we can then derive

G(ω, θ̂)−G(ω∗, θ̂) = +
1

2
(ω−1 − ω∗

−1)
⊤
[ ∂2G

∂ω2
−1

(ω∗,θ∗)
]
(ω−1 − ω∗

−1) (B.27)

+Op(T
−1/2∥ω − ω∗∥) +Op(T

−1) + o(∥ω − ω∗∥2).

For simplicity of the notation, we denote densities pj(·;θ∗) by pj(·). We observe that

∂2G

∂ω2
−1

(ω∗,θ∗) = −P
[(
p2 − p1, . . . , pk − p1

)⊤(
p2 − p1, . . . , pk − p1

)
f−2

]
. (B.28)

The above matrix is nonsingular, because otherwise one of the densities pj could be

expressed as a linear combination of the rest of the densities, which, in view of assumption

A11, would contradict the uniqueness ω∗ as the solution to the population problem (11).

Given expressions E1 and E2, we will write E1 ≲ E2 to mean that there exists a finite

universal constant c, such that E1 ≤ cE2. We again borrow notation from the empirical

process theory, and denote T 1/2(PTh− Ph) by νTh for every function h.

We now establish the T−1/2 rate of convergence for ω̂. Let hω,θ = log[pω,θ/pω∗,θ∗ ].

According to Theorem 5.52 in van der Vaart (2000), in view of consistency of ω̂, ap-

proximation (B.27), and non-singularity of [∂2G/∂ω2
−1](ω

∗,θ∗), it is only sufficient to

derive

E sup
∥ω−1−ω∗

−1∥≤δ,θ∈B(θ∗)

∣∣νT (hω,θ − hω∗,θ)
∣∣ ≲ δ. (B.29)

By the m-dependence of {yt}, we can write the empirical process νT as a sum of m+1 em-

pirical processes, where each one is based on i.i.d. random variables, such as {y1+s(m+1), s =

0, 1, ...}. It is sufficient to establish the above bound for each such process.

We restrict our attention to a small closed ball around ω∗
−1, which we denote by B(ω∗

−1).

We choose the radius of B(ω∗
−1) to be positive but sufficiently small to ensure ωj > 0

for every j and every ω ∈ W such that ω−1 ∈ B(ω∗
−1) – this can be achieved because of

assumption A11. We write ḣω,θ(y) for the first derivative of the function ω−1 7→ hω,θ(y),

evaluated at ω−1, and note that

sup
ω∈W,ω−1∈B(ω∗

−1),θ∈B(θ∗)

∥∥∥ḣω,θ

∥∥∥
∞

≤ max
1≤j≤k

sup
ω∈W,ω−1∈B(ω∗

−1),θ∈B(θ∗)

∥∥∥∥pj(·;θ)pω,θ

∥∥∥∥
∞

≲ 1,

where the last inequality follows from the definition of B(ω∗
−1). Consequently, for every

ω1 ∈ W and ω2 ∈ W , such that (ω1)−1 ∈ B(ω∗
−1) and (ω2)−1 ∈ B(ω∗

−1), we have

sup
θ∈B(θ∗)

∥hω1,θ − hω2,θ∥∞ ≲ ∥(ω1)−1 − (ω2)−1∥ .

Corollary 5.53 in van der Vaart (2000) then gives bound (B.29) as a consequence of the
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inequality above (the specific bound is established in the proof of Corollary 5.53). Thus, we

have proved that ω̂ = ω∗+Op(T
−1/2). The corresponding stochastic bound for ∥f̂T − f∥1

follows from the same argument as the one at the end of the proof of Theorem 3.1.

B.5 Supporting results

The following lemma is used in the proof of Theorem 3.1.

Lemma B.1. The following stochastic bounds hold under the assumptions and notation

in the statement and proof of Theorem 3.1:

(i) supω∈W,θ∈B(θ∗) |GT (ω,θ)−G(ω,θ)| = op(1);

(ii) maxω∈C(θ̂) G(ω, θ̂) = maxω∈C(θ∗) G(ω,θ∗) + op(1);

(iii) If ω∗ is a unique solution to problem (11), then, given a positive δ, there exists a

positive constant rδ, such that

max
ω∈C(θ)\Bδ(ω∗),θ∈Brδ

(θ∗)
G(ω,θ) < 0.

Proof of Lemma B.1. We start with part (i), denoting functions y 7→ pj(y;θ) by pj,θ

and functions y 7→ log[pω,θ(y)/pω∗,θ∗(y)] by mω,θ, to simplify the notation. We will first

show that the class M of functions mω,θ is pointwise compact in the sense of Example

19.8 in van der Vaart (2000). Specifically, we will show that (a) map (ω,θ) 7→ mω,θ(y)

is continuous for each fixed y; (b) parameter vectors (ω,θ) belong to a compact set; (c)

functional class M has an integrable envelope.

Parts (a) and (b) hold by the imposed assumptions. To establish part (c), we need to

bound all members of the classM by a function that is integrable with respect to P . Using

the fact that the largest element in ω lies in [1/k, 1] and taking into account the general

inequality log x ≤ x− 1, we derive the following pointwise bound for functions mω,θ:

sup
ω∈W,θ∈B(θ∗)

∣∣mω,θ(y)
∣∣ ≤ max

j≤k
sup

θ∈B(θ∗)

2
∣∣ log[pj,θ(y)/k]∣∣+max

j≤k
sup

θ∈B(θ∗)

2kpj,θ(y).

Because the expected value of the function on the right-hand side is finite by assump-

tions A5 and A6, part (c) follows from the above bound. Thus, as shown in the afore-

mentioned example of van der Vaart (2000), the L1-bracketing numbers of the class of

functions mω,θ are finite. Also note that for each fixed (ω,θ), convergence in proba-

bility of GT (ω,θ) to G(ω,θ) follows from the law of large numbers. Such “pointwise”

convergence, together with the finiteness of the L1-bracketing numbers, yields uniform

convergence (as it is shown, for example, in the proof of Theorem 2.4.1 in van der Vaart

and Wellner, 1996). This completes the proof of part (i) of Lemma B.1.
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To prove part (ii) of the lemma, we first note that the imposed continuity assumptions

imply that if θ → θ∗, then C(θ) converges to C(θ∗), with respect to the Hausdorff

distance. Moreover, an application of the dominated convergence theorem establishes that

function G(ω,θ) is continuous, due to the pointwise continuity of the functions mω,θ and

the existence of an integrable envelope, which was established in the previous paragraph.

Thus, function G is uniformly continuous for ω ∈ W , θ ∈ B(θ∗). Uniform continuity of G

together with the continuity of C(θ) at θ∗ imply that functionW (θ) = maxω∈C(θ) G(ω,θ)

is continuous at θ∗. The continuous mapping theorem then yields W (θ̂) = W (θ∗)+op(1),

which completes the proof of part (ii).

We now move to part (iii) of the lemma. Because G is continuous, ω∗ is the unique

maximum of G(·,θ∗) over C(θ∗), and G(ω∗,θ∗) = 0, we conclude that the maximum of

G(·,θ∗) over the compact set ω ∈ C(θ∗) \Bδ(ω
∗) is negative. We can replace θ∗ with

a sufficiently close θ and still keep the negativity of the above maximum, because of

the uniform continuity of G(ω,θ) and the continuity of C(θ) at θ∗. Consequently, for a

sufficiently small but positive rδ, we have

max
ω∈C(θ)\Bδ(ω∗),θ∈Brδ

(θ∗)
G(ω,θ) < 0.

This completes the proof of part (iii).

B.6 Additional theoretical results: limiting distribution

We now return to the setting where κ and γ are constants and establish a result of the

limiting distribution of ω̂. For the simplicity of the exposition, we focus on the case

θ̂ = θ∗, which allows us to avoid imposing specific assumptions on the form of θ̂ as a

function of the data. Consequently, we change assumption A2 by setting θ̂ = θ∗ and

relax assumptions A3–A6 by setting B(θ∗) = {θ∗}. We denote the modified assumptions

by A2′–A6′. We also impose an additional regularity condition:

A13: The unconstrained minimizer of KLIC(·,θ∗) lies in C(θ∗).

Above, “unconstrained” minimizer is still required to have nonnegative weights that sum

to one.

We let ℓ∗(y) =
(
p2(y;θ

∗)− p1(y;θ
∗), ..., pk(y;θ

∗)− p1(y;θ
∗)
)⊤

/p(y;ω∗,θ∗) and define

Σ∗ = Eℓ∗(y1)ℓ
∗(y1)

⊤ + 2
m+1∑
i=2

Eℓ∗(y1)ℓ
∗(yi)

⊤ and V∗ = Eℓ∗(y1)ℓ
∗(y1)

⊤.

As noted in the proof of Theorem 3.2, matrix V∗ is nonsingular under the imposed as-

sumptions.

Because the weights in all ω that we consider are required to sum to one, we can write

ω1 = 1−
∑k

j=2 ωj, and thus, every function of ω can be expressed as a function of ω−1 =
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(ω2, ..., ωk)
⊤. Treating the constraint set C(θ∗) as a set in the space of reduced vectors ω−1,

we let S∗ denote the tangent cone of C(θ∗) at the point ω∗
−1. More specifically, a vector v

lies in S∗ if and only if there exists a sequence τn decreasing to 0 and a sequence ωn ∈ C(θ∗)

converging to ω∗, such that [(ωn)−1−ω∗
−1]/τn → v. For a given convex set A and point x,

we write ProjAx for the orthogonal projection of x onto A.

Theorem B.2. Suppose that ω∗ is the unique solution to the population problem (11)

and assumptions A1, A2′–A6′, A7, and A10–A13 are satisfied. If ω∗ lies in the interior

of C(θ∗), then √
T (ω̂−1 − ω∗

−1)
d→ N

(
0, V −1

∗ Σ∗V −1
∗

)
.

If ω∗ lies on the boundary of C(θ∗) and Z̃ ∼ N
(
0, V

−1/2
∗ Σ∗V

−1/2
∗

)
, then

√
T (ω̂−1 − ω∗

−1)
d→ V −1/2

∗ Proj
V

1/2
∗ S∗Z̃. (B.30)

Proof of Theorem B.2. Consistency of ω̂ is a consequence of Theorem 3.1. The T−1/2

rate of convergence for ω̂ follows by repeating the arguments in the proof of Theorem 3.2,

with minor simplifications and notational adjustments. We will now establish the limiting

distribution for ω̂.

As a direct consequence of Taylor expansion (B.26) and equation (B.28), we have

G(ω,θ∗) = G(ω∗,θ∗)− 1

2
(ω−1 − ω∗

−1)
⊤V∗(ω−1 − ω∗

−1) + o
(
∥ω − ω∗∥2

)
. (B.31)

We define hω = log[pω,θ∗/pω∗,θ∗ ] and write ḣω(y) for the first derivative of the func-

tion ω−1 7→ hω(y), evaluated at ω−1. Lemma 19.31 in van der Vaart (2000) yields

νT [T
1/2(hω∗+vTT−1/2 − hω∗) − v⊤T ḣω∗ ] = op(1) for every stochastically bounded random

sequence of (k − 1)-dimensional vectors vT . Consequently, noting that G(ω,θ∗) = Phω

and using (B.31), we conclude that

nPn(hω∗+vTT−1/2 − hω∗) = −1

2
v⊤T V∗vT + v⊤T νT ḣω∗ + op(1). (B.32)

We derive the limiting distribution for T 1/2(ω̂−1−ω∗
−1) by applying Theorem 4.4 in Geyer

(1994). An analysis of the proof shows that for the conclusion of the aforementioned

theorem to hold, the only required assumptions are: (i) stochastic bound (B.32) holds for

every Op(1) random sequence vT ; (ii) ω̂−1 = ω∗
−1+Op(T

−1/2); (iii) the constraint set C(θ∗)

is Chernoff regular at ω∗
−1. We have already established (i) and (ii). Condition (iii)

is only needed to rule out pathological cases. It is satisfied in our setting, because the

constraint set is determined by finitely many inequalities involving smooth functions of ω.

We note that V
−1/2
∗ νT ḣω∗ converges in distribution to Z̃ by the central limit for m-

dependent sequences. We apply the aforementioned result in Geyer (1994) to conclude

that T 1/2(ω̂−1−ω∗
−1) converges in distribution to the minimizer of 1

2
v⊤V∗v−v⊤V

1/2
∗ Z̃ over
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v ∈ S∗. The result of Theorem B.2 follows after completing the square for the quadratic

expression above.

Appendix C

We use the simulation setup of the linear regression numerical example described at the

end of Section 2.2 and consider five sets of ad-hoc weights together with the Log-Score

weights. The first set of ad-hoc weights starts with weight 1 on the first model and 0 on

all the others. In the second set, the first weight decremented to 0.75 when weighting the

rest of the models equally. More weight is distributed gradually to the remaining models

at a step of 0.25 until the equal weight set (EW) is achieved.

Table 4: Skewness (γc) and kurtosis (κc) of the combination

Panel A: γc Panel B: κc

Weights (ω1) k = 2 k = 5 k = 10 k = 20 k = 30 k = 2 k = 5 k = 10 k = 20 k = 30

1 1.000 1.000 1.000 1.000 1.000 9.000 9.000 9.000 9.000 9.000
0.75 0.797 0.745 0.723 0.718 0.701 7.505 7.215 7.163 7.118 7.113
0.50 0.759 0.644 0.605 0.591 0.570 7.146 6.353 6.204 6.108 6.087
0.25 0.801 0.604 0.550 0.526 0.503 7.505 6.018 5.741 5.592 5.551
EW 0.759 0.603 0.542 0.507 0.482 7.146 6.006 5.660 5.466 5.406
Log-Score 0.767 0.618 0.528 0.441 0.376 7.264 6.218 5.609 4.991 4.587

Notes: The Log-Score weights are obtained by solving (5). The individual densities are constructed using
the estimated parameters of the linear regression in (2). In Panel A, the skewness of the t5 error distribution
is set to 1. In Panel B, the kurtosis of the t5 error distribution is 9. ωi =

1−ω1

k−1 for i = 2, . . . , k.

Table 4 presents the numerical results based on 5000 replications. The parameters are

estimated with 100 data points and the predictive densities are based on a one-step ahead

forecast for all weight-sets except Log-Score. For the latter, we produce 100 out-of-sample

forecasts as the corresponding optimization problem requires a series of forecast errors.

Panel A shows the impact of increasing the number of models (k) on the skewness of

the combination (γc), whereas Panel B shows the corresponding effect on the kurtosis of

the combination (κc). The skewness of the skewed-t5 error density is set to 1, and the

kurtosis of the error density is 9. We observe that both the skewness and the kurtosis of

the combination decrease when the number of predictors increases.

Table 5 further illustrates Theorem 2.3 in the cases β → 0 and β → ∞. We

continue the previous simulation setup but with different values of β. When β =

(1/
√
k, . . . , 1/

√
k)⊤, the amount of the signal in the model is small relative to the variance

of the error term; consequently, the kurtosis of the combination approaches the average

kurtosis of the individual predictive densities; a similar phenomenon is observed for the

skewness. Alternatively, when β = (3, . . . , 3)⊤, the amount of signal increases in relation
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Table 5: γc and κc for different values of β

β = (1/
√
k, . . . , 1/

√
k)⊤ β = (3, . . . , 3)⊤

Weights k = 2 k = 10 k = 2 k = 10

Panel A: γc
EW 0.847 0.917 0.407 0.101
Log-Score 0.855 0.910 0.412 0.098

Panel B: κc
EW 7.798 8.349 4.337 3.006
Log-Score 7.947 8.351 4.398 2.862

Notes: k are the number of densities. β are the regression
parameters used for one-step ahead forecasting.

to the noise, and hence, the skewness/kurtosis of the combination approaches the skew-

ness/kurtosis of the individual predictors; the limiting values are 0 and 3, respectively,

because the predictors are Normally distributed.

Figure 6 depicts the distributions of the skewness and the kurtosis of the combination

based on the Log-Score weights. Both the skewness and the kurtosis of the combination

decrease when the number of predictors increases: the skewness shifts towards zero and

the kurtosis shifts toward 3.

Figure 6: Distribution of the skewness of the density combinations (γc) and kurtosis (κc)
for the Log-Score weights that result from solving (5).
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Appendix D

Table 6, provided below, presents the 2.5% VaR results. The HMC weights, especially

HMCK, perform on par with the other methods.

Table 6: 1-day forecast 97.5% VaR estimates for S&P 500

Combinations # viol. at 2.5% CC test # viol. at 2.5% CC test

Twin = 250 (1 year) Twin = 500 (2 years)
Log-Score 118 (3.23) 0.26 115 (3.29) 0.34
HMC 109 (2.80) 0.70 105 (3.00) 0.95
HMCK 94 (2.51) 0.35 94 (2.69) 0.26
HMCS 120 (3.07) 0.13 116 (3.32) 0.43
CSL15 108 (2.94) 0.35 99 (2.83) 0.40
CSL25 113 (3.07) 0.33 103 (2.95) 0.36
JMV 81 (2.03) 0.46 87 (2.49) 0.46
EW 77 (2.11) 0.36 87 (2.49) 0.40

Twin = 750 (3 years) Twin = 1000 (4 years)
Log-Score 104 (3.20) 0.28 93 (3.10) 0.38
HMC 100 (3.08) 1.00 92 (3.07) 0.20
HMCK 86 (2.65) 0.31 87 (2.90) 0.30
HMCS 91 (2.80) 0.55 74 (2.47) 0.51
CSL15 87 (2.68) 0.45 73 (2.44) 0.59
CSL25 98 (3.02) 0.28 80 (2.67) 0.22
JMV 72 (2.22) 0.58 59 (1.97) 0.64
EW 69 (2.13) 0.55 60 (2.00) 0.59

Notes: Twin is the number of observations required to estimate the combina-
tion weights. The table reports both the number and the proportion of times
that the VaR forecast exceeds the 2.5% target (the percentage of violations
is provided in parentheses).
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