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1 Introduction

For a plethora of reasons, sustainability of the age-old Pay-As-You-Go (PAYG) pensions has

been a matter of concern for the last few decades. Many countries with PAYG type pensions, an

important instrument which has served as a great support to the old for decades, are pursuing

reforms to downsize the program. Even the extreme form of it, the elimination of the program,

has also been discussed extensively in the literature as well as in the policy circle. Possibly the

most important issue here is whether this elimination can be done in a Pareto way. The broad

conclusion is that it is generally difficult to compensate the first generation of pensioners for the

loss incurred without making at least one later generation worse off. The literature that deals

with the transition from PAYG to a funded pension system is very rich and eliminating PAYG

type pensions in a Pareto way remains to be a big challenge, especially when the demographic

changes are not in favor of continuing this program. In this paper we present a novel mechanism

that exploits a well accepted externality effect, spawning from having children in a contributory

public pension system, to phase out pensions in a Pareto way. Thus, we contribute to this

rich literature by showing that PAYG type pensions can be phased out in a Pareto way and,

interestingly, by capitalizing on an inefficiency that arises from the PAYG pensions itself.

A severe budgetary pressure that PAYG type pensions are facing is mainly due to a de-

mographic shift in the developed countries, typically the home of PAYG. A fall in fertility has

coincided with the increase in size of the pension system (Boldrin, De Nardi and Jones (2015)),

raising concerns over its feasibility. Moreover, an increase in longevity of retired people is wors-

ening the budgetary concerns further.1 From a theoretical perspective too, the celebrated Aaron

- Samuelson results confirm that the PAYG pension regime is welfare reducing if the economy is

dynamically efficient (Aaron (1966)) where PAYG return is dominated by the market return.2

There are some other concerns including behavioral ones that also go against this age-old in-

strument.3 All these create an impression that, given the present state of affairs, a PAYG may

1How to adjust the features of the social security scheme to changes in longevity has been discussed by
Mulligan and Sala-I-Martin (2003, 2004) and Andersen (2008), among others.

2According to Abel et al. (1989), U.S. and other OECD countries are dynamically efficient. Mankiw (1995)
mentions: “... excessive capital accumulation is not a practical concern for policymakers. Actual economies
appear to have less capital than the Golden Rule level.” Barbie, Hagedorn and Kaul (2004) presents a test
criterion based on Zilcha (1991) and robust evidence that the U.S. economy is dynamically efficient. Thus,
following the literature, we assume the economy is not overaccumulating capital and PAYG pension is return
dominated.

3Admittedly pension programs have many critiques, some of which are purely on philosophical grounds.
Possibly the most important one is a myopia or present bias in consumption. Individuals differ in their tastes
and the government may not be the best judge of what is in their best interest (see Friedman (1962), Feldstein
(2005)). Surely there are things that an individual would enjoy more and would like to spend on when she is
young rather than when she is old. Social security benefits thus infringe on an individual’s liberty by changing
her preferences. A myopic agent has an inherent preference towards consuming more when young than old. A
paternalistic intervention like public pension based on the value judgement that the myopic agents save less for
their old age than they ideally should, will admittedly increase the old age consumption of the agent (for a review
of the literature dealing with the rationale for social security via its effect on savings see de la Croix and Michel
(2002). Social security in the presence of time inconsistency have been discussed extensively (see for example,
İmrohoroğlu, İmrohoroğlu and Joines (2003), Caliendo (2011)). Andersen and Bhattacharya (2011) revisits the
role played by myopia in generating a rationale for PAYG pension in dynamically efficient economies. Also,
provision of old age benefits distorts retirement behavior and the tax that is imposed on the working population
may distort labor supply (see Feldstein (1985)).
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not be desirable on its own unless it serves some other purpose.4

To the best of our knowledge, this paper is the first attempt to show a complete phaseout of

pensions, under both exogenous and endogenous factor prices frameworks, when fertility choices

are endogenous. The literature on phasing out PAYG pensions or moving to a fully funded one

from PAYG type pensions is substantially rich.5 Our framework that models fertility as an

endogenous choice and our mechanism that exploits externalities to phase out PAYG pensions

in a Pareto way, are substantially different from the existing analyses. To be precise, the model

exploits an externality that is associated with the PAYG pension system itself, arising through

endogenous fertility decisions. More importantly, this plan which decreases PAYG pension tax

in subsequent periods and pension is phased out in finite time, satisfies the standard efficiency

conditions designed in the recent literature when fertility is endogenous. Two recent papers

that are somewhat similar in spirit to our work in terms of phasing PAYG pensions out in a

Pareto way but using a framework of education and pension along with exogenous choice of

fertility are Andersen and Bhattacharya (2017) and Bishnu et al. (2018). While under the

assumption of exogenous factor prices, the first paper uses human capital externalities to phase

out pensions starting from the complete market allocation (the best possible allocation when a

perfect credit market to borrow funds for education is present), the second paper characterizes

the optimal path of phasing out pensions starting from an incomplete market, using only the

market inefficiency.

Let us first explain the externality that has been used in this analysis to phase out pensions.

Benefits of having more children are enjoyed by the society if there is a publicly funded contrib-

utory system such as the PAYG since having a child broadens and deepens the pension tax base.

An individual agent however does not take this benefit into account fully. Since this increase in

the tax base will be shared with all individuals, an individual agent’s own share of this increase

in old-age pension is very small and imperceptible to her. That is, an individual’s decision

to have children is driven solely by the direct utility she gets from her children, whereas they

have a positive externality on the society. This particular form of externality was recognized

4 Apart from shortsightedness of agents as one of the main motives (see for example Kotlikoff (1987),
Kaplow(2008)), a benevolent planner can have numerous important reasons behind justifying a social security
system. Some of them are income redistribution (see Diamond (1977)), risk sharing between or within genera-
tions (see Enders and Lapan (1982), Smith (1982). Sinn (2004) among others), repairing the annuity markets
(see Diamond (1977), Feldstein (1990) among others). Krueger and Kubler (2006) analyzed the role of unfunded
pensions in the presence of idiosyncratic risks when financial markets are incomplete. Political economy issues
and also sustainability of social security have also been extensively analyzed (see for example, Browning (1975),
Lambertini and Azariadis (1998), Conesa and Krueger (1999), Cooley and Soares (1999), Azariadis and Galasso
(2002), Lancia and Russo (2016), Bishnu and Wang (2017), and for a detail review see Galasso and Profeta
(2002)). One more crucial reason can be the need for a balance between two differently directed intergenerational
goods, mainly education and pensions. This rich literature started with Pogue and Sgontz (1977), Becker and
Murphy (1988), and further enriched by Kaganovich and Zilcha (1999), Boldrin and Montes (2005), and very
recently contributed by Docquier, Paddison and Pierre Pestieau (2007), Bishnu (2013), among others (education
pension combination has also been used to explain, for example, growth as in Zhang (1995), inequality as in
Glomm and Kaganovich (2003)).

5See for example, Verbon (1988), Breyer (1989), Breyer and Straub (1993), Fenge (1995), Rangel (1997),
Miles (1999), Sinn (2000), Kotlikoff (2002), Lindbeck and Persson (2003), Barr and Diamond (2006) among
others.
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quite some time ago and is now well-established in the pension-related literature.6 While Cigno

(1993) termed this as positive externality of children, Folbre (1994) called children as public

capital good. This social benefit of children can lead to a free-riding behavior where agents no

longer need children for old-age support: they do not need to spend on children as they can avail

the benefits of having children through the pension system. Schoonbroodt and Tertlit (2014)

also point out the inefficiency of PAYG pensions in the presence of endogenous fertility which is

due to the same reason that the costs and benefits of producing children remain unaligned. In

an important contribution, van Groezen, Leers and Meijdam (2003) show that PAYG pensions

and child subsidy are “Siamese twins”, that is, PAYG pensions must be accompanied by child

subsidy to handle this externality. Our approach of dealing with the externality is similar to

Boldrin and Jones (2002) in the sense that the optimal solution is the cooperative equilibrium

where the middle-aged agents jointly determine their old-age pension by choosing the optimal

number of their children. To be precise, while the interpretation in Boldrin and Jones (2002) is

through the family level, ours is through the societal level. While a significant body of research

emphasizes the role of balanced intergenerational transfers, as we have also demonstrated first,

given the strain on pure PAYG, we offer the analysis of a complete phaseout of pensions. In

particular, we take advantage of this positive social externality of having children and show that

in its presence a complete phase out of pensions, as desired when PAYG is return dominated,

is clearly possible. Further, throughout this phaseout period, the Pareto condition is never

compromised.

When fertility is endogenous, the usual notion of Pareto efficiency is not well-defined. There

is a literature that redefines the concept of Pareto efficiency in environments with endogenous

fertility. Some of the prominent studies are Golosov, Jones and Tertilt (2007) which proposes

the notions of A-efficiency and P-efficiency, Michel and Wigniolle (2007) which proposes RC-

efficiency, and Conde-Ruiz, Giménez and Pérez-Nievas (2010) which proposes the notion of

Millian efficiency. Recently Cordoba and Liu (2018) has investigated the properties of socially

optimal allocations in an environment characterized by endogenous fertility along with fixed

resources under the Malthusian regime. Generally, efficiency criteria consider either just wel-

fare of born agents or both welfare and population size to compare alternate scenarios. Our

Pareto criterion takes care of both welfare and population. During the policy implementation

and the subsequent phase out period, no generation is worse off than it was under the PAYG

pension system and, at the same time, population never goes below the PAYG level. We also

demonstrate that our Pareto criterion obeys all the standard efficiency criteria defined in the

context of endogenous fertility.

Let us briefly explain the mechanism that is at work in our paper. From the literature

discussing the positive externality of children in a PAYG pension regime we know that any

generation can be made better off by implementing a government subsidy scheme. Government

subsidy on children lowers the costs of raising children. This provides incentive to individuals to

have more children, thus broadening the tax base for their pension benefits. Increase in tax base

6For a nice and up-to-date discussion of the fiscal externality due to children see Barnett et al. (2018).
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for pension benefits was the positive externality of children which was ignored by individual

agents and is now taken care of by the subsidy for children. We first show that a government

subsidy scheme financed by taxing parents is necessary to handle the externalities of children

generated due to the PAYG pension system. However, as mentioned above, our scheme does

not stop at just implementing the child care subsidy. The subsidy scheme makes the current

generation better off as it has more children and hence higher pensions. Suppose that introduc-

ing the subsidy scheme increases the current generation’s lifetime utility from V ∗ to V1 > V ∗.

This increase in current generation’s utility allows the government to reduce its pension benefits

while ensuring that the utility does not fall below V ∗. Therefore, while satisfying the Pareto

criterion of not making any generation worse off than under the PAYG pension system, the

government can decrease this generation’s pension benefits and hence the next generation’s

pension tax. Now the next generation faces a lower pension tax and there is a subsidy scheme

in place to take care of the externalities of children in a PAYG pension system. Therefore, its

utility is greater than the benchmark utility level V ∗ of the PAYG system. So the government

can again reduce this generation’s pension benefits and hence the following generation’s pension

tax. As the next generation faces a lower pension tax, the government can keep on decreasing

subsequent generations’ pension taxes.

We consider two cases: first an illustration with exogenous factor prices and second, a more

general framework with endogenous factor prices. For the case of exogenous factor prices, we

show that this process of reducing pensions in conjunction with subsidy for correcting the PAYG

pension related externalities will lead to a zero pension tax in finite time. Hence, starting from

an institutionalized PAYG pension system, we show the existence of a sequence of government

subsidy for children and pension taxes which culminates in the complete phaseout of the PAYG

pension system.7

These intuitive results have been presented finally in a more general setting. We show that

the pension reforms described above is robust to the general equilibrium effects too, that is,

when the factor prices are endogenous. While this analysis is more involved than its exogenous

counterpart, the underlying mechanism is similar. Harnessing the same positive externality of

children in a PAYG regime, the government can implement a pension reform in the Pareto-way.

At the end of the transition, the economy reaches its optimal steady-state. We characterize this

optimal steady-state and show that there exists a path to the optimum such that the transition

as well as the steady-state dominate the current steady-state with PAYG pensions. Again by

domination, we refer to P-efficiency ensuring that, under the pension reform, no generation has

less utility or population than the alternate scenario where this reform was not undertaken. At

the optimum, either PAYG pension is positive but gives the same return as private savings, or

it hits the zero lower bound and is phased out. In other words, at the optimal steady-state,

either the economy achieves the ‘golden rule’ with the endogenous return on capital R equalling

7We have computationally verified this phaseout results, namely the evolution of pension, fertility, income
and consumption during the policy implementation period till the pension is completely phased out. Also, the
phaseout result is robust to introducing human capital and quality-quantity tradeoff as in Galor and Weil (2000)
and de la Croix and Doepke (2003). The results are available on request.
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the rate of endogenous fertility n which is also the return on the positive PAYG pension, or

there is ‘underaccumulation’ with R > n, that is, PAYG is return dominated by the market

return. In the case of R > n where PAYG pension hits its zero lower bound, we show that the

optimal steady-state must be supported by a subsidy on savings that can incentivize saving in

the absence of a PAYG type transfer.

The rest of the paper is organized as follows. Section 2 sets up the model. Section 3

illustrates the basic mechanism and results using a simplified framework with exogenous factor

prices. In Section 4, we generalize the results using the general set-up with endogenous factor

prices. Section 5 concludes. All the proofs are presented in the Appendix.

2 The model

We consider an overlapping generations economy where agents live for three periods. They

are young in the first period, middle-aged in the second and old in the third. An agent is born

in the first period. She earns wage in the second period, consumes in that period and saves for

her old age. She also decides to have children in the second period. Finally, she consumes the

returns from her investment in the third period. An agent derives utility from her consumption

in the middle age and consumption in the old age. For simplicity, we assume that the agents do

not consume anything when young. The agent also derives utility from the number of her chil-

dren. For notation, we identify a generation by the period when it is in middle age. That is, if

an agent was born in period t−1 and is of middle age in period t, we call her a generation t agent.

We assume that the utility of a generation t agent is given by

u(cmt ) + βu(cot+1) + v(nt),

where cmt and cot+1 are agent’s consumption in the middle age and old age respectively. The

agent discounts her utility from consumption in old age by β where β ∈ (0, 1). The utility from

consumption is given by the function u(.) which is assumed to be strictly increasing and concave,

that is, u′(.) > 0 and u′′(.) < 0. It also satisfies Inada conditions, that is, limc→0 u
′(c) =∞ and

limc→∞ u
′(c) = 0. Since fertility is an important issue especially for the analysis of sustainabil-

ity of PAYG type pensions, we model fertility as endogenous. An agent’s number of children is

denoted by nt. The utility an agent derives from her children is denoted by v(.). We assume

that v(.) also is strictly increasing, concave and satisfies Inada conditions.

The production function in period t, f(st, nt−1), follows constant returns to scale technology

with respect to the factors – capital accumulated through the savings of generation t−1 agents,

st, and labor available in period t, nt−1. Further, it satisfies Inada conditions along with the

standard concavity assumptions. Factor markets being competitive, equilibrium factor prices

are given by their marginal products: Rt(st, nt−1) = f1(st, nt−1) and wt(st, nt−1) = f2(st, nt−1)

where fi represents marginal productivity of the ith factor of production. As we have mentioned

above, throughout the paper we assume that at any t, the gross return of return on capital in
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the economy is higher than the population growth rate.

The government is present in the economy. Initially, the only role the government plays is

that of administering the PAYG pension system. An agent while working in her middle age

pays a proportion of her income to support pension for the old. In return, she receives pension

support in her old age. In subsequent sections we suggest another role for the government to

provide subsidy per child for correcting the pension externalities.

2.1 The PAYG Regime

We start with an economy where a pay-as-you-go pension scheme is in place with proportional

pension tax at time t given by τt. An agent pays the pension tax in her middle age and receives

pension support pt+1 in old age.

For a generation t agent, her middle age budget constraint is given by

cmt + qnt + st+1 = (1− τt)wt.

The agent supplies labor inelastically and earn a wage wt. Raising each child has a constant

cost q and an agent who has nt children bears a cost of qnt. A proportion τt of the earning wt

is paid to the government as tax for pension benefits to present old. Agent’s saving for her old

age is denoted by st+1.

In the old age the agent survives on her savings in the middle age which earns a gross interest

rate Rt+1 > 1, as well as pension support pt+1 from government. Thus, the agent’s old age

budget constraint is given by

cot+1 = st+1Rt+1 + pt+1.

The government balances its budget in every period. In period t+ 1 it funds pension to the

old, pt+1, by taxing the earnings of nt middle-aged of generation t + 1 at the rate τt+1. Thus

the government’s balanced budget constraint in period t+ 1 is given by

pt+1 = τt+1ntwt+1.

3 An Illustration (with Exogenous Factor Prices)

In this section we illustrate our mechanism in a simplified framework where factor prices are

exogenously given, that is, wt = w and Rt = R for all t.8 We return to the general case with

endogenous factor prices in the next section.

8The importance of general equilibrium effects for sustaining intergenerational transfers is well documented
in the literature (see, for example, Cooley and Soares (1999) and Boldrin and Rustichini (2000)).
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3.1 Suboptimal Fertility in a PAYG Regime

We first demonstrate that atomistic individual’s fertility choice is suboptimal in our standard

PAYG regime.

Individualistic choice of fertility

In this standard PAYG regime an atomistic individual’s consumption and fertility choices

are given by the solution to the following problem of a generation t agent:

max
{st+1,nt}

u(cmt ) + βu(cot+1) + v(nt)

subject to

cmt = (1− τt)w − qnt − st+1, (A)

cot+1 = st+1R+ pt+1.

Individuals act atomistically and do not take the government’s pension budget constraint

into account while solving their problem. The change in tax base to fund the pension due to

one individual’s fertility choice will be small and imperceptible to the individual. Therefore,

parents take into account only the direct utility they enjoy from the quantity of their children

and ignore the pension benefits they receive as a result of investing in the number of their

children. For this reason they treat pt+1 as exogenously given while solving problem (A).

The solution to problem (A) is characterized by the middle age and old age budget con-

straints and the following first order conditions with respect to st+1 and nt respectively:

u′(cmt ) = βRu′(cot+1),

u′(cmt )q = v′(nt). (1)

The first condition is the standard Euler equation. An agent equates the marginal utility

from consumption in middle age to that in old age. The second condition equates the marginal

loss in consumption utility from having an extra child to the marginal gain in utility from having

an extra child. It ignores the gain in utility due to increase in pension support working through

the government’s budget constraint.

Optimal choice of fertility

An agent does not internalize her pension benefits and takes pt+1 as exogenous. This creates

the well-documented free-riding problem (van Groezen, Leers and Meijdam (2003)): having

children has a positive externality of increasing the tax base for pension support which an

individual agent does not take into account. The optimal fertility choice should internalize this

positive externality. Alternatively, in the spirit of Boldrin and Jones (2002), the suboptimal

individual choices can be interpreted as a competitive equilibrium where each agent takes as

given the pension available to her and makes her fertility choice as the best response to maximize
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her utility. Then the optimal solution can be viewed as a cooperative equilibrium where the

middle-aged agents jointly determine their old-age pension by choosing the quantity of their

children. So in the agent’s optimal choice problem, pension in the old age budget constraint

should show up as τt+1ntw instead of an exogenous pt+1. An individual agent can control her

pension in collaboration with other agents in the optimal solution. Thus, following Boldrin and

Jones (2002) the optimal choices are given by the solution to the following problem:

max
{st+1,nt}

u(cmt ) + βu(cot+1) + v(nt)

subject to

cmt = (1− τt)w − qnt − st+1, (B)

cot+1 = st+1R+ τt+1ntw.

In the optimal solution, an agent takes her pension support as endogenous where its level is

affected by the choice of her fertility. It is the product of the next period pension tax τt+1, each

child’s earning w and her number of children nt. The solution to the problem (B) is given by

the two budget constraints of middle age and old age and the following first order conditions

with respect to st+1 and nt respectively:

u′(cmt ) = βRu′(cot+1),

u′(cmt )q = βu′(cot+1)τt+1w + v′(nt). (2)

The first condition is the standard Euler equation where the agent smoothens her optimal

consumption. The second condition however now includes the marginal gain in utility through

increase in pension, unlike the condition under atomistic choice. The second condition equates

the marginal disutility from having an extra child to the marginal gain in utility from two

channels. First, there is a direct gain in utility through an increase in number of children as

appears under atomistic choice too. Additionally, having more children increases the number

of taxpayers in next generation who fund the pension support for current generation.

Suboptimality of individualistic fertility choice

We denote the optimal fertility level of children which solves problem (B) by noptt . Fertility

level which solves an atomistic individual’s problem (A) is denoted by nindt with the superscript

ind corresponding to individual’s choices. In the following proposition we establish that when

atomistic agents do not internalize the pension benefits, the fertility choice is suboptimal.

Proposition 1. In a standard PAYG regime an agent’s utility is lower under individualistic

decision-making than under optimal decision-making. The suboptimality is generated by lower

fertility choice under individualistic decision-making, that is, noptt > nindt .

Proof. See Appendix A.1.
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3.2 Government Subsidy to Achieve the Optimal Choices

As proved in Proposition 1, agent’s individualistic choices are suboptimal in fertility. To

achieve the optimal fertility level the government must provide incentives to agent to have more

children and these incentives may come in the form of a Pigouvian subsidy. Since children are

normal goods in this model, lowering their effective cost will lead agents to have more children.

We will show that the government can achieve the optimal choices by providing a subsidy on

child care which is financed by a lump sum tax.

Suppose in period t, the government provides a child care subsidy of φt per child. It finances

this subsidy by a lump sum tax Tt. The government’s budget constraint is given by

Tt = φtnt.

An agent’s effective cost of her child care is now (q − φt). However, she faces an extra tax

burden Tt which she takes as exogenous. A generation t agent now faces the following problem:

max
{st+1,nt}

u(cmt ) + βu(cot+1) + v(nt)

subject to

cmt = (1− τt)w − Tt − (q − φt)nt − st+1, (C)

cot+1 = st+1R+ pt+1.

As before, the agent takes pension benefit pt+1 as exogenous and the government’s balanced

budget constraint requires

pt+1 = τt+1ntw.

The subsidy on children reduces the marginal cost of child care, thus changing the first order

conditions. The solution to this problem is given by the following first order conditions:

u′(cmt ) = βRu′(cot+1),

u′(cmt )(q − φt) = v′(nt). (3)

Comparing the first-order conditions (2) and (3) the following proposition defines the child care

subsidy to match the optimal choices.

Proposition 2. In the presence of PAYG pensions, optimal subsidy on child care, φt, for which

agent’s individualistic choices match the optimal choices is characterized by

Rφt = τt+1w. (4)

Equation (4) implies that the optimal child care subsidy should be such that its value should

add up to the present value of the child’s contribution towards the agent’s pension. Hence,
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we establish that the government can take care of the pension externality of children by an

appropriate child care subsidy. One noteworthy point is that child allowance is positive only

if current generation’s pension is positive, that is, τt+1 > 0. Since the only reason for subsidy

in this model is to correct for the positive externality generated by a child in a PAYG pension

system, the subsidy is not required if the agent does not receive a pension support in old age.

An important observation is worth mentioning here. The above result confirms the “Siamese

twins” results of van Groezen, Leers and Meijdam (2003) and van Grozen and Meijdam (2008).

In a model with fertility and pension, they prove the interdependence between child care subsidy

and pension in the presence of a market failure, precisely when externalities in public pension

via fertility are ignored by the competitive equilibrium. In fact a somewhat conceptually similar

argument is also valid but gone unnoticed in Boldrin and Montes (2005) which shows that in

the absence of a perfect credit market to borrow funds for education, an education-pension

package can well replicate the complete market allocations, that is, a balance between the two

oppositely directed intergenerational goods is a must as a solution. In Rangel (2003) too the

interdependence between the forward and the backward intergenerational goods is very clear.

As the above proposition shows, in the presence of PAYG pensions, the government can

always make an improvement by implementing a child care subsidy scheme. This intergenera-

tional arrangement will result in a rise in fertility to its optimal level. However, the concern is

with the PAYG pension itself, as we have discussed in detail in the introduction. Thus, after

achieving the optimal choices, an important and timely relevant issue is to show a gradual phase

out of pensions in a Pareto way given the fiscal arrangements that we have in our setup. We

devote the next subsection to this much discussed issue of phasing pensions out in a Pareto way.9

3.3 Phase Out of PAYG Pension

Interestingly, the externality associated with PAYG pensions itself gives us a way to address the

phase out issue in a Pareto way. Since each generation can be made better off by the government

subsidy scheme as discussed above, their pensions can be decreased in conjunction with correct-

ing their fertility choice so that they get the same utility that they would have enjoyed under

a PAYG regime with no government subsidy. Therefore, the PAYG-only regime (that is, the

PAYG regime without child care subsidy) provides the benchmark. The government can correct

the pension externality using the fiscal instruments mentioned above and take the agent’s utility

to a higher level. But the government is not necessarily obliged to adopt this policy, rather it

can curtail pensions to some extent while ensuring that the agent gets the benchmark utility of

PAYG-only regime. Crucially, we observe that once one generation pays a lower pension tax,

9One not so interesting but technically plausible case is that government subsidy increase fertility to such
an extent that the fertility rate noptt (which is also the rate of growth of population) exceeds the rate of return
on capital R. Then the pension system may remain desirable as its return exceeds the return from investment
in capital market and then there may not be sufficient reason behind phasing out PAYG pension. However, we
assume that such an implausible jump in fertility does not occur. Therefore, our goal is to phase out PAYG
pensions precisely when market return is higher than the return from PAYG pension.
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the subsequent generations will have to pay lower pension taxes too and, eventually, pensions

will be phased out in the process. Therefore, we use an inefficiency associated with the pension

system itself (that arises through fertility) to phase out the pension system. To the best of

our knowledge, this paper is the first attempt of phasing out pension using an inefficiency that

generates from PAYG pension itself. Additionally, the recommendation of balancing intergen-

erational transfers, as suggested in the broad literature, can also be avoided especially when

sustainability PAYG is a serious concern.

We now formally present our policy prescription. Consider a generation t agent whose indi-

rect utility under the PAYG-only regime is denoted by V ∗. This is the benchmark utility and

the government ensures that each subsequent generation gets at least as much as V ∗ through-

out the phaseout period. We denote the optimal and individualistic utilities for a generation t

agent who faces a pension tax τt and whose children face a pension tax τt+1 by V opt(τt, τt+1)

and V ind(τt, τt+1) respectively. Our scheme works as follows.

Let us start from a steady-state where a generation t agent pays a pension tax τt = τ ,

and, whose children pay a pension tax τt+1 = τ so that V ind(τ, τ) = V ∗. First, a govern-

ment subsidy scheme increases the utility of generation t agents by aligning their fertility choice

with the optimal choice while maintaining the children’s pension tax rate at τ . The govern-

ment can always achieve this higher utility level by implementing the subsidy scheme discussed

in Proposition 2. However, in order to phase the pensions out, the government must reduce

the pension tax in period t + 1. In part (a) of the following proposition we show that the

government can do this while ensuring that the generation t agent is no worse off than it was

under the PAYG-only regime by taking advantage of the increased utility in the subsidy regime.

Note that both the policy experiments – child care subsidy as well as reduced rate of pen-

sion benefits – are introduced to the generation t agent. While the optimal subsidy increase

the number of children, the reduced rate of pension benefits would result in a lower fertility as

children are normal goods in this model. The question is the net impact on fertility. A related

issue is the net effect on total pension benefits of the generation t agent, pt+1 = τt+1ntw. In part

(b) of the following proposition we argue that the net effects on fertility as well as total pension

benefits are positive. The reason is that the government is affecting the fertility decision of the

generation t agent without changing her pension tax rate τt. Since under individualistic choices

the agent chooses her fertility and saving for a given pension tax and total pension benefits, any

changes keeping total pension benefits constant or lower would decrease her utility. So total pen-

sion benefits must increase. As τt+1 falls, it follows that the net effect on fertility is also positive.

Proposition 3. Let V ind(τ, τ) = V ∗.

(a) The government can reduce the pension tax of the generation t+ 1 agent to τt+1 = τ ′ < τ

while ensuring that the generation t agent is no worse off than what it was under the

no-subsidy regime, that is, V opt(τ, τ ′) = V ∗.

(b) The combined policy of child subsidy and reduced rate of pension benefits results in a net
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increase in both fertility and total pension benefits of the generation t agent.

Proof. See Appendix A.2.

Proposition 3 sketches the impact of our scheme on the generation t agent. Next we demon-

strate the effects on the subsequent generations. The generation t+1 agent faces a lower pension

tax rate τt+1 < τ . This lower tax rate, along with the internalization of pension externality

by child care subsidy, will make the agent better off as compared to the benchmark case of

no subsidy. However, similar to the generation t agent, the government will decrease the rate

of pension benefits of this generation (τt+2) further so that an agent of this generation also

gets the same benchmark utility V ∗. We continue in this way by reducing the rate of pension

benefits of subsequent generations further and further while maintaining the benchmark utility

V ∗ throughout the phaseout period. In the following proposition we first establish that the

rate of fall in pensions in this way between two consecutive generations j and j + 1 is given by
dτj+1

dτj
=

R

nj
. Then we prove that fertility keeps falling throughout the phaseout period. Inter-

nalizing the pension externality through subsidy leads to a rise in fertility. However, throughout

the phaseout period, as the rate of pension benefits in the old age keep on falling, the size of ex-

ternality keeps on decreasing and so does the subsidy. From equation (4) note that the subsidy

φ is an increasing function of the rate of pension benefit τt+1. Therefore, fertility rate keeps

falling throughout the phaseout period as the subsidy keeps falling. It follows that in an econ-

omy with R > nt, that is when return on PAYG is dominated by the market return, subsequent

generations’ fertility is also less than R. So the rate of fall in pensions becomes
dτj+1

dτj
=
R

nj
> 1,

that is, pensions keep falling at an ever-increasing rate. Hence, in an economy with R > nt the

government can phase out PAYG pension in finite time and in a Pareto way. Finally, as both

nj and τj+1 are falling, total pension benefits of the generation j agent, pj+1 = τj+1njw, keep

falling throughout the phaseout period and becomes zero in finite time. We summarize these

results in the following proposition.

Proposition 4. The following results hold during the pension phaseout period.

(a) The rate of fall in pensions between two consecutive generations j and j + 1 while main-

taining the benchmark utility V ∗ is given by

dτj+1

dτj
=
R

nj
.

(b)
dnj
dτj+1

∣∣∣
V=V ∗

> 0, that is, nj falls with τj+1 throughout the phaseout period. However,

fertility never falls below the PAYG steady-state level n∗.

(c) In an economy where return on PAYG is dominated by the market return, that is R > nt,

the rate of fall in pensions is given by

dτj+1

dτj
=
R

nj
> 1.

12



That is, the pension tax keeps falling at an ever-increasing rate implying that pension tax

reaches zero in finite time.

(d) Similar to fertility, total pension benefits also keep falling throughout the phaseout period

and become zero when pension tax reaches zero in finite time.

Proof. See Appendix A.3.

3.4 Pareto Efficiency of the Phase Out of PAYG Pensions

Since we propose a phasing out plan of pensions in a “Pareto way”, we shed some light on the

concepts of Pareto efficiency under endogenous fertility. In case of exogenous fertility, the idea of

Pareto is straightforward as utility of the same agent is compared across two different scenarios.

However, since fertility itself changes in our model, there are new agents in the phaseout scheme

who were not born in the benchmark case where PAYG program continues forever. So the usual

notion of Pareto efficiency cannot be used here as it cannot tell us whether the phaseout plan

is better for the “extra” number of agents born. As mentioned in the introduction, there are

some recent studies dealing with the notion of Pareto efficiency under endogenous fertility. One

notion is to compare utility of a representative agent across two scenarios, bypassing different

population sizes across them. One such study is by Conde-Ruiz, Giménez and Pérez-Nievas

(2010) which ranks allocations exclusively on preferences of those agents who are actually born

and calls it Millian efficiency. Michel and Wigniolle (2007) also ranks allocations using a similar

notion and call it RC-efficiency where RC stands for Representative Consumer. Golosov, Jones

and Tertilt (2007) captures this way of ranking through A-efficiency which is concerned with

agents common in both the economy. Further, they provide a notion of P-efficiency which is

concerned with the utility of all potential agents in the economy. Michel and Wigniolle (2007)

proposes another criterion of CRC-efficiency where CRC stands for Children for Representative

Consumers according to which one allocation dominates other if it RC-dominates the other and

it includes at least an equal number of children in each period. To use the P-efficiency crite-

rion, we need to compare the utility of unborn agents across different scenarios. Hence,

we make the following assumption.

Assumption 1. Any potential agent prefers being born in a PAYG regime over remain-

ing unborn.

Hence, there are two broad types of efficiency criterion used to rank allocations. One

takes just the utility of the representative agent into account. The other type of criterion

deems one allocation better than the other if it has at least as much utility and as much

population as the other allocation with some agents getting strictly higher utility. With

Assumption 1 above, A-efficiency and P-efficiency are examples of these two types. We

establish in the following proposition that our phaseout plan ensures Pareto efficiency

measured through both these types of criteria and this complete phaseout of PAYG is a

Pareto improvement.
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Proposition 5. Phaseout of PAYG pensions followed by no PAYG is a Pareto improve-

ment over the current scenario of PAYG pensions forever and the Pareto improvement

satisfies the efficiency criteria like A-efficiency and P-efficiency (Golosov, Jones and

Tertilt (2007)), RC and CRC efficiencies (Michel and Wigniolle (2007)) and Millian ef-

ficiency (Conde-Ruiz, Giménez and Pérez-Nievas (2010)).

Proof. See Appendix A.4.

4 General Setup (with Endogenous Factor Prices)

In the previous section, we have established a phaseout path of PAYG pensions under

exogenous factor prices when R > nt. In this section, we incorporate the general equi-

librium effects in our analysis and demonstrate how we can reform PAYG pensions to

enable transition of the economy to the long-run optimum in a Pareto way.

The dynamics in this endogenous factor prices framework is similar to that in the

case of exogenous factor prices. We first establish the sub-optimality of a PAYG regime.

Then, starting with an economy which is in steady-state in a PAYG regime, we exploit

this sub-optimality to construct a transition path to an optimal steady-state, henceforth

referred to as the O steady-state. The transition path ensures that no generation is worse

off. In other words, both the transition and the end-state are generated in a Pareto way.

Again, by Pareto way, we mean that the proposed transition and steady-state P-dominate

the PAYG steady-state. Each generation has at least as much population as in the PAYG

steady-state scenario and a representative agent in each generation gets as much utility

as she would have got in the business-as-usual PAYG scenario.

4.1 The PAYG Steady-State

Recall that the production function in period t is given by f(st, nt−1), where st denotes

capital accumulated through the savings of generation t − 1 agents and nt−1 is labor

available for production in period t. In the competitive factor markets, the equilibrium

wage rate and interest rate are given by the marginal products of labor and capital re-

spectively: wt(st, nt−1) = f2(st, nt−1) and Rt(st, nt−1) = f1(st, nt−1). With a proportional

PAYG pension tax τt, a generation t agent in this economy solves the following problem

14



taking the factor prices as given:

max
{st+1,nt}

u(cmt ) + βu(cot+1) + v(nt)

subject to

cmt = (1− τt)wt(st, nt−1)− qnt − st+1, (D)

cot+1 = st+1Rt+1(st+1, nt) + pt+1.

The government’s budget balancing ensures pt+1 = wt+1(st+1, nt)ntτt+1. But, as in the

last section, agents act atomistically and do not take the government’s pension budget

constraint into account.

Under the PAYG regime, with proportional pension tax τ in each period, let the

steady-state per-capita savings and per-capita fertility be denoted by sPG and nPG re-

spectively, while the factor prices be denoted by wPG and RPG. They must satisfy the

following conditions:

u′(wPG(1− τ)− qnPG − sPG) = βRPGu′(sPGRPG + nPGwPGτ),

qu′(wPG(1− τ)− qnPG − sPG) = v′(nPG),

wPG = f2(s
PG, nPG),

RPG = f1(s
PG, nPG).

The first equation is the standard Euler equation where an atomistic agent ignores the

general equilibrium effects of her choices. The second equation has an agent equalizing

the marginal costs of a child with its marginal benefits. Here, along with the general

equilibrium effects, the pension externality generated by a child is ignored by atomistic

agents. The third and the fourth conditions characterize the factor prices in general

equilibrium. Let us denote the steady-state welfare associated with the PAYG regime by

UPG.

4.2 Suboptimality of the PAYG Steady-State

Now we demonstrate that the PAYG steady-state has individuals making sub-optimal

choices as the pension externality of children is ignored by the individuals. Let us consider

the problem of maximizing the current middle-aged’s utility while fixing the resources

inherited by her as well as the resources left by her for the next generation at ePG ≡
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wPG(1− τ). This problem can be framed as

max
{s,n}

u(cm) + βu(co) + v(n)

subject to

cm + qn+ s ≤ ePG,

nePG + co ≤ f(s, n).

While the first constraint guarantees that the total expenditure in middle age is less

than the available resources ePG, the second one ensures that the total resources made

available to all the middle-aged of next generation along with the old-age consumption

should not exceed the total output produced. Note that this is a concave maximization

problem and the PAYG steady-state allocation is in the constraint set as it satisfies both

the constraints.

Now we show that the PAYG steady-state allocation is sub-optimal as the first order

conditions do not match. The first-order conditions for the above problem are

u′(cm) = βf1(s, n)u′(co),

(5)(
q +

ePG − f2(s, n)

f1(s, n)

)
u′(cm) = v′(n).

While the Euler condition of intertemporal consumption is the same, the effective cost of

children now includes the present value of surplus, ePG − f2(s, n), generated by a child.

This particular effect is ignored in the individual agent’s optimization problem. There-

fore, now the effective cost of an additional child is its direct cost (q) minus the present

value of pension extracted from her in the next period. Since the effective cost is less

in this optimal solution, it is intuitive that the optimal allocation should have a higher

number of children than the PAYG steady-state allocation, that is, nopt > nPG, where

superscript opt denotes the optimal choices. This is indeed the case and we have the

following proposition.

Proposition 6. Fertility under the PAYG steady-state is sub-optimal. Fixing resources

available to both the current as well as next period middle-aged at ePG ≡ wPG(1 − τ),

the current middle-aged can secure a higher utility than the PAYG level by choosing the

optimal allocation with nopt > nPG. Thus, the PAYG steady-state is P-dominated by an-

other allocation which leaves same resources for all subsequent generations and increases

fertility and utility for one generation.

Proof. See Appendix A.5.
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4.3 Characterizing the O Steady-State

In the last subsection we showed possible welfare gains as compared to a PAYG regime.

Now the question is what would be our choice of destination for this economy using these

welfare gains. This is a question of distributing gains amongst different generations and

potential unborn agents. As discussed in the introduction, we choose a transition of

the economy in a Pareto way ending at the allocation that maximizes the steady-state

welfare of a representative agent. We call this final destination the O steady-state. We

also ensure that this steady-state as well as the transition have at least as much fertility

as the PAYG steady-state, our point of comparison. This is done to ensure that the

transition and the steady-state also satisfy P-efficiency as population is higher in each

generation compared to the PAYG steady-state. In other words, the O steady-state is

the best A-efficient steady-state from the class of allocations P-dominating the PAYG

steady-state.10 Another constraint is also imposed to ensure that net transfers to the old

cannot be negative, that is, we guarantee a non-negative pension. From now onwards,

for tractability, we assume a Cobb-Douglas functional form for the production function

given by f(s, n) = sαn1−α.

Formally, the O steady-state consumption, fertility and savings solve the following

problem:

max
{cm,co,s,n}

u(cm) + βu(co) + v(n)

subject to

n(cm + qn+ s) + co ≤ f(s, n), (E)

n(cm + qn+ s) ≤ f(s, n)(1− α),

n ≥ nPG.

The first constraint is the resource constraint which says that in any period, the total ex-

penditure by all the middle-aged agents plus consumption of the old cannot be more than

the total output produced. The second constraint says that the aggregate expenditure

of the middle-aged is less than their total wage income guaranteeing that there will be

a non-negative transfer to the old. The third constraint ensures that the O steady-state

allocation P-dominates the PAYG steady-state allocation.

Note that the feasible set is not convex. So it is not necessary that an allocation satisfy-

10 The literature in general uses the A-efficiency criterion while solving for the optimal steady-state allocation.
See, for example, Dávila (2018) and Abio et al.(2004). However, in contrast to the more general practice of solving
for the optimal steady-state allocation of the representative agent, this paper is not just solving for the optimum
but is also comparing the optimum as well as the transition to the optimum to the PAYG steady-state. So,
while considering Pareto improvement over the PAYG steady-state, it makes sense to take population also into
account. Thus this exercise of comparing alternative scenarios should also consider fertility and use P-efficiency
to make the notion of Pareto-improvement more complete. However, adopting the other more popular criterion
does not change the main transition result of this paper, that is, Proposition 8. Even considering the A-efficiency
criterion, a transition to the optimal steady-state, if it exists, can be shown in a Pareto-way.
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ing the first-order conditions is optimal. This concern is also pointed out by Conde-Ruiz,

Giménez and Pérez-Nievas (2010). However, below we show that a solution to problem

(E) exists and the first-order conditions are necessary for characterizing the optimal al-

location.

For this purpose, let us denote the total resources available to a middle-aged agent by

e. This could be used for her consumption, expenditure on children and savings for the

future. Then, for a given e, the steady-state problem (E) can be rewritten as

V (e) = max
{s,n}

u(cm) + βu(co) + v(n)

subject to

cm + qn+ s ≤ e, (E′)

ne+ co ≤ f(s, n),

ne ≤ f(s, n)(1− α),

n ≥ nPG.

This is a standard concave programming problem and the optimal allocation for a given e

is characterized by the first-order conditions. V (e) corresponds to the maximum welfare

for a given e. Then, in order to find a solution to (E), it suffices to find an e ∈ (0,∞) that

maximizes V (e). In the following lemma we establish the existence of such an optimal e,

eopt, characterized by the first-order condition V ′(eopt) = 0.

Lemma 1. There exists an interval (e, e) such that eopt ∈ (e, e) maximizes V (e) and

is characterized by V ′(eopt) = 0.

Proof. See Appendix A.6.

For problem (E′), let the Lagrange multipliers for the non-negative transfers to old

and P-efficiency constraints be denoted by µ1 and µ2 respectively. Since the first two

constraints hold with equality, substituting for cm and co from these constraints the first-

order conditions with respect to s and n respectively are

u′(cm) = βu′(co)f1(s, n) + µ1f1(s, n)(1− α),

v′(n) =

(
q +

e− f2(s, n)

f1(s, n)
− µ2

u′(cm)
+

µ1eα

u′(cm)

)
u′(cm). (6(a))

In addition, we need the envelope condition corresponding to V ′(eopt) = 0:

u′(cm) = (βu′(co) + µ1)n. (6(b))
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Together, equations (6(a)) and (6(b)), are the first-order conditions of the original

problem (E) and characterize the optimal resources eopt along with allocation (cm, co, s, n).

Henceforth, we assume that the first-order conditions are also sufficient to characterize

the optimal solution.11 The discussion leads us to the following proposition.

Proposition 7. A solution to the O steady-state problem (E) exists and is characterized

by the first-order conditions (6(a)) and (6(b)) along with the budget constraints. This

allocation P-dominates the PAYG steady-state allocation.

The existence of solution and its characterization by the first-order conditions have

already been discussed above. The solution to problem (E) has a floor on fertility nPG

by construction, and it maximizes the utility of a representative agent. Thus, the second

part of the proposition follows directly from the construction of problem (E).

The first equation in (6(a)) gives the first-order condition with respect to capital. If

µ1 = 0, it is the standard Euler equation. However, in case the non-negative pension con-

straint binds, the value of capital increases as it helps to relax the non-negative pension

constraint. This is what the second term on the right-hand side of the equation reflects.

The second equation equates the marginal benefits of an additional child with its costs.

The benefit of a child is the direct utility gain. The costs are the direct cost q and the

present value of the net resource e − f2(s, n) which must be provided to the additional

child. We can also call it capital dilution since one additional child means more capital

needs to be saved to maintain the same level of resources. This equation is similar to

the second equation in (5) and differs only because of the presence of the two additional

constraints in problem (E′).

Now consider the envelope condition corresponding to V ′(eopt) = 0 given by u′(cm) =

(βu′(co) + µ1)n. If µ1 = 0, that is, if the non-negative pension constraint does not bind,

then, using the Euler equation, we get

n =
u′(cm)

βu′(co)
= f1(s, n) = R.

This is the condition associated with the maximum capital level in the O steady-state,

that is, the ‘golden rule’ level of capital. However, if µ1 > 0, we have R = f1(s, n) > n.12

The intuition is simple. We need some inter-generational transfer to achieve the golden

11The only issue here is the potential multiplicity of local maxima. There can be multiple e’s satisfying
V ′(e) = 0. Alternatively, in problem (E), multiple allocations can satisfy the first-order conditions as the
constraint set is not convex. Thus the first-order conditions are necessary, but not sufficient. In Appendix A.8,
we show sufficiency of the first-order conditions for a log utility functional form. Other papers have also shown
sufficiency of the first-order conditions under certain assumptions on functional forms. See, for example, Dávila
(2018) and Abio et al.(2004)

12It follows from simple algebra. When µ1 > 0, combining once again with the first equation in (6(a)), we get
the following from (6(b)):
u′(cm)− (βu′(co) + µ1)n = 0⇒ (βu′(co) + µ1)(f1(s, n)− n) = µ1f1(s, n)α > 0⇒ f1(s, n) > n.
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rule. If that transfer is pension, we achieve that. However, if the transfer required is

from the old to the middle-aged, non-negative pension prevents that. In that case, the

golden rule is not achieved. Moreover, when µ1 > 0, the ratio of marginal utilities is more

than R = f1(s, n), as can be seen from the first equation in (6(a)). Thus, the planner

must intervene to ensure that an individual gets a higher return than the market when

µ1 > 0. The rationale for this also follows from the inability to achieve the golden rule

through inter-generational transfers. The planner needs to transfer resources from the

old to the middle-aged in order to guarantee a higher capital and achieve the golden rule.

But it cannot go below zero pension. When this direct transfer is not allowed, an indirect

way to do that is through some incentives on saving that can guarantee a higher level of

capital. Another instrument that is needed here is a child care tax or subsidy to ensure

that the first-order condition with respect to n also holds. We discuss the decentralized

implementation of both the optimum steady-state and the transition in detail later. The

above discussion is summarised in the following lemma.

Lemma 2. The O steady-state achieves the ‘golden rule’ (only) if it is supported by a

non-negative transfer from middle-aged to old, that is, the O steady-state has R = n with

non-negative PAYG pension. Otherwise the non-negative pension constraint binds and

the O steady-state has R = f1(s, n) > n, that is, the O steady-state has R > n with zero

PAYG pension.

So far we have characterized the O steady-state. Depending on parameters, it either

achieves the golden rule level of capital defined by R = f1(s, n) = n along with non-

negative pensions, or stops at R = f1(s, n) > n with zero pensions.13 Starting with a

PAYG regime with resources available to the middle-aged given by ePG ≡ wPG(1 − τ),

our aim is to reach this optimal level of resources eopt and the corresponding allocation

in a Pareto-way. Here again, by Pareto way we mean that the transition as well as the

steady-state P-dominate the PAYG steady-state. That is, each generation must have at

least as much utility as in the PAYG steady-state and the population in any generation

must not fall below the PAYG steady-state level of population.

4.4 A Pareto-dominating Transition to the O Steady-State

In this section we show the existence of a transition path from the PAYG steady-state to

the O steady-state such that the transition path P-dominates the PAYG steady-state. For

this purpose, let us define the planner’s problem for generation j, who receives resources

13For log utility, it can be shown that if weight β on co is greater than some threshold, the O steady-state has
pension and golden rule. For β below that threshold, pension is 0 and R > n.
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ej and leaves behind resources ej+1 to the next generation, as follows.

W (ej, ej+1) = max
{s,n}

u(cm) + βu(co) + v(n)

subject to

cm + qn+ s ≤ ej, (F)

nej+1 + co ≤ f(s, n),

nej+1 ≤ f(s, n)(1− α),

n ≥ nPG.

The P-efficiency constraint and the constraint for non-negative transfers to the old

are present here also. The P-efficiency constraint ensures that, throughout the transition,

fertility never falls below the PAYG level. The other constraint ensures that, throughout

the transition, the PAYG type transfers from the middle-aged to the old are non-negative.

Recall that in subsection 3.2 we have shown that the PAYG steady-state is subopti-

mal. Each generation inherits resources ePG = wPG(1 − τ) and leaves behind the same

amount of resources for the next generation. But it does not do so optimally as it ig-

nores the pension benefits of a child. Taking that into account, the current generation’s

utility can be increased beyond the PAYG steady-state level, UPG. At the PAYG steady-

state, et = et+1 = ePG, and, by definition of W (et, et+1), we have W (et, et+1) > UPG

as the externality associated with the children is taken care of. Now, since W (et, et+1)

is increasing in its first argument and decreasing in its second argument, et+1 can be

increased till W (et, et+1) = UPG. Thus, the next generation experiences a resource (dis-

posable income) gain while the current generation is no worse off. Now generation t+ 1

has et+1 > ePG, so et+2 can be increased from the ePG level to maintain the equality

W (et+1, et+2) = UPG. Moreover, with W (et, et+1) = W (et+1, et+2) and et < et+1, it fol-

lows that et+1 < et+2. Thus, iterating forward from the PAYG steady-state level at time

t, resources will move in sequence ePG = et < et+1 < et+2 < ... < et+j < ... such that

W (et, et+1) = W (et+1, et+2) = W (et+2, et+3) = ... = W (et+j, et+j+1) = ... = UPG. To

reach the steady-state welfare maximizing resource level eopt, we need to show that this

sequence reaches eopt in finite time. Let ê < eopt be such that W (ê, eopt) = UPG. Then

we need to show that the sequence reaches ê in finite time as reaching ê implies reaching

eopt in the next period. We establish this in the following proposition.

Proposition 8. There exists a Pareto-way of attaining the optimal allocation in finite

periods. Formally, the sequence {et+j} defined above reaches ê in finite time T , that is,

et+T ≥ ê. Moreover, the transition P-dominates the PAYG steady-state allocation.

Proof. See Appendix A.7.
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Thus, Proposition 8 establishes that it is possible for the planner to devise a transition

plan that leads the economy to the O steady-state in finite time while ensuring that each

generation has at least as many children and gets as much utility that it would have

gotten had the economy continued to be in the PAYG steady-state. Of course, this is a

specific plan where the utility of every generation is pegged to the benchmark level UPG.

There can be alternative plans where some of the utility gains is distributed to the initial

generations. In those plans, achieving the O steady-state will be delayed.

4.5 A Tax-Subsidy Regime to Implement the O Steady-State and Transition

In the last two subsections we discussed optimality in terms of a planner’s desired allo-

cation. In this subsection we discuss the policy instruments required by the planner to

implement the optimal allocations for both the O steady-state and the transition. We

show that the required instruments are a child care tax or subsidy accompanied by either

a PAYG pension or a savings subsidy.

The O steady-state does not need a separate discussion as V (eopt) in (E′) can be writ-

ten asW (eopt, eopt) in (F). In other words, the planner’s problem in transition, W (ej, ej+1),

is more general and encompasses the steady-state V (e) as a special case: W (e, e) = V (e).

We first characterize the optimal allocation for the planner’s problem in transition, prob-

lem (F).

For any (ej, ej+1), with µ1, and µ2 being the Lagrange multipliers associated with

the non-negative transfers to old and P-efficiency constraints respectively, the first-order

conditions for (F) are given by

u′(cm) = βf1(s, n)u′(co)

(
1 +

µ1(1− α)

βu′(co)

)
,

v′(n) =

(
q +

ej+1 − f2(s, n)

f1(s, n)
− µ2

u′(cm)
+
µ1ej+1α

u′(cm)

)
u′(cm). (7)

These first-order conditions are very similar to the first-order conditions for problem

(E′) given by equation (6(a)), and, in fact, boil down to the same conditions when

ej = ej+1 = eopt.

These conditions can be replicated in a decentralized way. To see that, consider the

following problem of an individual generation j agent facing a proportional labor income

tax τj to fund pensions, a child care subsidy of φn,j per child, a savings subsidy of φs,j
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per unit, and a lumpsum tax Tj to finance these subsidies:

max
{s,n}

u(cm) + βu(co) + v(n)

subject to

cm + (q − φn,j)n+ s(1− φs,j) ≤ wj(1− τj)− Tj,
co ≤ sRj+1 + pj+1.

The government’s budget constraints are φn,jn + φs,js = Tj and pj+1 = nwj+1τj+1. The

first-order conditions for the above problem are

(1− φs,j)u′(cm) = βRj+1u
′(co),

(q − φn,j)u′(cm) = v′(n).

Comparing the two sets of first-order conditions, we find that an appropriately de-

signed child care subsidy along with a savings subsidy, financed by a lumpsum tax14, can

mimic the first-order conditions of the planner. The subsidies on child care and savings

are given by

φs,j =
µ1(1− α)

βu′(co) + µ1(1− α)
≥ 0,

φn,j =
f2(s, n)− ej+1

f1(s, n)
+

µ2

u′(cm)
− µ1ej+1α

u′(cm)
.

When the non-negative pension constraint does not bind, we have µ1 = 0, so that φs,j = 0.

That is, when there is a positive pension transfer, there is no need for a savings subsidy.

Moreover, in that case, f2(s, n) > ej+1 which in turn implies that φn,j > 0. Thus, a posi-

tive pension is always accompanied by a positive child care subsidy. On the other hand,

when the non-negative pension constraint binds, we have f2(s, n) = ej+1 and µ1 > 0, im-

plying that the savings subsidy is positive. However, in this case, the sign of φn,j depends

on the sign of µ2−µ1ej+1α. Hence, childcare can be either be taxed or subsidized. Hence,

the optimal public policies involve a child care tax or subsidy accompanied by either a

positive pension and no savings subsidy, or zero pension and a positive savings subsidy.

Comparing with equation (6(a)), we see that we need this combination of subsidies and

taxes even at the steady-state to achieve the O steady-state allocation which corresponds

to ej = ej+1 = eopt.

The following proposition summarizes the above discussion on the policy instruments

required by the planner to implement the optimal allocations.

Proposition 9. The O steady-state as well as the transition to it starting from a PAYG

14We have used it as a lumpsum tax but it can also be a tax on labor in the model since labor is assumed to
be inelastic.
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steady-state can be implemented in a decentralized way by a combination of child care tax

or subsidy and one of either a PAYG pension or a subsidy on savings.

A noteworthy point is that we also need a subsidy on savings when the non-negative

pension constraint binds, that is, µ1 > 0. The subsidy on savings is needed only when the

non-negative pension constraint binds with R > n and the golden rule is not achieved. It

can be interpreted as a second-best tool to incentivise savings when the first-best option

of transfer from the old to the middle-aged is not allowed.

5 Conclusion

For quite sometime the PAYG pension system is facing serious criticisms, mainly due to

demographic shifts like a fall in fertility coinciding with a rise in longevity. Also, there

is no efficiency rationale for pensions if the economy underaccumulates capital and mar-

ket return dominates the return from PAYG pensions which is the fertility rate. But

phasing pensions out without making any generation worse off has been a challenging

task. This paper proposes a novel way out of the PAYG pension system in a Pareto way.

An inefficiency within the pension system that is well acknowledged in the literature but

somehow overlooked till date for the purpose of phasing pensions out, has been carefully

presented in the paper. The paper combines three popular strands of literature related

to PAYG pensions. The first strand identifies the externalities associated with children

and provides ways to deal with it. The second strand tries to find a balance between dif-

ferently directed intergenerational transfers, and it turns out that our policies have that

balancing feature. The third strand of literature deals with phasing out of pensions and,

in our evaluation, the present paper mostly contributes to this literature. To be precise,

the paper recommends a childcare subsidy package to correct for the positive external-

ity in a PAYG system and then takes advantage of this positive externality to propose

a scheme that provides a way for subsequent generations’ pension tax to be gradually

reduced while ensuring that no generation is worse off than under the PAYG regime. In

the process the PAYG pensions can be completely phased out in finite time, maintaining

all the efficiency criteria considered in the literature in the context of endogenous fertility.
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A Appendix

A.1 Proof of Proposition 1

Proof. In the first order conditions (2) for the optimal choices, u′(cmt ) equals βRu′(cot+1)

by the first condition. Substituting u′(cmt ) by βRu′(cot+1) in the second condition we get

the following equation:

βu′(cot+1)(Rq − τt+1w) = v′(nt).

Let us denote the utility of a generation t agent by Vt(.), that is, Vt(.) ≡ u(cmt ) +

βu(cot+1) + v(nt), where cmt and cot+1 are defined in the constraints of problem (B). Then

∂Vt(.)

∂nt
= −u′(cmt )q + βu′(cot+1)τt+1w + v′(nt).

As an atomistic agent equates the first term on the right-hand side with the third term,

the net marginal effect of fertility on utility,
∂Vt(.)

∂nt
, equals βu′(cot+1)τt+1w > 0. Therefore

the agent can increase her utility by modifying her fertility decision. Hence a better

solution for the agent’s problem exists in the neighborhood of her choices. This implies

that V opt
t > V ind

t and the agent’s individualistic choices are not optimal.

Now we prove that noptt > nindt . Suppose, on the contrary, that noptt ≤ nindt , that is,

the optimal fertility choice noptt , a solution to problem (B), is less than or equal to the

agent’s individualistic choice nindt , a solution to problem (A). We show that this will lead

to a contradiction. Consider first the first order condition of problem (A) with respect to

nt, that is, the second equation in (1):

u′(cmt )q = v′(nt). (A1)

For problem (B), the first order condition with respect to st, the first equation in (2),

implies u′(cot+1) =
u′(cmt )

βR
. Substituting this value of u′(cot+1) in the second equation in

(2) gives

u′(cmt )
(
q − τt+1w

R

)
= v′(nt). (A2)

Individualistic and optimal choices of the agent must satisfy equations (A1) and (A2)

respectively. Then, under the assumption that noptt ≤ nindt , the right-hand side of equation

(A2) must be greater than or equal to the right-hand side of equation (A1) by concavity
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of v(.). It follows that

u′(cm,optt )
(
q − τt+1w

R

)
≥ u′(cm,indt )q

⇒ u′(cm,optt ) ≥ u′(cm,indt )

⇒ cm,optt ≤ cm,indt [since u(.) is concave]

⇒ co,optt+1 ≤ co,indt+1 . [since u′(cmt ) = βRu′(cot+1)]

Thus, under the assumption that noptt ≤ nindt , optimal consumption decisions are less than

the agent’s individualistic consumption decisions. As the agent’s optimal consumption

and number of children are less in comparison with the atomistic choices, we have V opt
t ≤

V ind
t . This contradicts V opt

t > V ind
t . Hence, our assumption of noptt ≤ nindt is incorrect,

implying that noptt > nindt . �

A.2 Proof of Proposition 3

A.2.1 Proof of Proposition 3(a)

Proof. We start with V ind(τ, τ) = V ∗. In appendix A.1 we have shown that V opt(τ, τ) >

V ∗. We prove this proposition by showing that V opt(τt, τt+1) is strictly increasing in τt+1.

Recall that V opt(τt, τt+1) is the maximized value of the objective function in problem (B).

It is clear from the agent’s old age budget constraint in problem (B) that, other things

remaining the same, an increase in τt+1 expands the agent’s budget set. Original optimal

choice of {st+1, nt} being still available, an increase in τt+1 certainly increases the agent’s

utility. Therefore, V opt(τt, τt+1) is strictly increasing in τt+1. Thus, in order to guarantee

V opt(τ, τt+1) = V ∗ < V opt(τ, τ), the government should decrease τt+1, that is, τt+1 < τ .

�

A.2.2 Proof of Proposition 3(b)

Proof. As a first step let us see that it would be enough if we can establish that the

net effect of the combined policy of child subsidy and reduced rate of pension benefits

on total pension benefits of the generation t agent, pt+1 = τt+1ntw, is positive. Observe

that w remains unaffected by the combined policy and τt+1 falls. So if we can show that

pt+1 = τt+1ntw increases, it would follow that nt increases. In the next step we prove

that pt+1 increases as a result of the combined policy.

Consider problem (A) where the generation t agent takes her pension benefit pt+1 as

exogenous and makes her choices of fertility and savings. The choices are such that the

government balances its pension budget constraint. Similarly consider problem (C) where

the generation t agent takes as exogenous both her pension benefit pt+1 as well as her lump

sum tax Tt to finance the child care subsidy. Here the choices satisfy the government’s

subsidy-financing budget constraint and the pension budget constraint. Let us write the

indirect utilities of the agent as a function of pt+1, that is, V ind(pt+1) for problem (A)

and V opt(pt+1) for problem (C). Before the subsidy scheme was introduced, the agent’s
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indirect utility was at the benchmark level V ∗, and let the resultant total pension benefit

be denoted by p∗t+1, so that V ind(p∗t+1) = V ∗. Under the combined policy suppose that the

resulting total pension benefit is p′t+1. Note that choices under the combined policy is the

solution to problem (C) where τt+1 is reduced to ensure that V opt(p′t+1) = V ∗. We prove

that p′t+1 > p∗t+1. Suppose, on the contrary, that p′t+1 ≤ p∗t+1. Then, from the budget

sets for problems (A) and (C) it is clear that as long as the solution to problem (C)

(with reduced τt+1) satisfies the government’s subsidy-financing budget constraint and

the pension budget constraint, the solution is also feasible under problem (A). It follows

that the optimal choices under problem (A) must result in strictly higher utility than the

choices under the combined policy, that is, V ind(p∗t+1) ≥ V ind(p′t+1) > V opt(p′t+1).
15 But

this contradicts V ind(p∗t+1) = V ∗ = V opt(p′t+1). Hence, our supposition of p′t+1 ≤ p∗t+1 is

incorrect, implying that p′t+1 > p∗t+1. �

A.3 Proof of Proposition 4

It is enough to prove parts (a) and (b) of the proposition. The remaining parts follow

easily from (a) and (b) and are already discussed in the text. We prove parts (a) and (b)

in the following two steps.

Step 1: Proof of Proposition 4(a)

Proof. During the pension phaseout period the generation j agent faces pension tax τj

and for generation j + 1 agent it is τj+1. The government is always keeping an agent’s

utility at V ∗, that is, V opt(τj, τj+1) = V ∗. Totally differentiating this equation we get

−u′(cmj )wdτj + βu′(coj+1)njwdτj+1 = 0.

Since optimal choices in nj and sj+1 are made throughout the phaseout period, the

indirect effects working through nj and sj+1 are zero by the envelope theorem. Then,

using the Euler equation u′(cmj ) = βRu′(coj+1), the above equation gives

dτj+1

dτj
=
R

nj
.

�

Step 2: Proof of Proposition 4(b)

Proof. Now we show that fertility keeps falling throughout the pension phaseout period.

During the phaseout period, the government sets pension tax rates such that

u(cmj ) + βu(coj+1) + v(nj) = V ∗. (A3)

15The first inequality follows from p∗t+1 ≥ p′t+1 and that indirect utility is increasing in pension benefits. The
second (strict) inequality follows from the fact that the solutions to the optimization problems are unique as the
objective function is strictly concave.
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Also, the government subsidy ensure that any generation j agent’s choices satisfy the

following equations (which correspond to the first order conditions, equation (2), of the

optimal choices for problem (B)):

u′(cmj ) = βRu′(coj+1), (A4)

u′(cmj )q = βu′(coj+1)τj+1w + v′(nj), (A5)

Next we argue, invoking the implicit function theorem, that equations (A4) and (A5)

implicitly define nj and sj+1 as functions of the parameters of the model. Rewriting equa-

tions (A4) and (A5) as A(sj+1, nj) = 0 and B(sj+1, nj) = 0 respectively, the sufficient

condition requires that

∣∣∣∣∣∣∣∣
∂A
∂nj

∂A
∂sj+1

∂B
∂nj

∂B
∂sj+1

∣∣∣∣∣∣∣∣ 6= 0. After some algebra we derive

∣∣∣∣∣∣∣∣
∂A
∂nj

∂A
∂sj+1

∂B
∂nj

∂B
∂sj+1

∣∣∣∣∣∣∣∣ = −v′′(nj)(βR2u′′(coj+1) + u′′(cmj ))

− βu′′(coj+1)u
′′(cmj )(Rq − τj+1w)2 < 0

by strict concavity of u(.) and v(.). Hence equations (A4) and (A5) define nj and sj+1 as

implicit functions of the parameters of the model, in particular, of the two parameters τj

and τj+1 that are changing during the pension phaseout period.

From the above discussion it follows that we can track the changes in the endogenous

variables cmj , coj+1 and nj due to adjustments in the parameters τj and τj+1 during the

phaseout period through the system of equations (A3), (A4) and (A5). In what follows we

use these three equations to establish that fertility keeps falling throughout the phaseout

period.

Substituting the value of u′(coj+1) from (A4) into (A5), we get

u′(cmj )(Rq − τj+1w) = Rv′(nj). (A6)

Totally differentiating (A3), (A4) and (A6) respectively, we get

u′(cmj )dcmj + βu′(coj+1)dc
o
j+1 + v′(nj)dnj = 0, (A7)

u′′(cmj )dcmj = βRu′′(coj+1)dc
o
j+1, (A8)

u′′(cmj )(Rq − τj+1w)dcmj − wu′(cmj )dτj+1 = Rv′′(nj)dnj. (A9)
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Substituting the value of dcoj+1 from (A8) into (A7) we get

u′(cmj )dcmj + u′(coj+1)
u′′(cmj )

Ru′′(coj+1)
dcmj + v′(nj)dnj = 0

⇒ dcmj =
−v′(nj)

u′(cmj ) +
u′(coj+1)u

′′(cmj )

Ru′′(coj+1)

dnj.

We substitute this expression of dcmj in terms of dnj into equation (A9) to derive the ex-

pression for changes in nj in response to the adjustments in τj and τj+1 while maintaining

an agent’s utility at V ∗ during the phaseout period:

dnj
dτj+1

∣∣∣
V=V ∗

=
−wu′(cmj )

(Rq − τj+1w)u′′(cmj )v′(nj)

u′(cmj ) +
u′′(cmj )u′(coj+1)

Ru′′(coj+1)

+Rv′′(nj)

> 0.

The numerator is negative as it contains a negative sign and other terms including

u′(.) are positive. The denominator has two terms. The second term has v′′(.) < 0.

Hence the second term is negative. The first term has u′′(.) < 0, v′(.) > 0 and another

term qR − τj+1w. This term is the total cost of a child minus total monetary returns

from the child. From equation (A6) it follows that this term is positive. This makes the

first term in the denominator negative too. Each of the two terms being negative makes

the denominator negative. Both the numerator and denominator of
dnj
dτj+1

∣∣∣
V=V ∗

being

negative, nj falls with τj+1 throughout the phaseout period.

Finally we prove that fertility never falls below the PAYG steady-state level. To prove

this claim, we focus on two time periods - the phaseout period and the post-phaseout

period (the new steady-state with no pension). To show that fertility in a no PAYG

steady-state regime is strictly greater than fertility in a PAYG steady-state regime with

pension τt = τ for all t, we use the first order conditions of agent (1) to prove that
dn

dτ
< 0.

Totally differentiating the first two equations in (1) we get

u′′(cmt )dcmt = βRu′′(cot+1)dc
o
t+1,

u′′(cmt )qdcmt = v′′(nt)dnt.

These two equations ensure that cmt , cot+1 and nt either increase or decrease together

in response to a change in τ . Moreover, for a pension tax τ , combining the agent’s

middle-age and old-age budget constraints as a lifetime budget constraint we get

cmt +
cot+1

R
+ qnt = w(1− τ) +

pt+1

R
. (A10)
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For any τ > 0, net income through PAYG pension is negative for return dominated PAYG

pension. So the post-phaseout period has a higher income than the PAYG pension period

and both consumption and fertility are higher in the post-phaseout period as they either

increase or decrease together.

To prove that fertility during the phaseout period is not lower than fertility in the

PAYG period, it suffices to show that fertility in the last period of the phaseout at least

equals fertility in the PAYG period as we have already established that fertility falls

throughout the phaseout period. In the last period of phaseout k, τk+1 = 0. Hence it

follows from (4) that there is no government subsidy in period k. subsidy being zero,

it follows from comparing the first order conditions that there is no difference between

optimal and individualistic choices of agents in the margin. The only way differences

can occur is through income effect as the agents pays and receives the same pension tax

and benefit τ in the PAYG period whereas she pays some pension tax in period k but

does not receive any pension benefit. But this income effect is also neutralized by forcing

that the agent gets the utility V ∗, the benchmark utility in PAYG regime. The reason

is the following. For agents making individualistic choices given a lifetime income, the

indirect utility is increasing in lifetime income. Since both the PAYG generation agent

and generation k agent make individualistic choices and gets indirect utility V ∗, their

lifetime incomes must be the same. For the same lifetime income, the agent in last pe-

riod of phaseout makes the same choices as an agent in PAYG regime. So, in the last

period of phaseout, fertility equals fertility in a PAYG regime. This completes our ar-

gument that fertility in the phaseout period never falls below the PAYG fertility level. �

A.4 Proof of Proposition 5

Proof. By construction, our phaseout plan guarantees that each agent born enjoys V ∗

utility during phaseout. After the phaseout, lifetime income of a representative agent is

higher than that of a representative agent in the PAYG scenario since there is no PAYG

pension which was giving a lower return than the market return R. Thus, her utility is

also higher than V ∗. Hence, compared to the scenario where no phaseout was undertaken,

each generation gets at least V ∗ and some get more. Thus, our phaseout plan satisfies all

the efficiency criteria related to representative agent, namely, A-efficiency, RC-efficiency

and Millian efficiency. On the other hand, through phaseout fertility remains greater

than PAYG steady-state level and after the phaseout also, it remains greater since life-

time income is higher and children are normal goods in the model. Thus, our phaseout

plan satisfies all the efficiency criteria which take fertility into account also, namely, P-

efficiency and CRC-efficiency. �
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A.5 Proof of Proposition 6

Proof. The first-order conditions characterising the optimal are

u′(cm) = βf1(s, n)u′(co),(
q +

ePG − f2(s, n)

f1(s, n)

)
u′(cm) = v′(n).

The PAYG steady-state has a positive pension tax. Since the disposable income of work-

ers is less than their wage in presence of a pension tax, ePG < f2(s
PG, nPG) and the PAYG

steady-state first-order conditions do not match with the first-order conditions under the

optimal one. Thus, the PAYG allocation is sub-optimal in the sense that there is some

other allocation which satisfies the first-order conditions and gives a higher utility to the

current middle-aged.

The next step is to show that the optimal allocation has nopt > nPG. Define k = s
n
.

We prove by ruling out the case that nopt ≤ nPG. Note that nopt = nPG is not possible

as that implies kopt = kPG by the Euler condition. This in turn means PAYG alloca-

tion matches the optimal allocation which cannot be true as the first-order conditions

are different. Next consider the case nopt < nPG and suppose that it holds. Now either

kopt ≤ kPG or kopt > kPG. We rule both cases out.

First, consider the possibility of kopt ≤ kPG. If this holds, then nopt < nPG and

kopt ≤ kPG imply

cm,opt = ePG − (q + kopt)nopt ≥ cm,PG = ePG − (q + kPG)nPG,

co,opt = nopt(f(kopt, 1)− ePG) < nPG(f(kPG, 1)− ePG) = co,PG.

But then, u′(cm) = βf1(s, n)u′(co) = βf1(k, 1)u′(co) cannot hold for both the PAYG

steady-state and optimal allocation as kopt ≤ kPG and co,opt < co,PG imply

βf1(k
opt, 1)u′(co,opt) > βf1(k

PG, 1)u′(co,PG) [ by concavity of u and f]

⇒ u′(cm,opt) > u′(cm,PG)⇒ cm,opt < cm,PG.

This contradicts cm,opt ≥ cm,PG and hence kopt ≤ kPG is ruled out.

Now consider the other case kopt > kPG. Comparing the first-order conditions for

fertility for the optimal and PAYG steady-states we get

u′(cm,opt) =
v′(nopt)

q + ePG−f2(kopt,1)
f1(kopt,1)

>
v′(nPG)

q
= u′(cm,PG) [as nopt < nPG and ePG < f2(k

PG, 1) < f2(k
opt, 1)]

⇒ u′(cm,opt) > u′(cm,PG)⇒ cm,opt < cm,PG.
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On the other hand, using the Euler conditions for both the cases, we get

u′(co,opt) =
u′(cm,opt)

βf1(kopt, 1)
>

u′(cm,PG)

βf1(kPG, 1)
= u′(co,PG) [as cm,opt < cm,PG and kopt > kPG]

⇒ co,opt < co,PG.

Thus, for kopt > kPG, we have got consumption in both periods and fertility less in the

optimal case as compared to the PAYG steady-state. This, however, is not possible as

the optimal must give a higher utility than the PAYG steady-state.

Hence both kopt > kPG and kopt ≤ kPG are ruled out. So nopt ≤ nPG is not possible.

�

A.6 Proof of Lemma 1

Proof. We first argue that there is a range, [e, e], in which e is sustainable. To see that

there is a maximum level of sustainable e, let e be the resources available to a current

middle-aged agent and e′ be the resources available to a next generation middle-aged. The

maximum e′ will correspond to zero consumption for the current middle-aged, otherwise

a part of cm can be moved to savings to generate more resources for the next period. So

qn + s = e. Let s = nk where k is capital per-capita. Then (q + k)n = e. Also, for e′

to be maximum, ne′ = f(s, n)(1− α) will hold. Then, with constant returns to scale, we

have

e′ = f(k, 1)(1− α) = f(
e

n
− q, 1)(1− α).

For given resources e, e′ is maximum when n is at its lower bound nPG, that is, e′ ≤
f( e

nPG
− q, 1)(1 − α). It follows that a steady-state level of resources e is sustainable if

e ≤ f( e
nPG
− q, 1)(1− α). With diminishing returns of f in its first argument and Inada

conditions, there is a range of sustainable e, [e, e], where e and e are the two solutions of

f( e
nPG
−q, 1)(1−α) = e. These e’s correspond to the corners which have zero consumption

in middle-age and all investment just ensuring the level e. Thus, an optimal eopt exists

by the Weierstrass theorem as the objective is to maximize a continuous function V (e) in

the compact interval [e, e]. Moreover, V ′(e) > (<)0 at lower (upper) corners which have

cm = 0 and we have the optimal eopt ∈ (e, e) which must satisfy V ′(e) = 0. It follows

that eopt maximizes the steady-state welfare. �

A.7 Proof of Proposition 8

Proof. Suppose not, that is, et+j ≤ ê ∀j > 0. Then the increasing sequence is bounded

above by ê and must converge to ẽ ≤ ê. Remember that the sequence {et+j}∞j=0 is an

increasing sequence and satisfies W (x, y) = UPG with x = et+j and y = et+j+1 ∀j ≥ 0.
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By taking limits,

W (et+j, et+j+1) = UPG ⇒ W (ẽ, ẽ) = UPG.

Moreover, W (x, y) = UPG gives y as a function of x. This graph of y as a function of x

is above the 45 degree line y = x for x < ẽ since it contains points {(et+j), (et+j+1)}∞j=0

with et+j < et+j+1 < ẽ. So, for any x < ẽ, et+j < x < et+j+1 for some j > 0. Then

W (x, y) = W (et+j, et+j+1) = UPG and x > et+j ⇒ y > et+j+1 > x.

The graph crosses the 45 degree line at x = ẽ. So, the slope ∂y
∂x
< 1 at ẽ. Let the four

multipliers associated with the four constraints in (F) be λ1, λ2, µ1, and µ2. By envelope

condition which we explicitly derive later, totally differentiating W (x, y) = UPG gives

∂y

∂x
=

λ1(x, y)

n(x, y)(λ2(x, y) + µ1(x, y))
.

At ẽ,

1 >
∂y

∂x
⇒ λ1(ẽ, ẽ) < n(ẽ, ẽ)(λ2(ẽ, ẽ) + µ1(ẽ, ẽ)).

However, for ẽ < eopt, V is increasing in e and reaches maximum at eopt. So, V ′(ẽ) > 0.

Again by envelope condition, V ′(e) = λ1 − n(λ2 + µ). Hence,

V ′(ẽ) > 0⇒ λ1(ẽ, ẽ) > n(ẽ, ẽ)(λ2(ẽ, ẽ) + µ1(ẽ, ẽ)).

Thus there is a contradiction due to our assumption and the economy reaches ê and eopt

in finite time.

A formal derivation of envelope conditions is given below.

First we derive ∂y
∂x

= λ1
n(λ2+µ1)

. For that,

W (x, y) = UPG ⇒ u(x− qn− s) + βu(f(s, n)− ny) + v(n) = UPG. (A11)

Total differentiating the above gives us

u′(cm)(dx− qdn− ds) + βu′(co)(f1(s, n)ds+ f2(s, n)dn− ydn− ndy) + v′(n)dn = 0.

Substituting λ1 = u′(cm) and λ2 = βu′(co), we get

λ1(dx− qdn− ds) + λ2(f1(s, n)ds+ f2(s, n)dn− ydn− ndy) + v′(n)dn = 0

⇒ (λ2f1(s, n)− λ1)ds+ λ1dx− nλ2dy + (v′(n) + λ2(f2(s, n)− y)− λ1q)dn = 0.
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Further, substituting first order conditions from (7), we get

−µ1f1(s, n)(1− α)ds+ λ1dx− (µ2 + µ1(f2(s, n)(1− α)− y))dn = nλ2dy.

If n ≥ nPG binds, dn = 0 otherwise its multiplier µ2 = 0. This implies µ2dn = 0. Thus,

−µ1f1(s, n)(1− α)ds+ λ1dx− µ1(f2(s, n)(1− α)− y)dn = nλ2dy

⇒ λ1dx− µ1[(f2(s, n)(1− α)− y)dn+ f1(s, n)(1− α)ds] = nλ2dy.

If non-negative pension constraint does not bind, µ1 = 0 and ∂y
∂x

= λ1
nλ2

= λ1
n(λ2+µ1)

.

Otherwise, f(s, n)(1− α) = ny and totally differentiating gives us

(f2(s, n)(1− α)− y)dn+ f1(s, n)(1− α)ds = ndy.

Substituting this expression in previous equation again gives us ∂y
∂x

= λ1
n(λ2+µ1)

.

The derivation of second envelope condition V ′(e) = λ1 − n(λ2 + µ1) is similar. Since

V (e) = W (e, e), differentiating it with respect to e is the same as setting x = y and hence

dx = dy in the left hand side of (A11) and differentiating that. Then the same algebra

follows.

Now we prove the second statement in the proposition. By construction, the transition

ensures each generation gets at least UPG utility. Moreover, fertility never falls below

nPG level and strictly exceeds nPG at the beginning of the transition in period t when the

PAYG related externality from children is taken care of. This ensures that the second

claim in the proposition holds.

A.8 Sufficiency of first-order conditions: the case of logarithmic utility

We consider utility with the following functional form: log(cm) +β log(co) +γ log(n). We

need to show that first-order conditions are sufficient to characterize the solution to (E)

even though the budget set is not convex. In other words, there is a unique e satisfying

V ′(e) = 0 for V (e) defined in (E′). We prove that in three steps. First, we prove that for

a variant of (E′) where only resource constraints are present, there is a unique e satisfying

V ′(e) = 0. Using this result from first step, we show in the second step that for a variant

of (E′) where resource constraints and P−efficiency constraint are present, there is a

unique e satisfying V ′(e) = 0. Then in the third step, using the result from second step,

we prove the uniqueness of e satisfying V ′(e) = 0 for (E′).

Step 1: Sufficiency of first order conditions when only resource constraints

are present
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Proof. For unconstrained version, for any given e, problem is given by following.

V (e) = max
{k,n}

log(cm) + β log(co) + γ log(n)

subject to

cm + qn+ s ≤ e,

ne+ co ≤ f(s, n).

Then for any e, the optimum s and n are determined by

1

cm
=
βf1(s, n)

co
,

γ

n
=

q

cm
+
βe

co
− βf2(s, n)

co
.

Here constant returns to scale of f ensure R = f1(s, n) = f1(k, 1) where k = s
n

is per-

capita capital. Substituting cm, co from resource constraints gives us

1

e− (q + k)n
=

βf1(k, 1)

n(f(k, 1)− e)
, (A12(a))

γ

n
=
β(qf1(k, 1) + e− f2(k, 1))

n(f(k, 1)− e)
. (A12(b))

Note that First order condition (A12(b)) implies

γ

β
(f(k, 1)− e) = qf1(k, 1) + e− f2(k, 1)

⇒ γ

β
f(k, 1)− qf1(k, 1) + f2(k, 1) =

(β + γ)e

β
.

Left hand side is increasing in k. Hence, k is increasing in e. Further rearranging the

terms of this equation gives us

f(k, 1) =
qβ

γ
f1(k, 1)− β

γ
f2(k, 1) +

β + γ

γ
e.

With a Cobb-Douglas production function, this becomes

kα =
qβα

γ
kα−1 − β(1− α)

γ
kα +

β + γ

γ
e (A13)

⇒ (γ + β(1− α))k = qβα + (β + γ)ek1−α.

Now First order condition (A12(a)) implies

βf1(k, 1)e = n [(q + k)βf1(k, 1) + f(k, 1)− e]
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⇒ n

R
=

n

f1(k, 1)
=

βe

(q + k)βf1(k, 1) + f(k, 1)− e

⇒ n

R
=

βe

qβαkα−1 + (1 + βα)kα − e
.

Substituting kα from (A13) in terms of kα−1 and e makes n
R

of type e
akα−1+be

where a > 0.

Since, α < 1 and k is increasing in e, n
R

is of type e
ah(e)+be

where h(e) is positive and

decreasing in e. Derivative of n
R

with respect to e is ah(e)−eah′(e)
(ah(e)+be)2

> 0. So, n
R

is increasing

and equals 1 at some threshold ê.

V ′(e) = λ1 − λ2n(e) = βu′(co(e))(R(e)− n(e)) > 0,

so, there is a cutoff ê at which V ′(e) = 0⇔ n
R

= 1. Below that V ′(e) > 0 and V ′(e) < 0

above that. Thus there is a unique e satisfying V ′(e) = 0. �

Step 2: Sufficiency of first order conditions when resource constraints and

P−efficiency constraint are present

Proof. When P−efficiency constraint is present, for a given e, the maximization problem

is given by

V (e) = max
{k,n}

log(cm) + β log(co) + γ log(n)

subject to

cm + qn+ s ≤ e,

ne+ co ≤ f(s, n),

n ≥ nPG.

We use the result in step 1 to prove n
R

is increasing in e. Henceforth, we call problems

in steps 1 and 2 as unconstrained and constrained respectively. So, we call the optimal

choice for unconstrained and constrained problems as nuncons and ncons respectively. We

show that for e1 < e2,
n(e1)
R(e1)

< n(e2)
R(e2)

. There are four possible cases as follows.

First, P-efficiency constraint does not bind at both e1 and e2.

In that case, constrained and unconstrained solutions are same. Therefore, by step 1

result, n
R

is greater at e2.

Second, P−efficiency constraint binds at both e1 and e2.

Then at both e1 and e2, n = nPG. Then the capital level is given by following Euler.

1

e− (q + k)nPG
=

βf1(k, 1)

nPG(f(k, 1)− e)
.
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It can be seen from the Euler condition that k is increasing in e. Thus R is decreasing in

e and with nPG being same at both e1, e2 with e1 < e2,
n
R

is greater at e2.

Third, P−efficiency constraint binds at e1 but not at e2.

In this case, at e1, unconstrained problem nuncons is less than nPG which equals con-

strained problem ncons, that is, nuncons < nPG. While at e2, unconstrained problem

nuncons equals constrained problem ncons and is greater than nPG, that is nuncons > nPG.

So at some e3 in (e1, e2), unconstrained problem nuncons equals nPG. Then comparing e1

and e3,
n
R

is larger at e3 than at e1 by second case. Comparing e3 and e2,
n
R

is larger at

e2 than at e3 by first case. Thus, n
R

is larger at e2 than at e1.

Fourth, P−efficiency constraint binds at e2 but not at e1.

In this case, at e1, unconstrained problem’s nuncons equals constrained problem ncons and

is greater than nPG, that is nuncons > nPG. While at e2, unconstrained problem n is less

than nPG which equals constrained problem n, that is, nuncons < nPG. So at some e3

in (e1, e2), unconstrained problem nuncons equals nPG. Then comparing e1 and e3,
n
R

is

larger at e3 than at e1 by first case. Comparing e3 and e2,
n
R

is larger at e2 than at e3 by

second case. Thus, n
R

is larger at e2 than at e1.

Thus, we have proved that n
R

is increasing in e and V ′(e) = βu′(co)(R − n) > 0 till

a cutoff at which n
R

= 1. That cutoff is the maximizer of V (e) and satisfies all the first-

order conditions. Hence, there is a unique allocation and a unique e satisfying V ′(e) = 0.

�

Step 3: Sufficiency of first order conditions for (E)

Proof. We need to show the sufficiency of first-order conditions, that is, there is a unique

e such that V ′(e) = 0 where V (e) is defined by (E′). We know there is at least one e

satisfying V ′(e) = 0 as at lower(upper) bound of e, V ′(e) > (<)0. However, there can

be more than one such e. We show that this is not possible by ruling out contrary cases.

Suppose there exist e1 6= e2 such that V ′(e1) = V ′(e2) = 0. There are three cases.

First, non-negativity constraint does not bind at either e1 or e2.

This is not possible as this case corresponds to step 2 where we showed that V ′(e) = 0

for unique e.

Second, non-negativity constraint binds at both e1 and e2.

This is also not possible. We explicitly prove that there exists exactly one e with V ′(e) = 0

and non-negativity constraint binding. The first-order conditions are given by (6(a)) and

V ′(e) = 0 ⇔ λ1 = (λ2 + µ1)n. Moreover, with non-negativity constraint binding and
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k ≡ s
n
,

ne = sαn1−α(1− α)⇒ e = kα(1− α), (A14)

cm = kα(1− α)− qn− nk, (A15)

co = nkα − ne = nkαα, (A16)

From (6(a)),

λ1 = λ2αk
α−1 + µ1(1− α)αkα−1

⇒ λ1 = λ2αk
α−1 +

(
λ1
n
− λ2

)
(1− α)αkα−1 (using V ′(e) = 0)

⇒ λ1
(
n− (1− α)αkα−1

)
= λ2α

2nkα−1.

Substituting λ1 = 1
cm

and λ2 = β
co

from (6(a)) and cm, co from (A15) and (A16),

n− (1− α)αkα−1

kα(1− α)− qn− nk
=
βα

k

⇒ n =
α(1− α)kα(1 + β)

k(1 + βα) + qβα
≡ α(1− α)(1 + β)g(k) (A17)

g′(k) =
kα−1(qβα2 − (1− α)(1 + βα)k)

(k(1 + βα) + qβα)2
.

From above equation, g′(k) > 0 when k is less than some threshold. Hence, right-hand

side of equation (A17) is increasing in k initially and then it falls. Both at k = 0 and

k →∞, it is 0. So, it is more than or equal to nPG for some interval [k1, k2]. It equals nPG

at k1 and k2. Moreover, it is increasing at k1 and decreasing at k2. This pins down the

set of feasible potential capital per-capita [k1, k2] that satisfies P−efficiency constraint.

From first-order condition on fertility in (6(a)),

γ

n
+ λ2(k

α(1− α)− e) + µ2 + µ1(k
α(1− α)2 − e) = qλ1

⇒ γ

n
+ µ2 + µ1(k

α(1− α)2 − e) = qλ1 (Using A14)

⇒ γ

n
+ µ2 − µ1αk

α(1− α) = qλ1 ( Again using A14)

⇒ γ

n
+ µ2 −

(
λ1
n
− λ2

)
αkα(1− α) = qλ1 (Using V ′(e) = 0)

⇒ γ

n
+ µ2 + λ2αk

α(1− α) =

(
q +

αkα(1− α)

n

)
λ1
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⇒ γ+β(1−α) +µ2n =
qn+ αkα(1− α)

kα(1− α)− (q + k)n

(
Substituting λ1 =

1

cm
and λ2 =

β

co

)
.

Using expression of n from (A17),

γ + β(1− α) + µ2n = α
q(1 + β + βα) + k(1 + βα)

k(1− α)− qα
≡ h(k) (A18)

⇒ µ2n = h(k)− (γ + β(1− α)) ≥ 0. (A19)

Any allocation (k, n) which satisfies first-order conditions with non-negativity constraint

binding is characterized by (A17) and (A19) along with n ≥ nPG. (k, n) is sufficient

to characterize the allocation as e = kα(1 − α) and cm, co are pinned down by e and n.

We show that out of k ∈ [k1, k2], there is at most one k satisfying all these conditions.

Right-hand side of equation (A18), henceforth h(k), is negative for k < qα
1−α and tends to

infinite when k tends to qα
1−α . After that it is decreasing. Let us consider four exhaustive

cases which together ensure there is at most one k such that V ′(e) = 0.

Case 1: If k1 < k2 < qα
1−α ⇔ h(k) < 0 ∀k ∈ [k1, k2]. Then µ2 < 0 which is not

possible and no allocation satisfies all conditions.

Case 2: If k1 < k2 = qα
1−α , only possible k is k2 otherwise µ2 < 0. Thus we get

(k2, n
PG) as the allocation.

Case 3: k1 ≤ qα
1−α < k2. For k ∈ [k1,

qα
1−α), h(k) − (γ + β(1 − α)) < 0. So, no k in

this range satisfies (A19). For k slightly larger than qα
1−α , h(k) is very large and keeps

decreasing with k till h(k2). If h(k2) ≥ γ + β(1 − α), for all k ∈ ( qα
1−α , k2), µ2 > 0 and

n = nPG. That means k must equal k2 which in turn means a unique pair (k2, n
PG). If

h(k2) < γ + β(1 − α), then there is some k̂ ∈ ( qα
1−α , k2) such that h(k̂) = γ + β(1 − α).

For k ∈ ( qα
1−α , k̂), µ2 > 0 which requires n = nPG which in turn requires k = k1 or k2.

This contradicts k ∈ ( qα
1−α , k̂). k ∈ (k̂, k2) implies µ2 < 0 and is ruled out. Thus only k

possible is k̂ which satisfies (A19).

Case 4: qα
1−α < k1 < k2. There are two possible subcases. First h(k2) < h(k1) <

γ + β(1 − α). This means no possible k satisfying h(k) ≥ γ + β(1 − α). If h(k2) <

γ + β(1 − α) < h(k1), there are two possibilities-(i) µ2 = 0 and k̂ ∈ (k1, k2) satisfying

h(k̂) = γ + β(1 − α) and (ii) µ2 > 0, n = nPG and k = k1. However, it can be shown

that the pair (k1, n
PG) has negative cm and is not feasible. For this, first observe that

g′(k1) > 0 as we argued above.

g′(k1) > 0⇔ qβα > (1− α)(1 + βα)k1 ⇒ k1(1− α) <
qβα

1 + βα
< qα. (A20)
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At allocation (k1, n
PG), cm is given by

cm = kα1 (1− α)− (q + k1)n

⇒ cm = kα1 (1− α)

(
1− α(1 + β)(q + k1)

k1(1 + βα) + qβα

)
(using (A17))

⇒ cm =
kα1 (1− α)

k1(1 + βα) + qβα
(k1(1− α)− qα) < 0. (by (A20))

Since µ2 > 0 is not possible as that needs infeasible allocation (k1, n
PG), µ2 = 0 and h(k)

must equal γ + β(1− α) and this gives a unique k̂ and n.

Thus we have showed that there can be at most one allocation (k, n, e) where non-

negativity constraint binds and V ′(e) = 0. which contradicts V ′(e1) = V ′(e2) = 0.

Third, non-negativity constraint binds at exactly one of e1 or e2.

Suppose it binds at e1 and not at e2. Then e2 is the global maximum. Moreover, with

non-negative transfer constraint e = kα(1 − α) binding at e1 and its neighbourhood,

problem (E′) can be rewritten in neighbourhood of e1 as

V (k) = max
{n}

log(kα(1− α)− (q + k)n) + β log(nkαα) + γ log(n)

subject to

n ≥ nPG.

We converted the problem in e to problem in k as e = kα(1−α). V ′(k) = V ′(e)e′(k) and

both the derivatives have same sign. If at k, n ≥ nPG constraint binds,

V ′(k) =
α(1− α)kα−1 − nPG

kα(1− α)− (q + k)nPG
+
βα

k

⇒ V ′(k) =
α(1 + β)kα(1− α)− (1 + αβ)nPGk − βαqnPG

k(kα(1− α)− (q + k)nPG)

V ′(k) = 0⇔ nPG =
α(1− α)kα(1 + β)

k(1 + βα) + qβα
.

This is same condition as (A17). Hence, k must equal k2 which solves above equation

and was defined in previous case. Moreover, for k < k2, V
′(k) > 0 and for k > k2,

V ′(k) < 0. This follows from our analysis in previous case. Thus, at e1, V
′(e1) = 0 and

V ′(e) is positive (negative) for e < (>)e1 in its neighbourhood. Now consider the other

case where n ≥ nPG does not bind. Then first order condition with n gives

q + k

kα(1− α)− (q + k)n
=
β + γ

n
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⇒ n =
β + γ

1 + β + γ

kα(1− α)

q + k
.

Putting this value of n in objective,

V (k) = α(1 + 2β + γ) log(k)− (β + γ) log(q + k)

⇒ V ′(k) =
α(1 + 2β + γ)

k
− β + γ

k

⇒ V ′(k) =
α(1 + 2β + γ)q + (α(1 + β)− (1− α)(β + γ))k

k(q + k)
.

For α(1+β)−(1−α)(β+γ) ≥ 0, V ′(e1) = 0 is not possible. For α(1+β)−(1−α)(β+γ) < 0,

V ′(e1) = 0 means V ′(e) is positive (negative) for e < (>)e1 in its neighbourhood. Thus

independent of whether n ≥ nPG binds or not, V ′(e) > (<)0 for e < (>)e1. There are

two possibilities-e1 < e2 or e1 > e2. If e1 < e2, we have V ′(e1) = V ′(e2) = 0 and for some

e3 ∈ (e1, e2), V
′(e3) < 0. This is not possible since at e2, non-negativity constraint is not

binding. So, at e4 slightly less than e2, it is also not binding and at that e4, V
′(e4) > 0

by step 2 where we showed that V ′(e) > 0 for e < e2 if non-negativity constraint is not

binding at e < e2. Thus V ′(e4) > 0 and V ′(e3) < 0 means there is some e in (e1, e2) such

that V ′(e) = 0. Thus, there are three e’s satisfying V ′(e) = 0. On the other hand, when

e1 > e2, for e3 slightly less than e1, V
′(e3) > 0. Moreover, for e4 slightly greater than e2,

V ′(e4) < 0. Thus V ′(e4) > 0 and V ′(e3) < 0 mean there is some e in (e2, e1) such that

V ′(e) = 0. Thus, again there are three e’s satisfying V ′(e) = 0. Hence, independent of

whether e1 > e2 or not, at either two points, non-negative pension constraint binds or

does not bind. Both these cases are not possible as we ruled them out earlier. Hence, the

third case of V ′(e1) = V ′(e2) = 0 and non-negativity constraint binding at exactly one

of these is also ruled out. This leads us to our conclusion that for problem (E′), there

is exactly one e satisfying V ′(e) = 0 and that e satisfies all first-order conditions. Thus,

first-order conditions are sufficient to characterize the optimal steady-state. Hence the

proof. �
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