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1 Introduction

The co-movements between macroeconomic and financial time series have been

predominantly studied using vector autoregressive (VAR) models (Sims 1980). VARs

are usually estimated by relying on a common low sampling frequency. For instance,

the business cycle fluctuations are investigated considering quarterly or monthly

data. As argued by Ghysels (2016), forecasting and structural shock identification

could be potentially misspecified because we ignore that some data, for example,

financial series, are available at a higher frequency.

For this reason, mixed-frequency vector autoregressive (hereafter MF-VAR)

models have become popular in recent years. These tools can produce more accurate

and reliable forecasting and structural analysis avoiding the issues associated with

temporal aggregation (see Marcellino 1999, Foroni, Ghysels and Marcellino 2013,

Foroni and Marcellino 2016, among others).

We can consider a simple example: a financial uncertainty measure, e.g. VIX,

observed at a daily frequency and US business cycle variables (such as inflation and

industrial production) published monthly.

How can we identify the VIX shock on macroeconomic variables without ignoring

the different sampling frequency? Or generalizing, how can we identify the impact of

a high-frequency shock on low-frequency variables? We address this research question

providing a twofold contribution.

First, on the methodological side, we introduce a new high-frequency identifica-

tion strategy based on Bayesian Mixed-Frequency VARs. Our approach is inspired

by Götz, Hecq and Smeekes (2016) and Ghysels (2016) that discuss how Bayesian

techniques could improve the estimation of models in case of different data sampling.

In details, we estimate a MF-VAR using a prior of a Normal Inverse Wishart form
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that is implemented by adding a set of auxiliary dummies to the system as discussed

by Götz et al. (2016).

Second, on the empirical side, we apply this high-frequency identification frame-

work by estimating a stacked MF-VAR à la Ghysels (2016) to study the impact of

the financial uncertainty shock, proxied by the VIX, on the US business cycle. We

provide a shred of new evidence about the role of financial uncertainty in explaining

macroeconomic variables. In this investigation, we focus on the “temporal aggrega-

tion bias” induced by relying on a common low-frequency Bayesian VAR (hereafter

CF-VAR).

Our main findings suggest how aggregating the high-frequency VIX to the low-

frequency of the macroeconomic variables of interest (i.e. monthly) could lead to

biased responses. In particular, these reactions document more serious recessionary

effects on the business cycle when different sampling frequencies are ignored. Our

results are robust to different specifications. The estimation sample is for data from

1990-2019, however we also study the “temporal aggregation bias” including the

current economic crisis due to the COVID-19 pandemic. In this case, our findings

show fewer recessionary effects when we rely on a mixed-frequency analysis.

Our work bridges the literature that studies MI(xed) DA(ta) S(ampling) regres-

sions with the burgeoning research investigating the impact of financial uncertainty

on the business cycle. MIDAS models are mainly employed to provide forecasting and

in particular nowcasting analyses (Kuzin, Marcellino and Schumacher 2011, Foroni

and Marcellino 2014, Huber, Koop, Onorante, Pfarrhofer and Schreiner 2020, among

others). Few articles rely on estimating a mixed-frequency model to identify an eco-

nomic shock. Ferrara and Guérin (2018), Casarin, Foroni, Marcellino and Ravazzolo

(2018), and Bacchiocchi, Bastianin, Missale and Rossi (2020) provide interesting evi-
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dence by adopting a mixed-frequency strategy for the identification of the uncertainty

shock. Ferrara and Guérin (2018) and Bacchiocchi et al. (2020) rely on a frequen-

tist VAR estimation, while Casarin et al. (2018) propose a Bayesian multi-country

Markov-Switching model.

Our approach can be compared to the recent contribution in adopting Bayesian

techniques in a MIDAS framework. Eraker, Chiu, Foerster, Kim and Seoane (2014)

introduce a Gibbs sampler in the Bayesian estimation of a MF-VAR, assuming that

the high-frequency realizations of the low-frequency data are missing. Schorfheide

and Song (2015) and Schorfheide and Song (2020) employ Bayesian techniques

to estimate a state-representation introducing a numerical approximation of the

marginal data density of a linear Gaussian MF-VAR.

In another approach, Berger, Morley and Wong (2020) and McCracken, Owyang

and Sekhposyan (2021) apply a shrinkage prior in a stacked MF-VAR. Meanwhile,

Mogliani and Simoni (2020) introduce a novel penalized Bayesian MIDAS approach

in a high-dimensional environment. However, all these Bayesian contributions employ

the mixed-frequency models only for forecasting analysis. Cimadomo, Giannone,

Lenza, Monti and Sokol (2020) introduce three strategies for dealing with mixed-

frequency in a VAR framework (state-space, blocking, and cube-root BVARs) to

nowcast and study the propagation of the US GDP. They provide evidence of how

mixed-frequency BVARs are an important and powerful tool for both forecasting

and structural analysis. As for the latter, Cimadomo et al. (2020) focus on the

transmission of a low-frequency shock (the GDP one) on both low- and high-frequency

variables.

Our approach is different from the above-mentioned studies for both the method-

ological framework and the shock identification strategy. Technically, we impose a
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Natural conjugate prior which is tailored to take into account the mixed-frequency

nature of the data (in the spirit of Ghysels 2016). Then, the use of Bayesian shrinkage

allows the researchers to identify the impact of high-frequency (e.g. daily/weekly)

shocks on common low-frequency variables avoiding the “curse of the dimensionality”.

In particular, this approach is useful and more appropriate to study shock identifica-

tion in case of a large mismatching between high and low frequency (for example,

between daily and monthly) and when more endogenous variables are included.

Last but not least, our empirical results corroborate the macro-finance literature that

discusses how an increase of uncertainty is followed by a contraction in real activity

(Bloom 2009, Caggiano, Castelnuovo and Groshenny 2014, Leduc and Liu 2016, Basu

and Bundick 2017, Alessandri and Mumtaz 2019, among others). In particular, our

findings are connected with the current research about the macroeconomic effects of

COVID-19-induced financial uncertainty (see Baker, Bloom, Davis, Kost, Sammon

and Viratyosin 2020, Caggiano, Castelnuovo and Kima 2020, Leduc and Liu 2020,

among others). However, while the aforementioned studies rely only on a common

frequency estimation, we document empirical evidence about the recent pandemic

crisis using a MIDAS model.

The rest of the paper is organized as follows. Section 2 introduces the Bayesian

Mixed-Frequency VAR approach. Section 3 describes the empirical analysis de-

tails: data and identification strategy. Section 4 shows the empirical evidence with

robustness checks. Concluding remarks are in Section 5.

2 Bayesian Mixed Frequency VAR Approach

We estimate a stacked Mixed-frequency Vector Autoregressive model (MF-VAR) à

la Ghysels (2016). Let us consider Kh = 1 high-frequency variable (y
(m)
t−i/m) (e.g.
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observed daily or weekly) and a vector of Kl variables sampled at a lower frequency

(e.g. monthly), i.e. Xt =
(
x1,t, . . . , xKl,t

)′
, which are observed every m fixed periods.

The reduced-form representation of the MF-VAR can be written as follows:

Zt =

p∑
`=1

A`Zt−` + c+ ut (1)

where Zt = (y
(m)′

t−(m−1)/m, . . . , y
(m)′

t−1/m, y
(m)′

t , X ′t)
′ is the K-dimensional vector of endoge-

nous variables, with K = Kl + (Kh × m), which follows a stacked skip-sampled

process, c is a K × 1 vector of intercepts and ut ∼ N (0,Σ) is a K × 1 vector of error

terms, with a variance-covariance matrix (Σ) that is not assumed to be diagonal.1

The model in equation (1) can be estimated via OLS at the cost of obtaining impre-

cise estimates of the MF-VAR coefficients in case of a large number of parameters

and a relatively small sample size.2

To deal with a potential parameters proliferation, we estimate the MF-VAR in

equation (1) by adopting Bayesian estimation techniques. In particular, we build on

the work of Götz et al. (2016) that performs Granger causality testing in MF-VAR

using a Bayesian approach. This methodology, which in turn adapts the approach of

Sims and Zha (1998) and Bańbura, Giannone and Reichlin (2010) to data sampled at

different frequencies, consists of imposing a Natural Conjugate prior on the MF-VAR

coefficients by augmenting the system in equation (1) with a set of ad-hoc artificial

observations.

1The order of appearance of high- and low-frequency variables in the stacked vector Zt depends
on the empirical strategy (see Ghysels 2016). In our baseline model specification, the high-frequency
variable (i.e. the VIX) is placed before the block of low-frequency variables (e.g. the macroeconomic
aggregates) (see Section 3.2).

2As shown by the study of Foroni, Marcellino and Schumacher (2015), unrestricted lag polynomi-
als in MIDAS regressions can be estimated via OLS. The authors find that unrestricted regressions
perform better than standard MIDAS models (which are generally estimated through a non-linear
least squares approach, see i.e. Ghysels, Sinko and Valkanov 2007) for small differences in sampling
frequencies.
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Following Ghysels (2016) and Götz et al. (2016), the prior distributions of the

MF-VAR coefficients in A` (i.e. a`ij , for ` = 1, . . . , p), are centered around a restricted

MF-VAR(1). In particular, AR(1) priors tailored for the mixed-frequency nature of

the data are imposed as follows:



y
(m)
t−(m−1)/m

...

y
(m)
t−1/m

y
(m)
t

Xt


=



0 . . . ρH 0

...
. . .

...
...

0 . . . ρm−1H 0

0 . . . ρmH 0

0 . . . 0 diag(ρmL )





y
(m)
t−1−(m−1)/m

...

y
(m)
t−1−1/m

y
(m)
t−1

Xt−1


+ vt (2)

where ρ = (ρH , ρL) denotes the prior mean respectively for the high- and low-

frequency variables, with ρL = ρx1 , . . . , ρxKl
. Equivalently, the AR(1) prior for the

MF-VAR coefficients can be set as follows:

E(a`ij) =


ρm+i−j
H if i ≤ m & j = m & ` = 1

ρmL if i = j & i > m & ` = 1

0 otherwise

(3)

In line with Götz et al. (2016), we specify the uncertainty around the prior means

similarly to the CF-VAR:

V AR(a`ij) =



φ
λ2σ2

H

`2σ2
L

if i ≤ m & j > m

φ
λ2σ2

L

`2σ2
H

if i > m & j ≤ m

φ
λ2σ2

i,L

`2σ2
j,L

if i > m & j > m & i 6= j

λ2

`2
otherwise

(4)
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where λ controls the tightness of the prior distributions around the specifications

in equations (2) and (3), the ratio σi/σj, for i, j = (H,L), accounts for the different

scales of the high- and low-frequency variables and φ controls, for each VAR equation,

the standard deviation of the prior on lags associated to the variables different from

the dependent one (e.g. in case of MF-VAR, it controls the influence of low-frequency

variables on the high-frequency ones and vice versa) (see Götz et al. 2016).3

As in CF-VAR models, augmenting the system in equation (1) with a set of

dummy observations is equivalent to imposing a Natural conjugate prior for the MF-

VAR coefficients.4 Before describing the construction of the artificial observations for

the mixed-frequency case, let us write the model in equation (1) in compact matrix

notation:

Z = ZB + U (5)

where Z = (Z1, . . . , ZT )′, Z = (Z1, . . . ,ZT )′, with Zt = (Z′t−1, . . . ,Z
′
t−`, 1

′), U =

(u1, . . . , ut)
′ and B = (A1, . . . , Ap, c)

′. In line with Bańbura et al. (2010), the Natural

conjugate prior can be imposed by augmenting the model in equation (5) with a set

of artificial observations, Yd and Xd, that is Z∗ = Z∗B + U∗, where Z∗ = (Z ′, Y ′d)
′

and Z∗ = (Z′, X ′d)
′. While the set of dummy observations for the lagged endogenous

variables (Xd) are constructed as in Bańbura et al. (2010), to match the moments in

equations (2)-(4), we specify Yd as follows:

3Notice that the specifications of the prior means and variances in equations (2)-(4) are tailored
to the case of Kl low-frequency variables and Kh = 1 high-frequency variable. However, these
specifications can be easily modified to handle more than one high-frequency variable.

4The Natural conjugate prior is related to the Minnesota prior with φ = 1, that is, for each
VAR equation, there is no distinction between the lags associated to the dependent variable and
those related to the independent ones (see Sims and Zha 1998, Bańbura et al. 2010).
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Yd
[(Kp+1)+K]×K

=



0[(m−1)×Kh]×K

ρHσH
λ

. . .
ρm−1
H σH
λ

ρmHσH
λ

01×Kl

0Kl×1 . . . 0Kl×1 0Kl×1 diag
(
ρmL σL
λ

)
Kl×Kl

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0K(p−1)×K

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

diag(σ1,H , . . . , σm,H , σ1,L, . . . , σKl,L)K×K

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

01×K



(6)

where the artificial data in the first block (i.e. those for the first lag) are formed

such that they reflect the prior belief on the restricted MF-VAR, while the other

blocks are constructed in line with Bańbura et al. (2010).

It is important to notice how the order of the high-frequency variable is relevant

in this framework. The researcher can easily adapt this approach just modifying

consistently the position of the dummy observations according to the order of the

high-frequency variable.

In the empirical application, we follow the suggestions of Ghysels (2016) and

we set the prior mean of the high-frequency variable equal to zero, that is ρH = 0.5

In line with Alessandri and Mumtaz (2017), the coefficients associated with the

first lag of the low-frequency variables are centered around the OLS estimates of

the coefficients obtained from an AR(1) fitted to each endogenous variable over a

5This choice is also in line with the empirical analysis described in Cimadomo et al. (2020), where
the prior mean of the high-frequency proxy of uncertainty (i.e. the Economic Policy Uncertainty
Index of Baker, Bloom and Davis 2016) is centered around zero.

9



training sample. The hyperparameter that controls for the overall tightness around

the prior (λ) is selected by maximizing the marginal likelihood of the model.6 We

set the scaling factors σi, σj , for i, j = (H,L), using the standard deviation of the

residuals from AR(m) and AR(1) regressions estimated for ymt and xt, respectively

(see Götz et al. 2016). Finally, we impose a diffuse prior on the intercept (c).

To make inference, we then proceed as in the common frequency VARs with

Natural conjugate prior. In particular, the conditional posterior distributions for the

MF-VAR coefficients (B and Σ) can be written as follows:

B|Σ, Y ∼ N
(
B∗, Σ⊗ (Z∗

′
Z∗)−1

)
(7)

Σ|B, Y ∼ IW
(
S∗, v∗

)

where B∗ = (Z∗
′
Z∗)−1Z∗

′
Z∗ is the OLS estimate of the augmented regression, while

S∗ = (Z∗ − Z∗B̃)′(Z∗ − Z∗B̃) and v∗ are, respectively, the scale parameter and the

degrees of freedom of the Inverse Wishart distribution, with B̃ being a draw of the

MF-VAR coefficients and v∗ set equal to the number of observations in the augmented

regression. In the empirical illustration, we focus on the structural analysis, hence

we rely on the Gibbs sampler to simulate the posterior distribution of the MF-VAR

coefficients.7 In particular, we set the number of draws equal to 15, 000 and we

discard the first 10, 000 as burn-in draws.

6In our study, the selection of the optimal overall tightness of the prior (λ) is based on
Carriero, Kapetanios and Marcellino (2012), which suggest selecting λ over a grid of values. In
particular, we use the following grid: λ ∈ {0.01, 0.05, 0.1, 0.2, 0.5, 1, 1.5, 2, 3} (see also Del Negro
and Schorfheide 2004, Del Negro and Schorfheide 2011).

7The code used in this paper are an adaptation of the Haroon Mumtaz’s code for the estimation
of a Bayesian CF-VAR (which are available on his website).
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3 Empirical Analysis

3.1 Data

We assess the effects of high-frequency financial uncertainty shocks on a set of US

business cycle variables over the sample period 1990M1-2019M12.8 The macroeco-

nomic variables are sampled at a monthly frequency. In detail, we use the industrial

production index (IP) and the consumer price index (CPI) as proxies of real economic

activity and prices, respectively. The set of endogenous variables includes the real

personal consumption expenditures (PCE).9 The short-term interest rate is proxied

by the effective federal funds rate (FFR).10

The high-frequency financial uncertainty shock is proxied by the daily VIX

data (see Figure 1). We conduct two empirical exercises. First, we estimate the

MF-VAR in equation (1) fitted to weekly series of VIX and the above mentioned

monthly macroeconomic variables. In line with Ferrara and Guérin (2018), the

8In the baseline specification, we exclude the COVID-19 era from the sample and we estimate
the MF-VAR using data up to December 2019. During the recent months, a number of authors
have developed VAR-based strategies to deal with the extreme observations reported by several
U.S. macroeconomic variables after March 2020, for both nowcasting and structural analysis (see
Lenza and Primiceri 2020, Schorfheide and Song 2020, among others). For example, Lenza and
Primiceri (2020) introduce breaks in shock variances and down-weigh the impact of the pandemic
observations on the parameters estimates. As structural analysis concerns, they find that the
impulse responses of the estimated VAR with breaks in shock variances over a sample including
also COVID-19 period (e.g. up to May 2020) are similar to those of a homoschedastic VAR with
the sample excluding the pandemic time. However, as a robustness check, we also estimate the
MF-VAR over the 1990M1-2020M11 time span (whose results are discussed in Section 4.2).

9The real personal consumption expenditure is computed by applying the personal consumption
expenditures (price) on the nominal series.

10In the baseline specification we select the endogenous variables according to Caggiano, Castel-
nuovo and Pellegrino (2017) which estimate the impact of uncertainty shock (proxied by an
unexpected increase in the VIX) on GDP deflator, real GDP, real investment, real consumption,
and federal funds rate through the estimation of a non-linear (common-frequency) quarterly VAR.
Unlike Caggiano et al. (2017), since in our empirical application the MF-VAR includes monthly
series of business cycle variables, we rely on industrial production (instead of the real GDP) as a
proxy of real economic activity and we exclude the investment, whose observations are only available
at a quarterly frequency. The motivation of this choice is due to our focus on the miss-match
between weekly (daily) and monthly series.
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weekly observations on VIX are constructed such that each month contains four

weeks (see Figure 2).11 In a second empirical exercise, we replace the weekly series

of VIX with daily observations by following the approach proposed by Götz et al.

(2016). In particular, the series is constructed by assuming that each month contains

20 daily observations.12

Since we seek to investigate potential bias arising from the aggregation of

high-frequency variables (i.e. VIX) into lower-frequency series, we also estimate a

common-frequency (CF) VAR where all the endogenous variables (including the VIX)

are observed monthly. In particular, we aggregate the daily VIX series (see Figure 1)

to a monthly frequency by averaging out the observations over each month.13

We conduct several robustness checks on the specification of the MF-VAR (see

Section 4.2). First, we augment the baseline specification by the unemployment rate

(UNEMP.RATE) and by the 10-year treasury constant maturity rate (10YR-TB)

(as a measure of the long-term interest rate).14 In a second robustness check, we

11Following Ferrara and Guérin (2018), the daily observations on VIX are rearranged at a weekly
frequency as follows. Given a number of traded days within each month (Dt), we compute the four
weekly observations by considering the days Dt − 15, Dt − 10, Dt − 5 and Dt as observations for
week 1, week 2, week 3 and week 4, respectively. We thank Laurent Ferrara and Pierre Guérin for
sending us detailed information on the construction of the weekly series of VIX used in Ferrara and
Guérin (2018).

12In their empirical application, Götz et al. (2016) construct a daily series of bipower variation of
the S&P500 stock index by considering that each month has 20 observations. In case of more than
20 observations within a certain month, the authors suggest disregarding the corresponding amount
of days at the beginning of the month. For example, March 2019 has 21 traded days. Hence, to
obtain the daily series of VIX, we discard the first observation, e.g. that of 1 March 2019.

13As a robustness check, in the two empirical exercises, the aggregation of the VIX to a monthly
frequency is also carried out by averaging, respectively, the four weekly observations (i.e. those
constructed as in Ferrara and Guérin 2018) and the twenty daily observations (i.e. those constructed
as in Götz et al. 2016) over each month. The results obtained using these two aggregation schemes
are qualitatively and quantitatively similar to those described in the rest of the paper and they are
available upon request.

14It is worth mentioning that both the federal funds rate and the 10-year treasury constant
maturity rate are available at a daily frequency. However, since the focus of the empirical analysis
is on the identification of uncertainty shocks through the use of real-time proxies of financial
uncertainty, we use the monthly series for both the federal funds rate and the 10-year treasury
constant maturity rate.
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replace the federal funds rate and the 10-year treasury rate with the shadow short

rate proposed by Wu and Xia (2016).15

For both mixed-frequency and common-frequency VARs, the variables are ade-

quately transformed to induce stationarity. In particular, we take the first difference

of the log transformation of prices (CPI), industrial production (IP), and real con-

sumption (PCE), while the proxy of financial uncertainty (VIX) and the federal

funds rate (FFR) enter the model in levels.16 Furthermore, the unemployment rate

(UNEMP.RATE), the 10-Year treasury constant maturity rate (10YR-TB), and the

shadow short rate proposed by Wu and Xia (2016) (SHADOW RATE) are taken

in levels (see Section 4.2). The lag length is set equal to three.17 Following Ferrara

and Guérin (2018), to ensure comparison across the models, the common-frequency

(monthly) VAR is estimated using the same lag length of the mixed-frequency VAR.18

The data are seasonally adjusted and downloaded from the Federal Reserve Bank of

St. Louis (FRED) Database unless indicated otherwise.

3.2 Identification strategy

The relationship between the reduced-form residuals (obtained by estimating the

model in equation (1)) and the structural disturbances can be written as follows:

15The Wu-Xia shadow rates series is available at https://sites.google.com/view/

jingcynthiawu/shadow-rates.
16The results are qualitatively similar when estimating the models with variables entering in

log-levels (i.e. CPI, IP, PCE) and levels (i.e. VIX, FFR). Results are available upon request.
17The Akaike Information Criteria (AIC) for the MF-VAR with weekly VIX and monthly

macroeconomic variables indicates an optimal lag length equal to two-three. However, we impose
an one-quarter lag on the MF-VAR processes. As a further robustness check, we estimate both the
MF-VAR and the CF-VAR with, respectively, six and twelve lags (see Section 4.2). The MF-VAR
with daily VIX includes also three lags. The results with different lag structures (available upon
request) are qualitatively similar.

18This choice is also confirmed by the AIC that suggests an optimal lag length equal to three-four
for the monthly CF-VAR specifications.
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ut = A0εt (8)

where A0 contains the contemporaneous effects of the structural shocks (εt) on

the endogenous variables, with εt ∼ N (0, IK). To identify the high-frequency

uncertainty shocks, we compute the Cholesky decomposition of the reduced-form

residual covariance matrix, Σ = A0A
′
0, imposing a recursive ordering of the elements

in A0.

For the sake of simplicity, in the rest of this section, we describe only the first

empirical exercise (i.e. that using weekly VIX).19 Following Caggiano et al. (2017)

and Ferrara and Guérin (2018), we order the endogenous variables in the baseline

specification as follows:

Zt =
[
V IX ′t−3/4, V IX

′
t−2/4, V IX

′
t−1/4, V IX

′
t, X

′
t

]′
(9)

where V IXt−i/4 =
[
V IX ′t−3/4, . . . , V IX

′
t

]
, for i = 1, . . . , 4, is the vector containing

the series of VIX, respectively, for the first, second, third, and fourth week, while Xt =[
CPI ′t, IP

′
t , PCE

′
t, FFR

′
t

]
is the block of monthly business cycle variables. Notice

that, according to the specification in equation (9) where the weekly observations of

VIX are aligned to the lowest sampling frequency, the stacked vector of endogenous

variables evolves according to a standard monthly VAR.

The ordering of the variables in the macro-block (Xt) is standard in the VAR

literature. The slow-moving variables (CPI, IP, and PCE) are placed before the

fast-moving ones (FFR). This implies that monetary policies depend on the real

activities.

19The MF-VAR fitted to the daily series of VIX and to the monthly business cycle variables
is estimated using the same empirical strategy of that used in case of weekly VIX (i.e. same
specification, priors, and identification strategy).
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Moreover, in line with Ferrara and Guérin (2018), the weekly series of VIX are

placed before the macro-block, with an ordering of the intra-month observations that

are consistent with the timing of data release (i.e. publication lags).20 This has two

implications. First, we allow for a contemporaneous effect of uncertainty shocks on

real economic activities and monetary policies. This ordering is also consistent with

Leduc and Liu (2016), Basu and Bundick (2017) and, more recently, Caggiano et

al. (2020), among others. Furthermore, this ordering implies that a shock occurring

in a certain week has an impact on the corresponding weekly series of VIX and

the following weeks. As stated by Ferrara and Guérin (2018), this is a plausible

assumption given that i.e. the observation of the VIX related to the second week is

released always after the observation of the first week. Hence, a financial uncertainty

shock occurring at week 2 affects only the VIX observed during that week and the

weeks after.

We calibrate the size of the uncertainty shock considering different impact scales

to investigate how the magnitude of the uncertainty is important. In particular, we

identify a 5σ of the VIX shock estimated over the sample period 1990M1-2019M12.

Our decision is motivated by the recent work of Caggiano et al. (2020) that estimates

the effects of global uncertainty (proxied by an exogenous increase in the VIX) on

global financial conditions and world industrial production.21 As in Caggiano et al.

(2020), the size of the shock is set by comparing the values of the VIX observed

during its peak (that is on 16 March 2020) with the value reported in the previous

20As a robustness check, we repeat the empirical exercise by ordering the VIX last in the vector
of endogenous variables (Zt) (see Section 4.2). As discussed by Ghysels (2016), the Cholesky
decomposition seems a natural identification scheme for MF-VAR. However, we rely on a Bayesian
approach that makes our methodology flexible to be used in alternative identification patterns. For
example, the researchers can adopt it to identify more shocks at the same time as well as combining
different identification schemes.

21See Caggiano et al. (2020) for a discussion on the use of the VIX as a proxy of global uncertainty.
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month (18 February 2020) (see Figure 3).22 However, we report in Appendix results

with different scale values (see Appendix A, Figure A.1). As can be seen from the

charts, the results are qualitatively similar.

4 Empirical Evidence

4.1 Results

Figures 4-7 show the high-frequency shock (VIX) identification on monthly macroe-

conomic variables (CPI, IP, PCE, and FFR) providing results from the baseline

specification. The estimated model is the MF-VAR(3) over the 1990M1-2019M12

time span.23

The orthogonalized impulse responses, computed over a 36-month forecast

horizon, are equal to 5σ VIX shocks (see Section 3.2). For the variables entering

the models in first-order difference of log transformation (IP, CPI, and PCE), the

impulse responses are computed as the cumulative sum of those obtained for the log

changes.

Unless specified otherwise, all the figures show the posterior median response

(red line) with the 68% (red shading) and 90% (gray shading) credibility intervals

obtained from the estimation of the MF-VARs.

In the first exercise, see Figure 4, we estimate the baseline mixed-frequency

VAR to identify the impact of VIX shocks at a weekly frequency on the consumer

price index, industrial production index, real personal consumption expenditures,

22As stated by Caggiano et al. (2020), only 90 percent of the increase in the VIX observed
between mid-February and mid-March 2020 can be attributed to the coronavirus outbreak. Hence,
given that the value reported on March, 16 is 5.6 times larger than the value observed in the
previous month, the size of the COVID-19-induced financial uncertainty shock is set as follows:
5.6× 0.9 = 5.04 ≈ 5 (see Caggiano et al. 2020, for further details).

23Information on the convergence of the Gibbs sampler algorithm are reported in Appendix B.
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and effective federal funds rate. In particular, Figure 4 shows the responses of the

business cycle variables to uncertainty shocks occurring in each of the four weeks.24

At a first glance, we can observe how an unexpected increase in high-frequency

financial uncertainty is followed by a negative effect on the real economic activity,

prices, real consumption, and federal funds rate. These results corroborate the

findings in both theoretical and empirical literature. For example, Leduc and Liu

(2016) and Basu and Bundick (2017) discuss how the uncertainty shock resembles

a negative demand shock relying on DSGE and VAR models. Furthermore, in line

with the empirical evidence reported in Ferrara and Guérin (2018) for the US, we

find a different response of the low-frequency variables, depending on the timing of

the shocks within the month. In particular, Figure 4 reveals a different magnitude

of the response diminishing from week 1 to week 4.25 As discussed by Ferrara and

Guérin (2018), these results can be explained by the high degree of persistence and

by the typical hump-shaped response of macroeconomic variables to uncertainty

shocks (see also Baker et al. 2016).26

Furthermore, we compare the weekly impulse responses from the estimation of the

MF-VAR model with those obtained from a CF-VAR.27 In particular, we aggregate

the high-frequency impulse responses of the macroeconomic variables by computing

their mean (see Figure 5).28 As shown in Figure 5, we find evidence of difference

24Notice that, as mentioned before, the impulse responses are scaled such that the size of the
shocks occurring in each of the four weeks is equal to 5σ VIX shocks estimated over the sample
period 1990M1–2019M12.

25Similar results are also reported by the study of Bacchiocchi et al. (2020), which finds that the
response of the Federal Funds Target rate to uncertainty shocks is stronger in the first month than
late in the quarter (although the responses are not statistically significant).

26Moreover, Ferrara and Guérin (2018) argue that if economic agents take decisions at a high-
frequency, it is plausible to expect that shocks occurring late in the month might have different
short-term impacts with respect to shocks taking place early in the month.

27As stated before, the standard VAR is estimated using the same lag structure of that used for
the estimation of the MF-VAR (i.e. 3 lags) (see Section 3).

28Foroni and Marcellino (2016) and, more recently, Bacchiocchi et al. (2020) provide a discussion
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in the responses of the low-frequency variables to uncertainty shocks. In particular,

for all the macroeconomic variables, the magnitude of the responses is smaller in

MF-VAR (almost half) than that obtained from the estimation of a common low-

frequency VAR. What is striking in Figure 5 is that the difference in the magnitude

of the responses obtained from both mixed-frequency and common-frequency VAR

is relevant not only over a short horizon, but also in a longer run. Moreover, we find

a less amount of uncertainty around the posterior median estimates, with credibility

intervals for MF-VAR much tighter than those reported in case of common-frequency

VAR. This finding is also supported by the evidence of Foroni and Marcellino (2016)

about a reduction in the uncertainty when relying on a mixed-frequency approach.29

We can discuss how the impulse responses are leading a “temporal aggregation

bias” with a visual inspection of both Figure 4 and Figure 5. First, as also documented

by Ghysels (2016) in case of high-frequency shock, the first week response is more

relevant than the one in the last week that seems to die out quickly (see Figure 4).

Second, we note also how the CF-VAR responses are different from the ones of the

MF-VAR, even in longer horizons (see Figure 5). This suggests how the “temporal

aggregation bias” is an important aspect to consider when deciding to rely on a

common or mixed-frequency framework.

In the second high-frequency identification exercise, we consider the VIX at a

daily frequency. This variable is available in days and the aforementioned aggregation

to a weekly frequency is likely to lead to a an additional “temporal aggregation bias”

on the comparison between mixed-frequency and common-frequency VAR, respectively, in the case
of the parameter-driven model (i.e. state-space representation) and stacked MF-VAR. However,
the mean is one of the possible ways to aggregate high-frequency responses.

29The authors study the identification of monetary policy shocks in US by estimating a MF-VAR
fitted to monthly and quarterly data. In particular, comparing results from a mixed-frequency model
and a common-frequency VAR, Foroni and Marcellino (2016) find a reduction in the uncertainty
around the estimates when using a mixed-frequency data sampling approach. Moreover, they find
differences in the magnitude of the responses, particularly striking for interest rates.
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in our analysis. The daily series of VIX is constructed such that each month contains

20 daily observations (see Section 3.1). As in case of weekly frequency, the size of

the shocks occurring in each of the 20 days is equal to 5σ VIX shocks estimated over

the period 1990M1-2019M12.

In particular, in Figure 6 we report the posterior median estimates of the daily

impulse responses to VIX shocks obtained from the estimation of a MF-VAR(3)

fitted to the daily series of VIX and to the monthly macroeconomic variables.30

Figure 6 documents an interesting pattern that describes the evolution over time for

each variable. Similarly to the results obtained by estimating the model using weekly

observations on VIX, we find that the magnitude of responses of CPI, PCE, FFR

and, to less extend, IP is larger in the first days of the month than that reported

late in the month.

In Figure 7, we compare the aggregated daily impulse responses of the US

business cycle variables with those computed by estimating a CF-VAR.31 In general,

we still find less severe responses to the uncertainty shock for the macroeconomic

variables in case of MF-VAR (less than half) than in case of common low-frequency

VAR. The results are statistically significant in almost all macroeconomic variables.

These findings reveal a stronger evidence of “temporal aggregation bias” than that

found in case of weekly frequency, both in terms of magnitude in the response (with

differences also at longer horizons) and of uncertainty around the estimates.

30Notice that Figure 6 shows only the median responses of the macroeconomic variables to daily
uncertainty shocks. The set of daily impulse responses with the 68% and 90% credibility intervals
are available upon request.

31The aggregated impulse responses are obtained by averaging out the daily responses.
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4.2 Robustness

This section describes a number of empirical exercises implemented to assess the

robustness of the results produced by the baseline model.32 The results are shown

in Figures 8-14. Unless specified otherwise, in each figure, we report the posterior

median of the aggregated high-frequency impulse responses (from the MF-VAR)

(red line) with the 68% (red shading) and 90% (gray shading) credibility intervals,

together with the responses obtained from the estimation of a CF-VAR (blue lines).

Number of Lags. Figure 8 documents the aggregated impulse responses

estimated at a weekly frequency using either 6 (Panel a) or 12 lags (Panel b).33

The evidence of “temporal aggregation bias” is also confirmed when increasing the

lag length. In particular, we find that while the responses of the MF-VAR are

statistically significant over the whole forecast horizon, the uncertainty around the

estimates tends to become larger in case of CF-VAR.

Endogenous Variables. In Figure 9, we report the aggregated weekly impulse

responses obtained from a MF-VAR when the unemployment rate and the 10-year

treasury constant maturity rate are included in the set of endogenous variables.

As can be seen from the charts, we still find evidence of a “temporal aggregation

bias” when including additional macroeconomic variables. In particular, both the

unemployment rate and the long-term interest rate also report a lower magnitude

(almost half) in the impulse responses of the MF-VAR (see Figure 9). Moreover, by

introducing these two variables, we note how the response of industrial production

converges more quickly to zero than in the baseline specification.

Figure 10 shows the aggregated weekly responses when replacing FFR with the

32We show robustness checks for the baseline specification including weekly VIX. Only when we
include the COVID-19 period, we provide evidence with both weekly and daily frequencies.

33The use of lags equal to (or greater than) 12 is a common choice in a VAR fitted to monthly
variables.
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shadow short rate à la Wu and Xia (2016). The empirical findings are still robust.

The response of the shadow short rate shows a “temporal aggregation bias” similar

to the one reported with FFR and 10-year treasury bill.

VIX ordered last. Figure 11 shows the aggregated weekly impulse responses

of the US macroeconomic variables (included in the baseline specification) obtained

by computing the Cholesky decomposition of the reduced-form residuals covariance

matrix with the VIX ordered last in the vector of the endogenous variables. As

shown by Figure 11, the results are qualitatively and quantitatively similar to those

described in Section 4.1 (i.e. with the VIX ordered first).

Including COVID-19 period. We extend the sample including the period

subsequent to the COVID-19 outbreak, repeating the estimation of the baseline

model over the sample 1990M1-2020M11. We identify the shock by relying on both

weekly and daily frequencies. As in the previous empirical exercises, the size of the

shocks occurring in each of the four weeks (or in each of the 20 days) is equal to 5σ

VIX shocks estimated over the period 1990M1-2020M11.

Figure 12 reports the aggregated weekly responses. We document the aggregation

bias shown in the baseline model. Interesting to note how the response both of

industrial production and of consumption show a quick decrease followed by an

increase around period 5 and, after that, another less severe decrease.

Figures 13-14 provide evidence of the daily responses. In particular, we find

interesting results in case of higher frequency. For almost all macroeconomic variables,

we document how the responses reach their peak at the mid of month (around 10

days) (see Figure 13). The aggregated daily responses (obtained from MF-VAR) still

show the aggregation bias as in the case of the baseline specification (see Figure 14).

However, we need to consider the criticisms about the inclusion of the time
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after March 2020 as a significant caveat when reading these results. Lenza and

Primiceri (2020) suggest to model the change in shock volatility in order to account

for the exceptionally large macroeconomic variation during the pandemic crisis. They

propose to re-scale the standard deviation of the March shocks by an unknown

parameter as well in April and May with other unknown parameters as done in

Giannone, Lenza and Primiceri (2015). We leave in our future research agenda to

explore this further issue.

5 Concluding Remarks

We contribute to the literature on mixed-frequency regressions by introducing an

innovative Bayesian approach to identify high-frequency shocks. This methodology

is inspired by Götz et al. (2016) and Ghysels (2016) that suggest Bayesian techniques

to improve the estimation of models with different data sampling. A Normal Inverse

Wishart prior is imposed in estimating a MF-VAR by adding a set of auxiliary

dummies. Relying on this new methodology, we provide novel empirical evidence

of a financial uncertainty shock (VIX) identification for the US economy. When

we estimate a CF-VAR instead of a MF-VAR, with weekly and daily frequencies,

we find a “temporal aggregation bias”. Moreover, we document an amplified bias

when a higher frequency shock is identified. The mixed-frequency and common

low-frequency responses differ consistently across horizons. We extend our empirical

investigation by including the recent pandemic crisis induced by the COVID-19.

These results show an amplified “temporal aggregation bias” providing an interesting

policy interpretation. The mixed-frequency approach suggests less severe recessionary

effects on the macroeconomic variables and we can also disentangle accurately the

responses along weeks and days.
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Ferrara, Laurent, and Pierre Guérin (2018) ‘What are the macroeconomic effects of

high-frequency uncertainty shocks?’ Journal of Applied Econometrics 33(5), 662–

679

Foroni, Claudia, and Massimiliano Marcellino (2014) ‘A comparison of mixed fre-

24



quency approaches for nowcasting Euro area macroeconomic aggregates.’ Inter-

national Journal of Forecasting 30(3), 554–568

(2016) ‘Mixed frequency structural vector auto-regressive models.’ Journal of

the Royal Statistical Society: Series A (Statistics in Society) 179(2), 403–425

Foroni, Claudia, Eric Ghysels, and Massimiliano Marcellino (2013) ‘Mixed-frequency

vector autoregressive models.’ Advances in Econometrics 32, 247–272

Foroni, Claudia, Massimiliano Marcellino, and Christian Schumacher (2015) ‘Unre-

stricted mixed data sampling (MIDAS): MIDAS regressions with unrestricted

lag polynomials.’ Journal of the Royal Statistical Society. Series A (Statistics

in Society) 178(1), 57–82

Ghysels, Eric (2016) ‘Macroeconomics and the reality of mixed frequency data.’

Journal of Econometrics 193(2), 294–314

Ghysels, Eric, Arthur Sinko, and Rossen Valkanov (2007) ‘Midas regressions: Further

Results and New Directions.’ Econometric Reviews 26(1), 53–90

Giannone, Domenico, Michele Lenza, and Giorgio E. Primiceri (2015) ‘Prior selection

for vector autoregressions.’ The Review of Economics and Statistics 97(2), 436–

451
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Appendices

Appendix A. Multi-σ shocks

In this appendix, we report the impulse responses of the U.S. business cycle variables

obtained from the estimation of the baseline MF-VAR(3) (whose results are reported

in Section 4.1) using different sizes of the VIX shock. Figure A.1 shows the posterior

median responses, respectively, to 1σ, 5σ, and 10σ VIX shocks estimated over the

period 1999M1-2019M12.34

For all the macroeconomic variables, the red line (i.e. response to 5σ shock) is the

same of that reported in Figure 5. Since the impulse responses are simply re-scaled,

the use of different sizes of the VIX shock leads to a similar shape in the (negative)

response profiles of the U.S business cycle variables.

Appendix B. Convergence diagnostics

In this appendix, we assess the convergence of the Gibbs sampler algorithm performed

in the estimation of the baseline MF-VAR(3) using both the weekly and the daily

series of VIX (see Section 4.1). In particular, following Primiceri (2005), we compute

the autocorrelation function of the retained draws (i.e. 5000 replications) for the

MF-VAR coefficients (slope coefficients and the intercepts) in B and for the elements

entering the residual covariance matrix Σ (see equations (1) and (5)). As reported

in Primiceri (2005), low autocorrelation of the draws increases the efficiency of the

algorithm.

Figure B.1 shows the 20-th order sample autocorrelation computed for the 200

MF-VAR parameters (slope coefficients and intercepts) (upper panel) and for the

64 parameters in the residual covariance matrix (lower panel), obtained from the

estimation of the MF-VAR(3) fitted to weekly VIX and monthly macroeconomic

variables. As can be see from the charts, the autocorrelations remain below 0.1 (in

absolute value) for both the VAR parameters and the residual covariance matrix,

suggesting that the retained draws are almost independent.

34It is important to notice that, while 5σ is the size of the shock used in the empirical application
(see also Section 3.2), the choice of the other two magnitudes (i.e. 1σ and 10σ) is arbitrary.
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Similar results are obtained when computing the autocorrelation functions for the

parameters obtained from the estimation of the MF-VAR(3) using the daily series of

VIX (see Figure B.2).

Thus, there is evidence of convergence of the Gibbs sampler algorithm in both the

empirical exercises (i.e. using either weekly or daily series of VIX).
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Figure 1: VIX (daily frequency). 1999M1-2020M11.
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Notes. The chart shows the VIX at a daily frequency over the period 1990M1-2020M11.
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Figure 2: VIX (weekly frequency). 1990M1-2020M11.
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Notes. The chart shows the VIX at a weekly frequency over the period 1990M1-2020M11. The
weekly series of VIX is constructed by following the suggestions of Ferrara and Guérin (2018). In
particular, the daily observations on VIX are rearranged at a weekly frequency as follows. Given
a number of traded days within each month (Dt), the four weekly observations are computed by
considering the days Dt − 15, Dt − 10, Dt − 5, and Dt as observations for week 1, week 2, week 3,
and week 4, respectively.
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Figure 3: Calibration of the size of the financial uncertainty shock.
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Notes. The chart shows the VIX at a daily frequency over the period 2019M10-2020M11. The
vertical red dashed lines correspond to the peak of the VIX observed on 16 March 2020 (the VIX is
equal to 82.69) and to the value of the VIX registered one month before, that is on 18 February
2020 (with a value equal to 14.83). Information on the calibration of the size of the uncertainty
shock are reported in Section 3.2.
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Figure 4: Weekly responses of the U.S. macroeconomic variables from the baseline
MF-VAR(3) estimated over 1990M1-2019M12.
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Notes. Impulse responses of the level of U.S. consumer price index (CPI), industrial production
index (IP), real personal consumption expenditures (PCE), and effective federal funds rate (FFR)
in percentage points, computed over a 36-month forecast horizon. Each row displays the response
of the variable of interest to shocks occurring in week 1, week 2, week 3, and week 4. The size of
the shocks occurring in each of the four weeks is equal to 5σ VIX shocks estimated over the period
1990M1-2019M12. Each chart shows the median response (red line) with 68% (red shading) and
90% (gray shading) credibility intervals obtained from the estimation of the MF-VAR(3) (with
variables ordered as specified in equation (9)).
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Figure 5: Aggregated responses of U.S. business cycle variables to weekly financial
uncertainty shocks from the baseline MF-VAR(3) estimated over 1990M1-2019M12.
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Notes. Aggregated weekly impulse responses (in levels) of consumer price index (CPI), industrial
production (IP), real personal consumption expenditures (PCE), and effective federal funds rate
(FFR) in percentage points, computed over a 36-month forecast horizon. The size of the shocks
occurring in each of the 4 weeks is equal to 5σ VIX shocks estimated over the period 1990M1-
2019M12. In each chart, the impulse responses from the MF-VAR are aggregated by averaging out
the weekly responses. Each chart shows the median response (red line) with 68% (red shading)
and 90% (gray shading) credibility intervals obtained from the estimation of the MF-VAR(3) (see
equation (9)). The median impulse response from a common-frequency VAR (blue line with asterisk)
and the corresponding 90% credibility intervals (blue dashed line) are also reported.
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Figure 6: Responses of U.S. business cycle variables to daily financial uncertainty
shocks from the baseline MF-VAR(3) estimated over 1990M1-2019M12.
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Notes. Median responses (in levels) of consumer price index (CPI), industrial production index
(IP), real personal consumption expenditures (PCE), and effective federal funds rate (FFR) in
percentage points, computed over a 36-month forecast horizon. The impulse responses are obtained
by estimating the baseline MF-VAR(3) using daily series (i.e. 20 observations in each month) of
VIX. The size of the shocks occurring in each of the 20 days is equal to 5σ VIX shocks estimated
over the period 1990M1-2019M12. Each chart displays the daily responses (x-axis), the 36-month
forecast horizon (y-axis), and the magnitude of the responses (z-axis).
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Figure 7: Aggregated responses of U.S. business cycle variables to daily financial
uncertainty shocks from the baseline MF-VAR(3) estimated over 1990M1-2019M12.
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Notes. Aggregated daily impulse responses (in levels) of consumer price index (CPI), industrial
production index (IP), real personal consumption expenditures (PCE), and effective federal funds
rate (FFR) in percentage points, computed over a 36-month forecast horizon. The size of the
shocks occurring in each of the 20 days is equal to 5σ VIX shocks estimated over the period
1990M1-2019M12. In each chart, the impulse responses from the MF-VAR are aggregated by
averaging out the daily responses. Each chart shows the median response (red line) with 68% (red
shading) and 90% (gray shading) credibility intervals obtained from the estimation of the baseline
MF-VAR(3). The median impulse response from a common-frequency VAR (blue line with asterisk)
and the corresponding 90% credibility intervals (blue dashed lines) are also reported.
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Figure 8: Responses of U.S. business cycle variables to weekly financial uncertainty
shocks from the baseline MF-VAR estimated over 1990M1-2019M12. Different lags.
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(a) Panel a. Mixed-Frequency VAR with 6 lags.

CPI

10 20 30

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

%
 p

oi
nt

s

IP

10 20 30

-3

-2.5

-2

-1.5

-1

-0.5

0

PCE

10 20 30

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

FFR

10 20 30
-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

(b) Panel b. Mixed-Frequency VAR with 12 lags.

Notes. Aggregated weekly impulse responses (in levels) of consumer price index (CPI), industrial
production index (IP), real personal consumption expenditures (PCE), and effective federal funds
rate (FFR) in percentage points, computed over a 36-month forecast horizon. The size of the
shocks occurring in each of the 4 weeks is equal to 5σ VIX shocks estimated over the period
1990M1-2019M12. In each chart, the impulse responses from the MF-VAR are aggregated by
averaging out the weekly responses. Each chart shows the median response (red line) with 68% (red
shading) and 90% (gray shading) credibility intervals obtained from the estimation of MF-VAR(6)
(panel a) and MF-VAR(12) (panel b) (see equation (9)). The median impulse response from a
common-frequency VAR (blue line with asterisk) and the corresponding 90% credibility intervals
(blue dashed line) are also reported.
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Figure 9: Responses of U.S. business cycle variables to weekly financial uncertainty
shocks from a MF-VAR(3) estimated over 1990M1-2019M12. Extended set of
variables.
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Notes. Aggregated weekly impulse responses (in levels) of the selected macroeconomic variables in
percentage points, computed over a 36-month forecast horizon. The shocks are identified using
a Cholesky decomposition of the reduced-form residual covariance matrix (see Section 3.2) with
variables ordered as follows: weekly VIX, consumer price index (CPI), industrial production index
(IP), real personal consumption expenditures (PCE), unemployment rate (UNEMP.RATE), effective
federal funds rate (FFR), and 10-Year treasury constant maturity rate (10YR-TB). The size of
the shocks occurring in each of the 4 weeks is equal to 5σ VIX shocks estimated over the period
1990M1-2019M12. In each chart, the impulse responses from the MF-VAR are aggregated by
averaging out the weekly responses. Each chart shows the median response (red line) with 68% (red
shading) and 90% (gray shading) credibility intervals obtained from the estimation of a MF-VAR(3).
The median impulse response from a common-frequency VAR (blue line with asterisk) and the
corresponding 90% credibility intervals (blue dashed lines) are also reported.
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Figure 10: Responses of U.S. business cycle variables to weekly financial uncertainty
shocks from a MF-VAR(3) estimated over 1990M1-2019M12. Shadow short rate.
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Notes. Aggregated weekly impulse responses (in levels) of the selected macroeconomic variables in
percentage points, computed over a 36-month forecast horizon. The shocks are identified using
a Cholesky decomposition of the reduced-form residual covariance matrix (see Section 3.2) with
variables ordered as follows: weekly VIX, consumer price index (CPI), industrial production index
(IP), real personal consumption expenditures (PCE), unemployment rate (UNEMP.RATE), and
shadow short rate (SHADOW RATE). The size of the shocks occurring in each of the 4 weeks is
equal to 5σ VIX shocks estimated over the period 1990M1-2019M12. In each chart, the impulse
responses from the MF-VAR are aggregated by averaging out the weekly responses. Each chart
shows the median response (red line) with 68% (red shading) and 90% (gray shading) credibility
intervals obtained from the estimation of a MF-VAR(3). The median impulse response from a
common-frequency VAR (blue line with asterisk) and the corresponding 90% credibility intervals
(blue dashed lines) are also reported.
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Figure 11: Responses of U.S. business cycle variables to weekly financial uncertainty
shocks from a MF-VAR(3) estimated over 1990M1-2019M12. VIX ordered last.
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Notes. Aggregated weekly impulse responses (in levels) of the selected macroeconomic variables in
percentage points, computed over a 36-month forecast horizon. The shocks are identified using a
Cholesky decomposition of the reduced-form residual covariance matrix with variables ordered as
follows: consumer price index (CPI), industrial production index (IP), real personal consumption
expenditures (PCE), effective federal funds rate (FFR), and weekly VIX. The size of the shocks
occurring in each of the 4 weeks is equal to 5σ VIX shocks estimated over the period 1990M1-
2019M12. In each chart, the impulse responses from the MF-VAR are aggregated by averaging out
the weekly responses. Each chart shows the median response (red line) with 68% (red shading) and
90% (gray shading) credibility intervals obtained from the estimation of a MF-VAR(3). The median
impulse response from a common-frequency VAR (blue line with asterisk) and the corresponding
90% credibility intervals (blue dashed lines) are also reported.
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Figure 12: Aggregated responses of U.S. business cycle variables to weekly financial
uncertainty shocks from a MF-VAR(3) estimated over 1990M1-2020M11.
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Notes. Aggregated weekly impulse responses (in levels) of consumer price index (CPI), industrial
production index (IP), real personal consumption expenditures (PCE), and effective federal funds
rate (FFR) in percentage points, computed over a 36-month forecast horizon. The size of the
shocks occurring in each of the 4 weeks is equal to 5σ VIX shocks estimated over the period
1990M1-2020M11. In each chart, the impulse responses from the MF-VAR are aggregated by
averaging out the weekly responses. Each chart shows the median response (red line) with 68%
(red shading) and 90% (gray shading) credibility intervals obtained from the estimation of the
MF-VAR(3) (see equation (9)). The median impulse response from a common-frequency VAR
(blue line with asterisk) and the corresponding 90% credibility intervals (blue dashed lines) are also
reported.
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Figure 13: Responses of U.S. business cycle variables to daily financial uncertainty
shocks from a MF-VAR(3) estimated over 1990M1-2020M11.
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Notes. Median responses (in levels) of consumer price index (CPI), industrial production index
(IP), real personal consumption expenditures (PCE), and effective federal funds rate (FFR) in
percentage points, computed over a 36-month forecast horizon. The impulse responses are obtained
by estimating the baseline MF-VAR(3) using daily series (i.e. 20 observations in each month) of
VIX. The size of the shocks occurring in each of the 20 days is equal to 5σ VIX shocks estimated
over the period 1990M1-2020M11. Each chart displays the daily responses (x-axis), the 36-month
forecast horizon (y-axis), and the magnitude of the responses (z-axis).
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Figure 14: Aggregated responses of U.S. business cycle variables to daily financial
uncertainty shocks from a MF-VAR(3) estimated over 1990M1-2020M11.
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Notes. Aggregated daily impulse responses (in levels) of consumer price index (CPI), industrial
production index (IP), real personal consumption expenditures (PCE), and effective federal funds
rate (FFR) in percentage points, computed over a 36-month forecast horizon. The size of the
shocks occurring in each of the 20 days is equal to 5σ VIX shocks estimated over the period
1990M1-2020M11. In each chart, the impulse responses from the MF-VAR are aggregated by
averaging out the daily responses. Each chart shows the median response (red line) with 68% (red
shading) and 90% (gray shading) credibility intervals obtained from the estimation of the baseline
MF-VAR(3). The median impulse response from a common-frequency VAR (blue line with asterisk)
and the corresponding 90% credibility intervals (blue dashed lines) are also reported.
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Figure A.1: Aggregated median responses of U.S. business cycle variables to weekly
financial uncertainty shocks from a MF-VAR(3) estimated over 1990M1-2019M12.
Multi-σ shocks.
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Notes. Posterior median of the aggregated weekly impulse responses (in levels) of consumer price
index (CPI), industrial production index (IP), real personal consumption expenditures (PCE), and
effective federal funds rate (FFR) in percentage points, computed over a 36-month forecast horizon.
The sizes of the shocks occurring in each of the 4 weeks are calibrated to be 1σ (blue line), 5σ (red
line), and 10σ (black line) VIX shocks estimated over the period 1990M1-2019M12. In each chart,
the impulse responses from the MF-VAR are aggregated by averaging out the weekly responses.
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Figure B.1: 20-th order sample autocorrelation for VAR coefficients and residual
covariance matrix from a MF-VAR(3) using weekly VIX.
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Notes. 20-th order sample autocorrelation of the retained draws (i.e. 5000). The autocorrelation
functions are computed for the 200 MF-VAR parameters (slope coefficients and intercepts) (upper
panel) and for the 64 parameters in the residual covariance matrix (lower panel), obtained from
the estimation of the MF-VAR(3) fitted to weekly VIX and monthly macroeconomic variables (see
equations (1) and (5)).
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Figure B.2: 20-th order sample autocorrelation for VAR coefficients and residual
covariance matrix from a MF-VAR(3) using daily VIX.
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Notes. 20-th order sample autocorrelation of the retained draws (i.e. 5000). The autocorrelation
functions are computed for the 1752 MF-VAR parameters (slope coefficients and intercepts) (upper
panel) and for the 576 parameters in the residual covariance matrix (lower panel), obtained from
the estimation of the MF-VAR(3) fitted to daily VIX and monthly macroeconomic variables (see
equations (1) and (5)).
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