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1 Introduction

At least since Leontief (1936), economists have recognized the importance of system-
atically quantifying interrelationships among sectors of the macroeconomy. These in-
terdependencies are typically captured by structural input-output coefficients, which
summarize the proportional input requirements of a given sector. In the 1980s, mac-
roeconomists began building multi-sector models that captured this vast web of rela-
tionships formally and, in turn, succeeded in bringing quantitative real business cycle
modeling closer to reality (see, for example, Long and Plosser, 1983). More recent de-
velopments in macroeconomics have highlighted the importance of specific structural
properties of the production network in propagating sector-specific shocks to macroe-
conomic aggregates (Acemoglu et al., 2012; Atalay, 2017; Baqgaee and Farhi, 2019).
However, it is often difficult to discern which set of structural relationships are respons-
ible for amplifying microeconomic shocks in these models.

We provide a theoretical framework that sidesteps this issue by considering linkages
in isolation. Specifically, we derive an analytical formula that computes the macroeco-
nomic impact of sector-specific shocks under any arbitrary linear transformation of the
input-output network. By isolating specific structural relationships, our formula meas-
ures the extent to which these linkages amplify shocks. Our point of departure is the
foundational theorem of Hulten (1978), which states that in efficient economies and
under minimal assumptions, the effect on GDP of a microeconomic productivity shock

to sector i is given by i’s sales as a fraction of nominal GDP:

dlogY
= Ai.
dlogA;

where dlogY is real GDP growth, dlogA; is the shock, and A; is i’s sales share or
Domar weight. The power of Hulten’s theorem lies in its simplicity: Domar weights
envelop a substantial amount of information about an economy’s underlying production
network, microeconomic elasticities of substitution, and the extent of returns to scale.
However, since Domar weights are reduced-form objects, simply observing the sales
distribution cannot provide insight into how specific structural interdependencies shape
macroeconomic outcomes. For example, two sectors with similar sales can propagate
shocks through the economy in very different ways. By contrast, our formula measures
exactly the extent of propagation attributed to specific linkages.

Methodologically, our framework compares actual Domar weights (which are dir-
ectly observable) with counterfactual Domar weights that correspond to the transformed

production network. In its most general form, our formula is defined in terms of both



observed and counterfactual Domar weights:

(=Y (%) (M

i=1

where J; is sector i’s Domar weight under the counterfactual production structure.
Since the counterfactual Domar weights are unobservable ex-ante, we characterize them
in terms of observable equilibrium objects, permitting the computation of . We derive
our formula in the context of a standard neoclassical CES production network model
a la Atalay (2017), Baqaee and Farhi (2019), and Carvalho et al. (2020). By setting
up a parametric model and deriving our formula through this lens, we explicitly show
how to map from model primitives to equilibrium objects, highlighting the assumptions
required to operationalize our formula.

As proof of concept, we apply our formula to study the role of network spillovers
in explaining cross-country differences in economic growth rates. We define network
spillovers as the indirect effect of shocks on GDP, that is, through output spillovers
to other sectors. Indeed, the second contribution of our paper is the derivation of an
exact nonparametric analytical expression that measures network spillovers in efficient
economies. Crucially, this expression only requires data on bilateral intermediate sales
between sectors, the household’s nominal final consumption expenditure, and the pre-
shock level of nominal GDP, making its computation straightforward. Remarkably,
knowledge of the elasticities of substitution in production and consumption is not re-
quired to compute network spillovers, relating this measure to the nonparametric results
of the theoretical macro-networks literature (for example Liu, 2019, Bigio and La’O,
2020, and Baqaee and Farhi, 2019, 2020b, 2021b, among others). Network spillovers
matter because they explain much of the variation in economies’ input-output multi-
pliers (which, following the definition of Bagaee and Farhi (2019), is a measure of
the macroeconomy’s sensitivity to shocks). Using input-output data for 43 countries
between 2000 and 2014, we show empirically that economies with more substantial
network spillovers typically have higher economic growth rates, suggesting network
spillovers to be a powerful mechanism driving aggregate outcomes.

In a second application, we use our formula to investigate whether economies would
gain by having different hypothetical input-output structures, keeping the final expendit-
ure shares of goods and services the same. To this end, we select a reference country and
compute all other economies’ hypothetical growth rates using the reference country’s
input-output structure. For the same sample as the previous application, we find that
all economies would have had higher economic growth rates had their input-output ar-

chitecture been identical to China’s. For instance, the United States’ growth rate would



have been, on average, 18.5 percent higher per annum between 2000 and 2014. While
we only consider two applications in the paper, we stress that our formula can predict
how GDP would respond to shocks given any arbitrary set of structural relationships
between sectors. Thus the generality of our approach goes beyond the two aforemen-
tioned applications.

Our article relates to the literature on growth accounting and production networks.
Hulten (1978) provided the economic rationale for using Domar aggregation to meas-
ure changes in aggregate TFP; in the presence of intermediate inputs, sales shares
(not value-added) are the correct weights for aggregating microeconomic productivity
changes. Hulten’s result was in contrast to Solow (1957), who began with an aggregate
production function and measured changes in TFP as the residual change in output after
accounting for the growth of factor inputs.

Hulten’s theorem is also the benchmark result in the macroeconomic literature on
production networks.! A seminal paper in this literature is Acemoglu et al. (2012),
which shows how Domar weights relate to the economy’s input-output network and
characterizes how idiosyncratic shocks can propagate through linkages, leading to volat-
ility cascades. The Leontief inverse, which plays a central role in the production net-
works literature, provides detailed information about the direct and indirect linkages
between sectors. Domar weights compress this information, preventing an analysis of
how productivity shocks interact with the network structure. By contrast, our formula
allows us to directly study the relationship between network structure and aggregate
outcomes.

Building on Hulten (1978) and Acemoglu et al. (2012), Bagaee and Farhi (2019)
show that nonlinearities in production matter quantitatively for a range of macroeco-
nomic phenomena. They show that microeconomic primitives are important for ag-
gregate output beyond the first-order of approximation in economies with intermediate
inputs. We limit our attention to efficient economies and first-order approximations
where the input-output matrix does not respond endogenously to shocks. Allowing for
second-order effects complicates our approach because the primitive input-output ob-
jects we consider will no longer coincide with their general equilibrium counterparts.
Thus to highlight the key ideas of our approach, we deal only with first-order approx-
imations. Additionally, we abstract from inefficiencies to highlight how our formula
applies in the simplest setting, where Hulten’s theorem indeed characterizes the mac-
roeconomic impact of microeconomic shocks. Notably, papers studying production

networks in inefficient economies have shown that sales shares are insufficient for ag-

ISee Carvalho (2014) and Carvalho and Tahbaz-Salehi (2019) for a detailed overview of the produc-
tion networks literature.



gregating microeconomic shocks. For example, Baqaee and Farhi (2020b) show that
in the presence of distortions, cost-based Domar weights are the correct statistics.> A
natural next step is to recharacterize our results in the presence of inefficient equilibria.

Our paper also relates to the recent literature in macroeconomics that has sought
to understand how input-output linkages contribute to aggregate volatility (see, for ex-
ample, Foerster et al., 2011, Acemoglu et al., 2012, Di Giovanni et al., 2014, Acemoglu
et al., 2017, Atalay, 2017, Grassi, 2017, Baqaee, 2018, and Altinoglu, 2021).3 A run-
ning theme in this literature is that input-output linkages are a powerful mechanism
for generating aggregate volatility. Our empirical results complement this literature by
highlighting the outsized role of indirect propagation in dertemining macroeconomic
outcomes.

Tangential to our article is the set of papers that use quasi-experiments to investigate
the propagation of microeconomic shocks through input-output linkages. For example,
Barrot and Sauvagnat (2016), Boehm et al. (2019), and Carvalho et al. (2020) study
how natural disasters propagate through input-output linkages, finding disasters cause
substantial output losses both up and down supply chains. Relatedly, Caliendo et al.
(2017) find that sectoral productivity changes spread through interregional trade link-
ages across US states. Furthermore, Baqaee and Farhi (2020a); Baqgaee et al. (2020),
and Barrot et al. (2021) use production network models to quantify the macroeconomic
impact of Covid-19, finding heterogeneous supply and demand shocks to propagate
through the economy due to intermediate input requirements. By contrast, vom Lehn
and Winberry (2021) focus on investment networks, showing that intersectoral invest-
ment linkages have driven the decline in labor productivity since the 1980s. Finally,
Chahrour et al. (2021) explore the relationship between news media and sectoral labor
demand in a network model, finding some sectors make suboptimal hiring decisions in
response to news updates. These papers (among others) all strengthen the rationale for

studying macroeconomic phenomena through the lens of production network models.

The rest of the paper proceeds as follows. Section 2, sets up the model and charac-
terizes ¢ in terms of observables for any linear transformation of the structural input-
output matrix. In section 3, we present two applications of our formula. First, we
study the role of network spillovers in shaping aggregate outcomes. Then, we invest-

igate whether economies would gain if their production networks were organized like

2Other papers that study distortions in network models include Jones (2011), Liu (2019), Bigio and
La’O (2020) and Baqaee and Farhi (2021b).

3These papers in turn relate to the older macroeconomics literature that studies aggregate volatility
in multi-sector models such as Long and Plosser (1983), Horvath (1998, 2000), Dupor (1999) and Shea
(2002).



China’s. Section 4 concludes. Proofs and supplementary results are relegated to the

Appendix.

2 Model

In this section, we set up a general equilibrium model in the spirit of Hulten (1978),
Acemoglu et al. (2012), Bagaee and Farhi (2019) and Carvalho et al. (2020) to charac-
terize equation (1) in terms of observable equilibrium objects.* The resulting formula
is the central focus of the paper. We consider a static economy with N competitive
sectors that each produce one distinct product using some combination of labor and in-
termediate goods. Each sector’s output can either be consumed by households as final
demand, or by other sectors as an intermediate input. We define a matrix @ = [a),- j]
that captures each sector’s reliance on intermediates from other sectors. For example,
an element ®,,; > 0 captures the importance of good & in the production of good m. If
O = 0, then sector m does not rely on sector k’s output. We refer to @ as the primit-
ive input-output matrix so as to distinguish it from its general equilibrium counterpart.
Notably, each row of @ sums to less than one due to the fact that sectors also use labor
to produce. We also define a matrix @ = T (@), where 7' (@) denotes some linear trans-
formation of @ satisfying @;; > 0, leyzl @;; < 1. Furthermore, let 4 = (1] be a vector
that captures the importance of labor in each sector’s production. Note that like @, the
vector [ is a primitive object. Finally, let fi = [fi;] be the vector of labor shares that
correspond to the matrix @. Since @ can have row sums that are different from @,
the vector fi correspondingly adjusts so that, collectively, the objects @, @, u, and fi
satisfy y1; > 0, fi; > 0, and Y @+ ft; = X)) @i+ i = 1 for all i.

Throughout the paper, we refer to the economy defined by the tuple (@, ) as the
actual (or observed) economy. By contrast, the tuple (@, f1) defines the counterfactual
economy. In what follows, the notation X typically denotes an endogenous variable X

in the counterfactual economy.’

Real GDP in the observed and counterfactual economy is defined as the maximizer

of a CES aggregator of final demand for individual goods

4Our model is most similar to the CES production network model of Carvalho et al. (2020). However,
unlike Carvalho et al. (2020) we do not specify nested CES production technologies in intermediate
inputs.

SExcept for the objects @ and fi, all other tilde variables are endogenous.



N o1 o1 o . N o1 o1
Y = Zai"ci" and Y = Zayf‘-“ )
i=1 i=1
where Y is real consumption (or "output"), g; is the importance of good i in the
representative household’s consumption bundle, ¢; is the final consumption of good i,
and o is the elasticity of substitution between final goods. The price index associated

with Y is given by

1
-0

N
P= Zaipilfc
i=1

where p; is the price of good i.°

Households have log utility over aggregate consumption,

U(Y)=logY,

and maximize their utility subject to w = Zﬁvzl pic;.” Both sides of the budget con-
straint correspond to nominal GDP in this model since households supply one unit of
labor inelastically.

Sectoral production is described by constant returns CES production technologies

that transform labor and intermediate goods into output

0
Y i) : T P

j=1
where y; is sector i’s real gross output, A; is a Hicks-neutral productivity shifter, /;
is labor and x;; is i’s use of intermediates from j. In section 3, we impose an explicit
structure on the counterfactual input-output network to characterize network spillovers.

Sector i’s profits are

N
T = piyi—wli— Y pjxij,
j=1

6Similarly, the price index in the counterfactual economy is

N o
P= (Z aiﬁl»lo-> .
i=1

g (17 ) is the level of utility and w is the market wage under the counterfactual.



and the goods and labor market-clearing conditions are given by
N N

inCi+Zin and l:ZliZI

j=1 i=1

for goods 1 < i < N.® Note that aggregate labor supply [ is exogenous, inelastic,

and normalized to 1 in both economies.

The competitive equilibrium is defined in the usual way, where all agents take prices

as given, and markets for labor and goods 1 <i < N clear.

We must also introduce a few objects that play a central role in our analysis. Firstly,
let b be an N x 1 vector of equilibrium final expenditure shares where an element b; is

defined

Dici
bi= x—
Yj=1Pjcj

The denominator of the above expression is nominal GDP and YV | b; = 1.

Secondly, let A = [A;] be an N x 1 vector of Domar weights where

PiYi
hi=
N

Z]‘:1chj

and ):fi 1 A > 1 in the presence of intermediate inputs. Similarly, under the counter-
factual we have b = [l;,-} and A = [1,} , both of which are defined as above but with
counterfactual prices and quantities {p;}Y |, {i}Y,, and {&}Y ,. Furthermore, we
define the N x N equilibrium input-output matrix Q = [Q;;] where

Qi = P
Piyi
Following Baqaee and Farhi (2019), and Carvalho et al. (2020), the Leontief inverse

associated with Q is defined

=(1-Q) "=yl

Intuitively, a typical element of this matrix, y;;, captures both the direct and indir-

ect ways through which sector i uses sector j’s output.” Indeed, the Leontief inverse

8Since prices and quantities are endogenous, profits in the counterfactual economy are given by 7; =
pivi — wl; — ij\le pj%ij. Similarly, the goods and factor market-clearing conditions are, respectively,
Ji=&+Y) Kiand =Y [

9See Carvalho and Tahbaz-Salehi (2019) for a more detailed discussion of the Leontief inverse matrix



summarizes all production chains in the economy.

In a similar manner, let Q= [fl,- J-] where

X DjXij
ij — =~ ~
DiYi
and ¥ = (1- Q) B [W;;]. Finally, we define N x 1 vectors of equilibrium labor
expenditure shares as A = [A;] and A = [/N\i} , where

I _ ol
A= 20 and A= 22

Piyi pivi’
The goods market-clearing condition relates the vector of Domar weights to the

Leontief inverse via

N N N
pivi = pici+ Y, pixji = bj (Z chj> +Y Qjipjy;

j=1 j=1 J=1
and thus

A =pv'w. )

Equation (2) shows that the Domar weights (4;’s) encode all weighted paths of any
length from sector i to final demand. The economy’s intersectoral production network,
which is captured by W, is therefore embodied in the Domar weights. As we shall see,
equation (2) is directly related to our formula. Domar weights play a central role in our
analysis and are the focus of Hulten’s (1978) theorem, which we are now in a position

to introduce.

THEOREM 1—Hulten (1978): The first-order macroeconomic impact of a microe-

conomic productivity shock is
dlogY

dlogh; "

3)

where A; is the Domar weight of sector i.

Hulten’s theorem is the natural starting point for our analysis since it characterizes
how real GDP responds to microeconomic productivity shocks in efficient economies
with intermediate goods. For our purposes, equation (3) relates to the economy defined

by (@, 1t). Therefore, in the counterfactual economy, we have

and its properties.



dlog¥

i
dlogA; '

Remarkably, the theorem states that Domar weights are sufficient for characterizing
the macroeconomic impact of microeconomic shocks; elasticities of substitution, the
extent of returns to scale, and properties of the production network are not required
to compute the elasticity in (3). Furthermore, since sales data is readily observable at
various levels of disaggregation, calculating the Domar weights is straightforward.

With Hulten’s theorem in hand, we now define (in its most general form) the central
object of the paper, {, which measures the extent to which a counterfactual production
network amplifies (or mitigates) productivity shocks relative to the observed production

network.

DEFINITION 1: The general form of the measure ( is given by

¢ = %{ (M%) )

Using the terminology of Baqaee and Farhi (2019), equation (4) is the difference in

the input-output multipliers of the actual and counterfactual economies. The economy’s

N dlogY
i=1 dlogA;

centage change in real GDP in response to a uniform one-percent increase in productiv-

input-output multiplier, which is given by £ =} = ny: | Ai, captures the per-
ity.!0 Intuitively, equation (4) measures the role of the network structure in determin-
ing how the macroeconomy responds to a uniform one-percent increase in technology.
This is because any difference between Domar weights {A;}Y | and {1;}_| is attributed
solely to dissimilarities in the underlying primitive input-output networks that give rise
to the distribution of sales. By taking the difference between the Domar weights 2; and
Ai, ¢ measures how the counterfactual network structure amplifies productivity shocks
relative to the actual economy. Thus the measure { quantifies the macroeconomic im-
portance of the specific structural linkages under study.

The key challenge in measuring { is that the counterfactual Domar weights are un-
observed. Therefore in order to compute {, we must express equation (4) solely in

terms of observable objects, which rests on two assumptions.

ASSUMPTION 1: Consumption weights are equal in the actual and counterfactual

10The input-output multiplier is also related to the “granular residual” of Gabaix (2011), the interme-
diate input multiplier of Jones (2011) and the measure of network influence of Acemoglu et al. (2012).
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economies

a; = d; foralli.

ASSUMPTION 2: Exogenous technology levels are equal and normalized to one in
the steady-state
(A1, .., An) = (A1, .., AN) = (1,...,1).

Assumption 1 ensures that counterfactual final expenditure shares coincide with
their observed counterparts for all final goods in the economy, or b; = b; for all i, al-
lowing us to isolate the role of the production network in shaping fluctuations in real
GDP. Assumption 2 defines the steady-state condition, where all technology levels are
normalized to one. In steady-state, all prices (including the wage) are equal, meaning
the objects @, i and a coincide with Q, A and b, respectively. This is also true for
the counterfactual economy, that is @ = fl, n= A and a = b. Since the counterfactual
network is simply a linear transformation of the observed network, it then follows that
@ =T (w) = T(Q) in steady-state. Therefore, any counterfactual production network
can always be expressed in terms of general equilibrium input-output coefficients (as
captured by Q). Assumption 2 also ensures the initial level of real GDP is equal in
both economies (@, i) and (@, fi), which is important because we are dealing with
relative changes in real GDP. Finally, we note that the elasticities of substitution 6 and
o need not be equal to the counterfactual elasticities 6 and &, however to simplify the
notation we set & =  and ¢ = & but acknowledge that this does not bear materially
on our results. For the rest of the paper, we consider Hicks-neutral productivity shocks
around the steady-state without loss of generality following Baqaee and Farhi (2019),
and Carvalho et al. (2020).

In light of assumptions 1 and 2, the following proposition formalizes the idea that
equation (4) can always be characterized in terms of observable input-output objects,
as long as the transformation @ = T (@) satisfies fi; +le§’:1 @;; = 1 for all i, and @;; >
0,[; > 0.

PROPOSITION 1: For any linear transformation of the matrix @, the measure § is

given by

u —1
=X b (e-u-r@)?) . 5)

where Q is the observed equilibrium input-output matrix.

Proof. See Appendix.
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First note that equation (5) is related to the identity given by (2) which states that

A =p¥= [ijyzlbjl//j,-]. Indeed, (5) can also be expressed as = Z%Zlbjl//j,- —

N
i,j=1

immediately clear that the only component of A; and A; that differs is the production net-

b;jWji, where Jj; is the jith element of counterfactual Leontief inverse. It is then

work (as summarized by the Leontief inverse); the final expenditure shares are constant
under both (@, t) and (@, f1). Remarkably, proposition 1 shows that { does not rely on
knowledge of the elasticities of substitution 6 and ¢. Only the observed final expendit-
ure shares and equilibrium input-output matrix are required to measure {, making its
computation straightforward.

In the empirical applications of the following section, we consider specialized ver-
sions of (5). First, we discipline our formula to measure network spillovers in the
presence of efficient equilibria. Then, in the second application, we quantify econom-
ies’ hypothetical gain in GDP growth if their input-output architecture was identical to
China’s.

3 Empirical Applications

In this section, and as proof of concept, we present two applications of the framework
outlined in section 2. First, we show that the extent of output spillovers to neighboring
sectors explains patterns in cross-country growth rates for 43 countries between 2000
and 2014. To this end, we specialize equation (5) to provide an exact analytical expres-
sion for network spillovers and show how this channel is significant for macroeconomic
outcomes. In the second application, for the same sample of countries and time period,
we quantify the gains economies would experience by having an input-output structure

identical to China’s, finding all countries to be better off under China’s structure.

3.1 Data

We use the 2016 release of the World Input-Output Database (WIOD) for our empir-
ical analysis (see Timmer et al., 2015 for an overview of the WIOD data). The dataset
contains information on gross output, value-added, factor compensation, final expendit-
ures, and intermediate input flows for 43 countries over the period 2000-2014.!" The
WIOD data is disaggregated into 56 sectors based on the International Standard Indus-
trial Classification Revision 4 (ISIC Rev. 4). The block-diagonal of each input-output
table captures domestic intermediate input transactions for each country, whereas the

off-diagonal relates to the flow of intermediates between countries. For our purposes,

'I'The WIOD also contains a model for the rest of the world, which we omit from our analysis.
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we focus on domestic transactions and abstract from international trade.'> Each element
of the equilibrium input-output matrix is given by the nominal expenditure by sector i on
sector j’s product, as a share of i’s total domestic nominal expenditure (thus excluding
spending on imported inputs). Constructing the input-output matrices this way ensures
that factor compensation plus domestic intermediate input expenditure equals nominal
GDP for each sector. Additionally, sectoral final expenditure shares are computed as
the sum of household and government final consumption expenditure plus gross fixed
capital formation as a fraction of nominal GDP. We ignore changes in inventories as
these can lead to negative final expenditure shares if inventories are drawn down over
the period.

We supplement the WIOD data with data from the Penn World Tables (Version
10.0). Specifically, we use data for real GDP and TFP as well as country-specific eco-
nomic information used as controls in our regressions. After merging with the WIOD
data, we are left with a sample of 43 countries from 2000 to 2014.!3

3.2 Application I: Network Spillovers and the Macroeconomy

Our first empirical application studies the role of network spillovers in shaping aggreg-
ate outcomes, where network spillovers are defined as the effect of shocks on GDP
via propagation to other sectors of the economy. In this application, we highlight the
importance of input-output linkages emanating from a given sector, and quantify the

extent to which these linkages amplify shocks.

3.2.1 Input-output multipliers and GDP growth

Before defining network spillovers formally, we establish a positive empirical relation-
ship between economies’ input-output multipliers and the rate of economic growth.
Recall from the previous section that the input-output multiplier & captures the percent-
age change in real GDP in response to a uniform one-percent increase in productivity. It
is thus a measure of the economy’s sensitivity to macroeconomic productivity shocks.
Theoretically, a higher input-output multipler means that GDP growth will be higher for
a given change in TFP. Therefore, to test this prediction we estimate panel regressions

of the form

GDP Growth,; = o + fB¢ * Ect + Ba * TFP Growth, + Xy + ¥ + 6 + €4 (6)

12See Bagaee and Farhi (2021a) for a detailed treatment of how Hulten’s theorem generalizes to open
economies.
130nly the “rest-of-world” data remains unmatched.
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Table 1: Sensitivity to Shocks and GDP Growth

(1 (2) 3) “4)

. (Input-output multiplier) 4.793***  2.806***  2.788**  4.021***
[0.669] [0.400] [1.163] [1.172]

TFP Growth,; 1.157**  1.032*** 1.054***
[0.033] [0.035] [0.036]
Country FE No No Yes Yes
Year FE No No Yes Yes
Controls No No No Yes
Observations 645 645 645 644
Adjusted R? 0.072 0.676 0.770 0.787

Notes: This table reports estimates from regression specification (6). The dependent vari-
able in all columns is the annual rate of GDP growth. The independent variable & is
the input-output multiplier, and TFP Growth,, is the annual rate of total factor productiv-
ity growth. The regression in column (4) includes a set of control variables consisting of
the national population (in millions), average annual hours worked by persons engaged,
a human capital index (based on Barro and Lee, 2013), the real internal rate of return on
capital, the average depreciation rate of the capital stock, and the national currency/USD
exchange rate. The regressions in columns (3) and (4) include country and year fixed ef-
fects. Standard errors are reported in brackets. *, **, and *** denote significance at the
10%, 5%, and 1% levels, respectively.

where & is the input-output multiplier of country ¢ in year ¢, X, is a vector of
controls, and ¥, and &; are country and time fixed effects, respectively. The coefficient of
interest is ﬁg, which captures the average percentage-point increase in real GDP growth
for a one-unit increase in the input-output multiplier. Specifying time fixed effects
allows us to control for potential common factors affecting GDP growth rates in all
countries at a given time. Additionally, the inclusion of country fixed effects controls for
country-specific factors determining economic growth rates. We also include aggregate
TFP growth to control for cross-country differences in productivity growth.

Table 1 reports the results relating to specification (6). The first column presents the
point estimate for [35 in the most simple regression, where the input-output multiplier is
the sole regressor. First, note that the mean value of £ across the sample is 1.79, and the
standard deviation is 0.20. A back-of-the-envelope calculation implies a one standard
deviation increase in the input-output multiplier is associated with a (0.20 x 4.793 =)
0.96 percentage point (pp) increase in the rate of economic growth. The inclusion of
TFP growth in column (2) reduces this estimate to 0.56pp, suggesting that econom-

ies with higher input-output multipliers typically have higher rates of TFP growth as
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A. Full Production Network B. Self-sufficient Economy

Figure 1: Visual Decomposition of a Production Network
Note: The lilac nodes, F, represent the primary factor (labor) and the red nodes, H, represent the house-
hold. Directed arrows depict the flow of inputs/goods.

well. We take the specification in column (4) as our benchmark. Here, the relationship
between £ and GDP growth is robust to the inclusion of country/time fixed effects and
a vector of other controls.!* Here, the point estimate implies that a one-sd increase in
the input-output multiplier relates to a 0.80pp increase in the growth rate. !>

Taken together, the results in Table 1 and Table A.1 establish a positive and statistic-
ally/economically significant relationship between economies’ input-output multiplier

and the rate of economic growth.

3.2.2 Measuring network spillovers

We now specialize the framework outlined in section 2 to characterize network spillovers
in efficient economies. Specifically, we diagonalize the primitive input-output mat-
rix @ = diag (®) and characterize counterfactual Domar weights under this structure.
As a first step, and to build intuition, we graphically illustrate the concept of network
spillovers. Consider the economies shown in Figure 1. Panel A shows a full production

network as observed in the data, where all input-output relationships between sectors

14The vector of controls comprises national population (in millions), average annual hours worked by
persons engaged, a human capital index (based on the average years of schooling index of Barro and Lee,
2013), the real internal rate of return on capital, the average depreciation rate on the capital stock, and
the national currency/USD exchange rate.

5Tn Table A1 in the Appendix, we include lags of GDP growth, and TFP growth to regression spe-
cification (6). We find the relationship between & and GDP growth to be even stronger. Specifically, a
one standard deviation increase in & is associated with an increase in GDP growth of between 0.62 and
1.11 percentage points, on average. The rationale behind including lags of TFP growth in the regressions
comes from Baqaee and Farhi (2019), who show that nonlinearities in production can induce an endo-
genous response of the input-output network to changes in productivity. If production functions are not
Cobb-Douglas, then changes in productivity will be correlated with the input-output multiplier and bias
our estimates of .
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are captured. Under this production structure, shocks to sectors 1,2,...,N can propag-
ate to any other sector, affecting final consumption directly and indirectly. By contrast,
shocks to sectors in the “self-sufficient economy” of Panel B can only affect GDP dir-
ectly through the household’s demand for good i; propagation to other sectors is thus
nonexistent. Network spillovers comprise only the propagation of shocks to other sec-
tors, omitting all direct effects and thereby cutting down the number of paths en route
to consumption.

Formally, we define the counterfactual economy as a tuple (diag (@), f1), where the
objects @ and fi contain primitive input coefficients relating to intermediate inputs and
labor, respectively. The matrix @ = diag (@), retains each sectors’ reliance on its own
product (captured by ;;), but removes all interdependencies between i and the other
sectors of the economy. Specifically, (@, fi) relates to the economy shown in Panel B
of Figure 1.

Following the discussion of section 2, the structure imposed on the input-output

matrix implies constant returns CES technologies of the form
_6_
B L 61 L 8-11\ 6-1
y,-zA,'( P’ 07 ) -
Given there is no demand for intermediate inputs from other sectors, producers max-
imize profits given by

and the market-clearing conditions are

N
yi=_¢Ci+X; and Z i=1=1.

~
—_

for all sectors i. In defining the economy (@, i), we make the following implicit

assumption.

ASSUMPTION 3: Since the input-output parameter @;; and the labor share para-

meter [i; sum to one in the counterfactual economy
;i + i = 1,
then
N
i = pi+ Y ;.

J#i
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Put another way, primitive labor share coefficients satisfy fi; > u; since (@, fi) re-
tains the diagonal elements of @ and shuts down the off-diagonal. However, crucially,
assumption 3 does not bear materially on our results since { does not depend on the
value of the labor shares. With assumptions 1-3 in hand, we are in a position to char-
acterize network spillovers in terms of observable equilibrium objects, which is the

substance of the following proposition.

PROPOSITION 2: Network spillovers are characterized in terms of observable equi-

librium objects as'®

Sales;; -
§= Z GDP’ Y bi (Wi — i) @)
I, J#i i=1

where W = (1 —Qii>_].
Proof. See Appendix.

Firstly, equation (7) is simply a specialized version of equation (5), and can also
be expressed as § = YV io1bj (‘I‘— [1— diag(ﬂ)]l>ﬁ. However, the expression in
proposition 2 is more intuitive since it showcases the two components of network
spillovers. The first term on the right-hand side of (7) is the sum of bilateral sales
from i (the shocked sector) to j, as a share of nominal GDP. Note that this term echoes

Hulten’s theorem, which states that total nominal sales as a share of GDP gives the first-

order impact of a shock on aggregate output. By contrast, GD /' captures the impact of

a shock on GDP due to the direct and indirect propagation of the shock from sector i to

sector j. Intuitively, if sélgsfi” > Sélgsl’,”" , then the supply chains linking sector k to sector

Sales;; -
Gop 18

excluded from the first term because this gives the effect on GDP through i, which does

i amplify the shock to i relative to the supply chains linking m to i. Notice that

not constitute a network spillover.

The term Zﬁ\’: 1 bi (Wii — W;;) in (7) has a more subtle interpretation. In a sense, this
term is an adjustment that corrects for the fact that there are production chains linking
sector i to itself indirectly. In other words, the shock impacts i’s output due to higher-
round feedback from other sectors, which are counted as network spillover effects. The
intuition behind the correction is as follows. The diagonal elements of the observed Le-

ontief inverse, y;;, capture all direct and indirect exposures from i to itself. By contrast,

16Here, { can also be expressed as

[v]z

(Ai = i)

Il
-
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Table 2: Explanatory Power of Network Spillovers

(D ()
{et (Network spillovers) 1.056***
[0.008]
fc, (& — &, Direct component) 2.197***
[0.176]
Observations 645 645
R? 0.962 0.196

Notes: This table reports estimates for the pooled OLS regression
specification (8). The dependent variable is the input—output multi-
plier §. The independent variable ¢, corresponds to equation (7), and
measures each country’s network spillovers, whereas & is the resid-
ual from &, — {,,. Standard errors are reported in brackets. *, **, and
*** denote significance at the 10%, 5%, and 1% levels, respectively.

W;; comprises only the exposures stemming from i’s use of its own intermediates, given
by 1+ Qi+ Q2 +... = (1—Q;)". The difference y; — W;; purges out the latter ex-
posures, retaining only the production chains involving other sectors, which constitute
network spillovers.

Crucially, the measure  is related to the economy’s input-output multiplier £ through
the relationship & = § —|—§~ where E is the input-output multiplier in the counterfactual
economy defined by (@, f1). As § — &, aggregate output is increasingly influenced by
network spillovers. In the next subsection, we employ the measure { to study patterns

in the input-output multipliers of countries in the WIOD sample.

3.2.3 Network spillovers and input-output multipliers

Empirically, network spillovers account for most of the variation in economies’ input-
output multipliers between 2000 and 2014. To show this, we estimate the following

pooled OLS regression

gct:a‘FB*Cct‘Fect (8)

where {; is the extent of network spillovers for country ¢ in year ¢, as measured by
equation (7). We are primarily interested in the explanatory power of {. A high R? in-
dicates that year-to-year fluctuations in network spillovers explain the evolution of eco-
nomies’ input-output multipliers. Table 2 reports the results relating to specification (8).
The coefficient on {, is highly statistically significant and close to one, meaning input-

output multipliers typically increase one-for-one with network spillovers. In a separate
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Figure 2: Aggregate Network Spillovers & Input-Output Multipliers
Note: Each panel plots the input-output multiplier (£, blue line) against the measure of network spillovers
(¢, red line) for the years 2000 to 2014 using data from the 2016 release of the World Input-Output
Database.
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regression (column (2) of Table 2), we test the explanatory power of the residual, or
“direct” component, E While the coefficient on E is highly statistically significant, its
R? value is only 19.6%. By contrast, the regression of input-output multipliers on net-
work spillovers returns an R? of 96.2%. Prima facie, the results in Table 2, suggest that
between 80.4% and 96.2% of the variation in input-output multipliers is “explained” by
network spillovers.

The results shown in table 3 manifest themselves graphically in figure 2. For most
of the countries shown, it is immediately clear that the evolution of network spillovers
(red line) closely tracks the path of input-output multipliers (blue line) from 2000 to
2014. Given that input-output multipliers are highly sensitive to changes in network
spillovers, our empirical results suggest that output spillovers are an important channel
linking microeconomic shocks to aggregate outcomes. As a sanity check, and to test

this hypothesis more directly, we estimate the following specification

2
GDP Growth,; = a+ ¢ * §e + Y, TFP Growth
k=0

2
+ ) GDP Growthe;m+Xer + Ve + & + €. (9)
m=1
Table A.2 in the Appendix reports the results. Reassuringly, our estimates suggest
a positive and statistically significant relationship between network spillovers and GDP
growth. Noting that across the sample the standard deviation of ¢ is 0.18, the point
estimates of Table A.2 imply that a one standard deviation increase in network spillovers

is associated with a 0.45 to 0.91pp increase in the economic growth rate, ceteris paribus.

3.3 Application II: Does China’s input-output structure amplify

growth?

We now turn to a second application of the framework outlined in section 2. Specific-
ally, we show how countries’ economic growth rates could be higher under different
network structures, using the recent growth experience of China as a motivating ex-
ample.

According to data from the Penn World Tables, China’s economy grew (in real
terms) at an average annual rate of 6.35 percent between 1978 and 2019. Econom-
ists have suggested China’s extraordinary growth since the late 1970s can be attrib-
uted to a variety of sources: rising participation rates, improvements in human capital,

rapid productivity growth, the systematic understatement of inflation in official statist-
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ics, governmental reforms acting to reduce distortions, and the transition of labor out
of the agriculture sector (Young, 2003; Brandt et al., 2012; Zhu, 2012). We propose
another explanation; that China’s input-output architecture is particularly powerful at
amplifying productivity growth relative to other economies. To test this hypothesis,
we specialize the framework developed in section 2 to calculate the gains attributed to
China’s production structure. Specifically, we ask the following counterfactual ques-
tion: if some country ¢ had the same input-output structure as China over the period
2000 to 2014, how much higher (or lower) would ¢’s growth rate have been?!’

To use equation (5) to study this question, we set each country ¢’s primitive input-
output network to that of China, or @, = @cyn;, where ¢ indexes time. By doing
so, we are imposing China’s sectoral interrelationships on country ¢, for each year .
Crucially, the WIOD data (which we use for this application) comprises a common set
of sectors for all countries, allowing for a direct substitution of input-output matrices.

Our steady-state result in proposition 1 implies @.; = Qcpn;, meaning we can write

N
G =Y beji (Weji — Yennji)
ij=1

where Wcnn i is the jith element of China’s Leontief inverse in year r. Here, {
compares country ¢’s production structure to China’s, and a value of {, < 0 implies ¢’s
economy would experience accelerated growth in response to a productivity increase
if its input-output architecture were identical to China’s. For this calculation, the final
expenditure shares take the values of those in country ¢ since we calculate ¢’s hypo-
thetical gain relative to its observed growth rate. The input-output objects of the above
equation are calibrated to the WIOD data, noting that the Leontief inverse matrices are
computed in the usual way, ¥, = (I — Q). Additionally, we assume that productiv-
ity growth is equal for every sector of a given country to focus on the role of the network
in explaining cross-country differences in growth.'® As in the previous application, we
use productivity data from the Penn World Tables to run this set of counterfactuals. In
order to calculate country ¢’s percentage point gain in economic growth under China’s

structure, we compute

17Remarkably, China’s average real GDP growth rate was 7.7 percent per annum from 2000 to 2014,
according to data from the Penn World Tables.

8Under heterogeneous sectoral productivity shocks, country ¢’s GDP growth may be influenced by the
productivity growth experiences of specific sectors of the economy, which may be different from those
of China. Instead, we shut down this channel and focus purely on differences in input-output architecture
between countries.
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Figure 3: Hypothetical Output Gains of Having China’s Input-Output Structure
Note: Each point is computed as in (10), and measures each country’s hypothetical annual percentage
gain in real GDP growth under China’s input-output structure.

s —&. x AlogA,., if AlogA. >0
“ Cx AlogA.,  otherwise
where AlogA, is the average annual rate of TFP growth in country ¢ between 2000 to
2014, and Z.; measures c’s percentage point gain (loss) in GDP growth under China’s
production architecture. A few comments are in order regarding the measure Z. First,
so Z¢ returns the percentage point gain under the counterfactual, we compute Z. as
—C. x AlogA. for increases in productivity and ., x AlogA. for decreases in pro-
ductivity. Intuitively, if Z,; = x > 0 then country c’s real GDP growth rate would have
been x percentage points higher under China’s network structure. Second, we take the
average annual rate of TFP growth over the sample period for each country. This is
to limit the influence of the global financial crisis on our estimates. Updating the TFP
growth rates annually for each country yields qualitatively similar (but quantitatively
larger) estimates. Finally, to compare our results across countries, we average Z. over

the sample period and calculate the average annual percent gain in GDP growth as
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Zc
m (10)
where AlogY is the average rate of economic growth in country ¢ between 2000
to 2014. Importantly, when computing this counterfactual, we place no restriction on
the elasticities of substitution in consumption (o) and production (6). Specifically, we
need not assume that country c retains the same values of these elasticities under the

counterfactual, therefore reducing the information required to compute (10).

Z
AlogV
shows positive growth gains for every country, though substantial heterogeneity in these

Figure 3 plots for each country in the WIOD sample.!® Remarkably, the figure
gains across countries. For example, Canada, Bulgaria, Brazil, France, Croatia, Cyprus,
and Turkey are on the modest end of the spectrum, with a gain of less than 5 percent.
On the other hand, Sweden, Estonia, Slovakia, Japan, Romania, Russia, Lithuania, and
Portugal all experience gains of over 30 percent. Additionally, our results suggest the
United States’ average annual growth rate would have been 18.5 percent higher un-
der China’s production structure, or 2.32 percent per annum (the actual average annual
US growth rate was 1.96 percent). Our results suggest China’s input-output structure
greatly amplifies productivity growth relative to the other countries in the sample. How-
ever, we stop short of tracing this finding to particular structural features of the Chinese

economy, leaving this task for future work.

4 Conclusion

It is often difficult to understand which set of intersectoral linkages amplify shocks
in multi-sector macroeconomic models with production networks. As a remedy, we
provide a theoretical framework that measures the macroeconomic importance of spe-
cific structural linkages. Methodologically, we set up a standard neoclassical produc-
tion network model and derive an analytical formula that computes the macroeconomic
impact of sector-specific shocks under any arbitrary linear transformation of the pro-
duction network.

In an application and as proof of concept, we discipline our formula to derive an ex-
act closed-form expression for network spillovers in efficient economies. Empirically,
we show that (for a sample of 43 countries) the extent of network spillovers fluctuated
substantially over 2000 to 2014, suggesting output spillovers to be a driver of macroe-

conomic outcomes. In a second application, we quantify the gains of having different

19We omit Italy and Greece since these countries had very low average real GDP growth rates over the
sample period (0.18% and 0.08%, respectively).
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network structures. As an example, we show that all countries in the WIOD sample
would have experienced accelerated economic growth had their input-output structure
been identical to China’s between 2000 and 2014. In particular, when China’s input-
output network is hypothetically substituted for that of the United States, we calculate
the US GDP growth rate to be 18.5 percent higher per annum.

While our theoretical results apply to economies where distortions are nonexistent, a
natural next step would be to characterize our formula in economies with inefficiencies,
taking the models of Jones (2011), Liu (2019), Bagaee and Farhi (2020b), and Bigio
and La’O (2020) as a starting point. Such an analysis would illuminate how distor-
tions interact with input-output linkages, extending our results beyond the benchmark

provided in this paper.

Appendix A. Proofs

PROOF OF PROPOSITION 1: From the first-order condition with respect to intermediate
consumption x;;, we get the following expression for the input-output coefficient Q;;

Pjtij 01 _6-1_1-6

Qij = " = @A d 1 po oo
T pivi a ’ /
Similarly, the first-order condition with respect to i’s labor use implies
wi; 0-1,6-1 1-0
piYi

From the household’s optimization problem, we get

L —opo—1
cj=wa;p; P”

Additionally, the first-order conditions for labor and intermediate inputs imply

1j=pdy; A9~ w0 (11)
and
xji=ply; A9 wjip;®. (12)

Plugging (11) and (12) into j’s production function gives the following price equa-

tion
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N
1-6 _ 46-1 1-6 1-6
p; :Aj (,LL]'W —|—Zia)ﬁpi > .
=

Imposing the steady-state condition that (Ay,...,Ay) = (Al , ...,AN) =(1,...,1),and

solving for prices in the actual and counterfactual economies, we get

plfG _ (I— w)—luwlfe and plfe _ (I— ('b)—lﬂwlfe,

where (1 — @)~

1
we have P = (wl_" Zﬁvzl ai) 1=¢ and using the fact that ny:l a; = 1, in steady-state P =

U =1, ensuring p; =W and p; = w for all i. From the price index

w. By a similar argument P = . Using the condition ¢; = wa; 12 op°—1 we can write

c; =wa;w~ °w°~! = g;. Similarly, for the counterfactual economy, & = wa,w °w° ! =
ai, which uses the fact that a; = g; for all i. Thus, in steady-state we have ¢; = ¢;, and

from the consumption aggregators

. 1 o-1 e N a1
Y=Y= a’a;° = Zai =1.
i=1 i=1

Using the expression Q;; = @ jA? -1 p? -1 p}-’e and imposing the steady-state con-

O—1,1-0 — @, ; and similarly, Q; j = ay; for all j,i. Finally,

M=

dition, we get Q;; = w;jw
since @ = T(®) and @ = Q in steady-state, we have @ = T (@) = T(L). Finally, since
§=XV,_1bj (Wji—Wji), we arrive at equation (5).

O.E.D.

PROOF OF PROPOSITION 2: We will get to our result in four steps. The first step is
to establish that

dlogY
dlogA; '

and characterize A; in terms of the derivatives of prices. We then compute

dlog¥
dlogA;

in terms of counterfactual equilibrium objects b and Q. Thirdly, we characterize b
and Q in terms of observables. Finally, to complete the proof we compute x in terms

of observables.

Throughout the proof, we will make use of the steady-state condition that (Ay,...,Ay) =
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STEP 1: In the proof of proposition 1, we derived the following expression for the

input-output coefficient £;;

pjx
Q=L = ;a7 p 1 pl . (13)
plyl

Similarly, we have the following expression for A;

wl;
PiYi
Now, from the consumption aggregator

-

the change in aggregate output with respect to changes in individual final demands

A=

= A~ pf w0 (14)

™M=
S
=-ql—
\ﬁ
q‘i
N—
Q
|

18

N 810gY
le Y= Zalo Cj g2Cj,

or,

G

dlogY = ZY f T dlogc;. (15)
Earlier we derived
cj=wa;p; P°" ! (16)
and log differentiation of (16), gives
dlogc; =dlogw+dloga;— odlogpj(c —1)dlogP. (17)

Plugging (17) into (15), and taking the derivative with respect to logA;, gives

dlogy X 1 o1 (dlogw dlogp; dlog P
g Z ;,j ( gw _ dlogp; \_ dlog ) (18)

dlogA; i dlogA; dlogA; dlogA;

Additionally, substituting (16) into (18), and noting that
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dloeP Y dlogp;
0og _Zpoflaj -0 ngj

1
= o=/ 19
dlogh; = Pi dlogA;’ (19)
equation (18) becomes
dlogy & .
dlogA; = I
dlogw dlogp; N1 1_odlogpm
-0 —-(1-0o P° o ——= 20
dlogA;  dlogA, ( ) mZ:'l @mPm dlogA,; 20)
The first-order conditions for labor and intermediate inputs imply
= pyiA]~ ww° 1)
and
Xji = p?yjA?_leipfe. (22)

Pluging (21) and (22) into j’s production function gives the following price equation

N
p; " =A7" (HJWI_G + Z‘i wﬁpil_6> : (23)
=

Log differentiating (23), implies
0-146-1 -6, \- 1-6
dlogpj=—p; "A; " | mw +Za)ﬁpi_ dlogA;
i=1

N
+ P01 AY w0 d1ogw + Zl pI A wipi P dlog pi. (24)
1=

From (13) and (14), equation (24) can be written as

N N
dlogp; = — (Aj+ Zszﬁ) dlogAj+ Ajdlogw+ Y Qjidlogp;,
i=1 i=1

and noting that A; + Zf-vzl Qji =1, we get

N
dlogp; = —dlogAj+ Ajdlogw+ Y Qjidlog p;.
i=1
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Solving for dlog p;, gives

dlogp; = Zl//]kAkdlogw Zl//]kdlogAk
k=

Thus,

dlogp; & dl
&_Z Ty ogw (25)

dlogA; dloghA; "

k=1
Now, multiplying both sides of equation (14) by p; and dividing by w, gives

Cj _ _
_ J — p} GajPG 1’ (26)
w

and plugging (25) and (26) into (20), gives

dlogY % .
dlogA; = /
dlogw dlogw N dlogw
|l —(1—-0 .
X [dlogAi (Z ll/]k kdlogA le) ( (,,;1 (Z 7% kdl 0gA; — Ymi

which simplifies to

dlogY  dlogw dlogw
= b .
dlogA;  dlogA; ]Zlkz JWJk kdl ogA + Z iVji

Noting that Z]}/:] biyixk = A

dlogY  dlogw dlogw

_ ~ Y A A
dlogA;  dlogA; k; M dloga; "

Therefore, we recover Hulten’s theorem:

dlogY
dlogA;

i

We now characterize A; in terms of derivatives of prices. From equation (24), we

have

dlogpj_ﬁ,’Q dlog py dlogw  dlogA;

= 27
dlogA; &, *dlogh; " VdlogA;  dlogA;’ @7)

where (27) is a consequence of Zk:l Qi+ Aj = 1. Plugging (27) into (20) and
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simplifying, gives

dlogw N dlogw NN dlogpk N dlogA
A = — Y b,A b
" dlogA; mgl " dlogA; mgl k; le " ’
or,
dlogw dlogw dlogpk
A— b — _ — 28
i i dlogA; Z m md10 A lekZ m mk 0gA; (28)

where the left-hand side of the above equation is simply intermediate sales from

sector i to all other sectors, as a fraction of nominal GDP. Furthermore, since

dlogw  dlogY  dlogP . i b dlog pn,
dlogA; dlogA; ~dlogA; " &= " dlogA;’

equation (28) becomes

N N N
dlogpm dlogw dlog px
AnQpi = Ai+ ) by — ) buA — by Q2 .
mg m Z logA; m§ " dlog A; mzlkzl "Rk dlogA;
Using the fact that A; = Z%zl Dy Wi, We get
N N N N N N
dlogpy, dlogw dlog py
Am-gzmi — bm Yini + bm - bmAm - bmgmk
n;1 n;1 mz_"l dlogA; n;1 dlogA; n;”; dlogA;
Thus, we get
dlog p; dlogw Y dlog px
AiQii = biYii + b —biA; = ) biQiy——,
% = iV 00 e a PN dloga, k;l KdlogA;
or,
dlogw dlogp;, ¥ dlog py
AiQii = b; biNi———— +b; — ) Q . 29
i = iVl = il oo, ’(dlogA,- ,;1 * Tlog A, 29)

From equation (27), we have

(30)

dlogpi_i dlogpy _ dlogw  dlogA,
dlogh; = " dlogA; ~ 'dlogA; dlogA;’

Substituting (30) into (29), gives

29



dlogw dlogw
7L,'Q.,'i =biVii —biNi———+bi | Ai——F —1
v dlogA; | ( dlogA; )

and simplifying, gives

A = b (Wi — 1). (31)

STEP 2: We now move onto characterizing 2; in terms of b and Q. As a first obser-
vation, we note that as long as @;; = ;;, we will have Qi = Qi in equilibrium. This is

a consequence of sector i’s first-order condition with respect to its own intermediates,

5. Pitii
Y P

= Aie_l(l)i,‘. (32)

From (11), it is easy to verify that Q;; = A? -1 ®;;. Also from sector i’s optimization,

we get
A= A7~ p) et e (33)
The first-order conditions also imply that
Zi =5iA) twp and T = pPyA? vl

Plugging the expressions for %;; and [; into sector i’s counterfactual production func-

tion implies

“1
PO = A ' 0 (1-a9 ) (34)

Total (log) differentiation of (34), gives

-1
dlogp; = 1A% ! 0 (1 —Af.—lcojj) dlog
2
— 0 ' PA0 T (1249 ayy) Tdloga; (39)
and substituting A jand Q jj into (35)

dlogﬁj :/~\j (1 —Q.jj)_] a’logW—f\j (1 —ij)_zdlogAj. (36)

Noting that b; = ﬁ}_cajﬁc—l and
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Equation (40) thus characterizes il- in terms of b; and Q;;.

dlogl _ pola;plo dlogw Gdlogﬁj—(l—c)<iﬁc’_] 164108 P

dlogA; Pi | dloga; ~ dloga; o dlogA;
(37)
plugging the derivative of (36) with respect to logA; into (37), gives
dlogV/  dlogw & . - _; dlog/
082 _ COBW N bR (1 — Q) S8
dlogA; dlogA; /= dlogA;
N
- _pdlogAy,
BB (1= Qi) > . (38
+mZ] m m( mm) legAi ( )
Equation (38) can also be written
dlog?  dlogw X . . _ dlogw . . _, dlogA,
= — ) buAnV; b
dlogd;  dlogA; Z:. Vi oga;  d O go0 g,
Noting that Am = DA
dlogV/  dlogw & 5 - dlogw & . . _, dlogA,
- - ZAmAm + bm m ¥Ymm y
dlogA; dlogA; =, dlogA; = dlogA;
and
dlog¥ N ~2 dlogA
dlogA; Z Vi dlogA; (39
The assumption of constant returns to scale in production implies that
/~\m+§2mm:1>
equation (39) therefore becomes
dlogy .
=biWii 40
dloga; ¥ (40)

STEP 3: We must first establish that goods prices are equal in the actual and coun-

terfactual economies. Recall that our price equation in the actual is
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N
1-6 0—1 1-6 0—1 1-6
p;  =A7 mw U +A; Ea)ijpj .
J=1

Thus, in the actual economy, we have (at the steady-state, where A; = 1 for all i)

N
1-6 1-6 _ 1-6
P Z Wijp; - = Hiw
Jj=1

Writing the above equation in matrix form and solving for prices, we have

p' == (- @) pw' .

Noting that Zl}jzl ;j + W;, we can write
I-o) 'p=1,
thus

1-6

p 0 =10

and p; = w for all i in steady-state.

Recall that our price equation in the counterfactual economy is
~1
Pt = Al i 0 (1-40 )
Imposing the steady-state condition that A; = 1 for all i

~1—-0 1

Pl =m0 (1— i)™
and noting that fi; + w;; = 1. Therefore, fi; = 1 — w;;, so

B 0= (1= o)W ~% (1 - i)™

~1—0

plo = pl=®

therefore, p; = w for all i. Now, from the actual economy’s price equation we have

N

1-0 _ ,,—141-6.1-6 , —1 1-6

wol = ATp T Zwijpj .
j=1

Under the counterfactual, solving for the wage, we get
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~1—-60 m—141-0 x1-60  ~—1 1 0
w =N, A; pl —U; Q;;

1-6 1-6.

Now, we set w =W

1 41— l 1— —1 41— 1 —1 ~1—
wtA 0 Zw,,p O =p A~

Imposing the steady-state condition that A; = 1 for all i

“—1 1-6 _ IZ(UUPI 9_ 1p11 6 — i 1p11 Ly
We’ve established that p; = w and p; = w for all i, so

N
—1,,1-6 ~1 1-6 _ g-151-6 _ —1,1-6

Ww T — U Ea)ijw =W w =l Wi
-

N
M ( Z, wlj) = (1_(””)

Finally, noting that 1 — w;; = fi; and 1 — 27:1 0;j = Wi

,Ui_l.uiwl_e = ‘ﬂl .az I 97

thus w = W in steady-state. This then ensures that p; = p;,, P=P, Y =¥ and
@

b; = b;. Additionally, since Q;; is price invariant, we get Q; = €;; (i.e. because

Qi = Qi = A} o).

STEP 4: We now compute { in terms of observables. As a consequence of our

results in step 3 of the proof, it is immediate to show that

§ =4 — b (41)

First note that the market clearing condition for good i is given by y; = ¢; + Z 1 Xjie
Multiplying both sides of this equation by p; and dividing by nominal GDP gives A; =
b+ Z]JVZI A;Q i, which can also be written as

N
;{i =b;+ leQj,'—f—lin’i

i#

Substituting (31) into the above equation gives
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N
A= bi—l-Z)Liji—l—bi(Wii— 1).
JF#i
And therefore,

Sales ; Sales ji
GDP

Mz

bi (Wi — Wii) + Z
1 i,j#i

i

Appendix B. Supplementary Results
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Table A.1: Sensitivity to Shocks and GDP Growth, Robustness

) 2) 3) “4)

. (Input-output multiplier) 5.530***  3.078***  3.299***  3,749***
[1.199] [1.121]  [1.233]  [1.244]

TFP Growth,, 1.055*  1.054***  1.045** 1.036™**
[0.036] [0.033] [0.035] [0.035]
TFP Growth, ;1 0.238***  -0.190*** -0.162*** -0.200***
[0.035] [0.052] [0.057] [0.059]
TFP Growth. ;> 0.014 0.109**
[0.034] [0.054]
GDP Growth,; | 0.391*  0.376™* 0.413***
[0.038] [0.041] [0.044]
GDP Growth,;_» -0.097**
[0.043]
Country FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Controls Yes Yes Yes Yes
Observations 601 601 558 558
Adjusted R? 0.806 0.838 0.842 0.843

Notes: This table presents estimates for regression specification (6) with the inclusion of lags
of GDP growth and TFP growth. All regressions include the same set of control variables as
in Table 1. Standard errors are reported in brackets. *, **, and *** denote significance at the
10%, 5%, and 1% levels, respectively.
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Table A.2: GDP Growth and Network Spillovers

ey 2 3) 4) (&)

Cr (Network spillovers)  5.050***  2.997**  2.674* 2498  2.759*
[0.722] [0.430] [1.293] [1.232] [1.377]

TFP Growth,; 1.159** 1.050*** 1.051*** 1.032***
[0.033] [0.036] [0.033] [0.035]
TFP Growth, ;1 -0.203***  -0.216™**
[0.052] [0.059]
TFP Growth. ;> 0.094*
[0.054]
GDP Growth,; | 0.402%*  0.426™**
[0.037] [0.044]
GDP Growth,;_» -0.087**
[0.043]
Country FE No No Yes Yes Yes
Year FE No No Yes Yes Yes
Controls No No Yes Yes Yes
Observations 645 645 644 601 558
Adjusted R? 0.069 0.675 0.784 0.837 0.841

Notes: This table presents estimates for regression specification (9). The dependent variable is con-
temporaneous real GDP growth. The independent variable {.; corresponds to equation (7) and is a
measure of network spillovers. Regressions (3), (4), and (5) include the same set of control variables
as in Table 1. Standard errors are reported in brackets. *, ** and *** denote significance at the 10%,
5%, and 1% levels, respectively.
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