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Indonesia has a target of achieving 23% of renewable energy share in total energy mix in 
2025. However, as commonly observed across developing economies, Indonesia also 
does not have accurate and comprehensive database of renewable energy potentials, 
especially wind energy. Therefore, this article aims to assess the theoretical potential of 
wind speed and to visualize the wind speed by province based on wind map using GIS 
for the entire Indonesia. Our assessment integrates advanced analytical techniques, i.e., 
Weather Research and Forecasting (WRF) model, method geographic information 
system (GIS), Newtonian relaxation assimilation technique, and Variational Analysis 
Method (VAM). The robustness of our analysis is confirmed by using high resolution data 
from the National Aeronautics and Space Administration (NASA) database and Cross-
Calibrated Multi-Platform (CCMP) Reanalysis satellite data. Wind resource measurement 
data in Jayapura, Bantaeng and Sukabumi sites are used to validate the modelling 
results. The biases of the modelled data are 0.324, 0.368, and 0.324 in Jayapura, 
Bantaeng and Sukabumi respectively. This conclusion has two global implications. First, 
this study shows the WRF method is a feasible option to estimate wind speed data in 
developing countries commonly lacking meteorological stations to measure the wind 
energy resources. Second, the yearly wind mapping by province level produces mean 
wind speed map that is a useful information to indicate the profile of wind energy 
resource as the input for the wind energy system planning. We then match the wind 
energy potentials with other factors influencing wind warm feasibility, e.g., renewable 
energy tariffs, and parameters of power system flexibility.      
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Abstract 

Indonesia has a target of achieving 23% of renewable energy share in total energy mix in 2025. 

However, as commonly observed across developing economies, Indonesia also does not have 

accurate and comprehensive database of renewable energy potentials, especially wind energy. 

Therefore, this article aims to assess the theoretical potential of wind speed and to visualize the 

wind speed by province based on wind map using GIS for the entire Indonesia. Our assessment 

integrates advanced analytical techniques, i.e., Weather Research and Forecasting (WRF) 

model, method geographic information system (GIS), Newtonian relaxation assimilation 

technique, and Variational Analysis Method (VAM). The robustness of our analysis is 

confirmed by using high resolution data from the National Aeronautics and Space 

Administration (NASA) database and Cross-Calibrated Multi-Platform (CCMP) Reanalysis 

satellite data. Wind resource measurement data in Jayapura, Bantaeng and Sukabumi sites are 

used to validate the modelling results. The biases of the modelled data are 0.324, 0.368, and 

0.324 in Jayapura, Bantaeng and Sukabumi respectively. This conclusion has two global 

implications. First, this study shows the WRF method is a feasible option to estimate wind 

speed data in developing countries commonly lacking meteorological stations to measure the 

wind energy resources. Second, the yearly wind mapping by province level produces mean 

wind speed map that is a useful information to indicate the profile of wind energy resource as 

the input for the wind energy system planning. We then match the wind energy potentials with 

other factors influencing wind warm feasibility, e.g., renewable energy tariffs, and parameters 

of power system flexibility.      
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1. Introduction 

Wind power is one of renewable energy with highest capacity growth worldwide 

(REN21, 2019). Total global capacity of wind power has been increasing from 121 gigawatts 

(GW) in 2008 to 591 GW in 2018, making wind power as the second largest renewable energy 

capacity just after hydropower capacity, i.e., 1,132 GW in 2018. Within the period, 52% of the 

additional capacity were installed in Asia region, particularly China who has become the 

country with the largest installed capacity of wind power to approximately 210 GW (REN21, 

2019).  

Another emerging Asia country in wind energy development is Indonesia who 

commercially operate its first wind farm 75 megawatts (MW) in 2018. The capacity of wind 

power in Indonesia is officially expected to grow rapidly reaching 1,800 MW by 2025 (GOI, 

2017). Yet, this target is disagreed by the Agency for the Assessment and Application of 

Technology (BPPT) who forecasts smaller capacity addition of wind power by 2025 (BPPT, 

2018). The difference is caused by different data of wind energy potential that GOI (2017) uses 

60,647 MW data while BPPT (2018) uses 970 MW data. Moreover, BPPT (2018) eventually 

predicts that the addition capacity of wind power in 2017 to 2050 will be 2,500 MW, exceeding 

the used data of wind power potential. Such data conflicts and modelling errors are common 

problems in renewable energy planning analysis, especially in developing countries (Al Irsyad 

et al., 2019; Al Irsyad et al., 2017). Such data scarcity causes difficulty to make energy policy 

based on empirical data (Nepal et al., 2020). Therefore, the development of forecasting models 

is growing not only for policy analysis, but also for producing reliable data of renewable energy 

resources (Weekes et al., 2015). ‘ 

Wind power resource in Indonesia has been measured by various institutions 

(Martosaputro and Murti, 2014). For instances, Martosaputro and Murti (2014) provided global 

wind speed by using satellite data from 3TIER and wind resource assessment data in 11 sites. 

Martosaputro and Murti (2014) concluded that high wind power potentials are located on Java 

provinces (especially the south coast parts), East Nusa Tenggara, and Molucca. In contrast, 

Archer and Jacobson (2005) suggested that wind power potential in Indonesia is very low that 

no site has wind speed higher than 6.9 m/s. Hence, further reliable and high-resolution 

assessments of wind energy resources are important to provide trusted wind energy potential 

in Indonesia.  

This study proposes an assessment methodology that assimilates two weather data 

sources (i.e., Cross-Calibrated Multi-Platform/ CCMP and the National Centers for 

Environmental Prediction – Final/ NCEP-FNL) to produce more accurate and higher-resolution 

data. NCEP data is a common data resources for wind speed assessment due to its accuracy but 

has lower resolution than that of CCMP. Meanwhile, CCMP has higher spatial and temporal 

resolutions but has lower accuracy in high-wind speed (i.e., > 15 m/s) and rainy conditions. 

Previous studies mostly used data from NCEP only (Beaucage et al., 2014; Carvalho et al., 

2014b; Hossain et al., 2011; Jimenez et al., 2007; Lazić et al., 2010). An exception is Hesty 

and Hadi (2015) who has assimilated CCMP and NCEP-FNL but their wind energy assessment 

was only for a specific site (microscale). Therefore, the novelty of this study is the assimilation 

of those two-weather data to estimate wind energy in mesoscale with Indonesia as a case.  

In addition, we juxtapose the resulted wind energy potentials with investment 

opportunities and risks. For this purpose, we review regional tariffs for wind energy, the power 



plant expansion plan of the State-owned Electricity Company (PLN), and the flexibility of 

regional electricity systems. Such systematic analysis is essential to understand actual feasible 

wind energy potentials. This is the first study to estimate wind energy potentials in Indonesia 

by integrating various modelling approaches supported by observation data from three 

meteorological masts. 

The rest of paper is structured as follows. Chapter 2 reviews literatures related to wind 

energy potential assessment and Chapter 3 explains the methodology used in this study. 

Chapter 4 presents the results of wind energy assessment and the summary of wind energy 

potentials in Indonesia. Chapter 5 discusses regional wind farm plan, electricity tariffs, and 

flexibility of regional electricity systems and Chapter 6 discusses the conclusions and 

recommendations.  

 

2. Literature Review 

Wind energy assessments involve the determination of wind speed probability 

distribution, wind energy yield, capacity factor, wind farm layout, and finally the levelized cost 

of wind generated electricity (Mentis et al., 2016). The assessment can use various methods as 

used by studies in Table 1. Appropriately selecting numerical methods and physical 

configuration as well as using high resolution terrain data is the key to minimize error in the 

wind simulation (Carvalho et al., 2012; Carvalho et al., 2014b). Selecting an analytical tool for 

wind resource assessment depends on the analysis level, i.e., micro and meso levels.  

The improvement of the wind energy assessment would not have been as successful 

without the use of numerical weather prediction (NWP) model. Micro-level analysis commonly 

uses models of MM5, Wind Atlas Analysis and Application Program (WAsP) and WindSIM 

(Hwang et al., 2010; Jimenez et al., 2007). MM5 and WAsP may produce comparable results, 

but MM5 has a critical advantage that it only needs reanalysis data without requiring wind 

measurement data (Jimenez et al., 2007). Reanalysis data is useful for wind resource 

assessments in a case when observational data is not available. NWP model, a software to 

describe atmospheric processes and changes, along with reanalysis is the main tool to construct 

historical climate data in a regional grid by integrating various past observation and 

measurement systems years (Al-Yahyai et al., 2010; Carta et al., 2013). NWP models can be 

used to downscale reanalysis data sets while adding physical phenomena, due to their smaller 

spatial and temporal time scales, including the consideration of local topographical features. 

The most widely used reanalysis data is generated from the National Centre for Environmental 

Prediction (NCEP) and the National Centre for Atmospheric Research (NCAR) (Carta et al., 

2013). Yet, NCEP/NCAR reanalysis data is not suitable for use in the measure-correlate-

predict (MCP) method with a purpose estimating energy production of a wind farm (Brower, 

2006). The most accurate data for the wind energy simulation is ERA-Interim reanalysis for 

onshore area and NCEP-R2 reanalysis for offshore area (Carvalho et al., 2014a; Carvalho et 

al., 2014b). Hesty and Hadi (2015) assimilated CCMP and NCEP-FNL to increase data 

resolution from 27 km into 3 km for wind speed assessment in  West Java coast, Indonesia. 



Table 1 Studies on wind energy potentials 

Study Country Methods Data source 

Al-Yahyai et al. (2012) Oman Nested ensemble NWP  

Archer and Jacobson (2005) Global including 

Indonesia 

Least square extrapolation Kennedy Space Center Network 

Beaucage et al. (2014) US Jackson-Hunt model, CFD/RANS, coupled NWP and 

mass-consistent model, coupled NWP and LES 

NCAR, NCEP 

Carvalho et al. (2012) Portugal WRF NCAR, NCEP 

Carvalho et al. (2014a) Iberian 

Peninsula region 

WRF NCEP-R2, ERA-Interim, NCEP-CFSR, 

NASA-MERRA, NCEP-FNL and NCEP-GFS 

Carvalho et al. (2014b) Portugal WRF ERA-Interim, NASA-MERRA, NCEP-CFSR, 

NCEP-GFS and NCEP-FNL 

Hesty and Hadi (2015) Indonesia WRF, FFDA NCEP-FNL, CCMP 

He and Kammen (2014) China GIS 3TIER 

Hossain et al. (2011) India GIS NCEP/NCAR 

Hwang et al. (2010) Korea WinSIM, RANS  

Jimenez et al. (2007) Germany WAsP, MM5, GIS NCEP 

Jung et al. (2013) South Korea Weibull distribution, Bayesian approach  

Jung and Kwon (2013) South Korea ANN  

Kwon (2010) South Korea MCP, Weibull distribution, Monte-Carlo analysis  

Lazić et al. (2010) Sweden Eta model NCEP 

Latinopoulos and Kechagia 

(2015) 

Greece GIS, MCDA  

Santos-Alamillos et al. (2013) Spain WRF  

Weekes and Tomlin (2014a) UK Weibull distribution, LR, MCP  

Weekes and Tomlin (2014b) UK MCP, LR, LR2, VR  

Weekes et al. (2015) UK Linear MCP algorithm MIDAS 
Note: ANN = artificial neural network; CCMP = Cross-Calibrated Multi-Platform; CFD = computational fluid dynamics; FFDA = Four Dimension Data Assimilation; FNL = Final Global Data 

Assimilation System; GIS = geographic information system; LES = large-eddy simulations; LR = linear regression; LR2 = linear regression with Gaussian scatter; MCDA = Multi-criteria 

decision analysis; MCP = measure—correlate-predict; MIDAS = Met office integrated data archive system; NCAR = National Centre for Atmospheric Research; NCEP = National Centres for 

Environmental Prediction; RAMS = Regional Atmospheric Modeling System; RANS = Reynolds-averaged Navier–Stokes; VR =  Variance ratio regression; WAsP = Wind Atlas Analysis and 

Application Program; WRF = Weather Research and Forecasting.



The MCP method involves short-term measurements in a specific site and, then, the 

measured data is correlated to long-term data records from reference surface stations. After 

that, the resulting data from the correlation process become basis data for making a long-term 

prediction. MCP is relatively accurate to perform long-term hindcasting of the wind conditions 

by using short-term data in a complex terrain compared to physical models (Carta et al., 2013). 

Weekes et al. (2015) used MCP to compare the data of the 4 km resolution, operational forecast 

model (UK4) and meteorological observations. As a result, the UK4 provide forecast the 

weather better than nearby meteorological stations. Among MCP methods, the regression MCP 

technique outperforms the bivariate Weibull (BW)-based MCP especially for analysis in short 

measurement periods (Weekes and Tomlin, 2014a). Moreover, linear regression with Gaussian 

scatter provide less bias and percentage error than standard linear regression and variance ratio 

regression (Weekes and Tomlin, 2014b). Kwon (2010) applied data from MCP to Wiebull 

probability distribution that was then used for Monte-Carlo based simulation procedure to 

estimate uncertainty of wind energy potentials in Kwangyang Bay, South Korea.  

Recently, the MCP method also uses long-term reference data derived from the NWP 

model and the atmospheric reanalysis data set (Brower, 2006; Kalnay et al., 1996; Weekes et 

al., 2015). One of the most widely used NWP models is the Weather Research and Forecasting 

(WRF) model, which provides relatively accurate wind estimates for analysis on flat and 

homogenous flat terrain (Santos-Alamillos et al., 2013). For higher terrain complexity, WRF 

requires more detailed terrain data (Carvalho et al., 2012; Carvalho et al., 2014a). As a 

mesoscale model, NWP models are commonly coupled to microscale wind flow model to 

obtain a higher spatial resolution and accuracy (Beaucage et al., 2014). Another NWP model 

is Eta model, a regional atmospheric NWP that could produce accurate forecast of wind speeds 

(Lazić et al., 2010). 

Studies estimating wind energy potential continuously develop new methodologies. 

Jung et al. (2013) offered a new Bayesian approach that has better accuracy than the 

conventional deterministic approach. Jung and Kwon (2013) proposed artificial neural network 

(ANN) considering wind speed frequency and power performance curve to develop weighted 

error function. The function improves the estimation accuracy for 8 to 12% compared to the 

conventional ANN. Studies for wind energy assessment also commonly uses geographic 

information system (GIS). It then can be integrated with the simulation of capacity factor (CF) 

of wind turbine and plant load factor (PLF) to determine the locations of wind farm potentials 

and electricity production potential from the wind farms (He and Kammen, 2014; Hossain et 

al., 2011). Moreover, Latinopoulos and Kechagia (2015) combined GIS and multi-criteria 

decision analysis (MCDA) to find the most proper sites for wind farms.  

Determining feasible locations of wind farm should consider technical issues (e.g., 

wind energy potentials, grid infrastructure, electricity demand, and grid flexibility), economic 

issues (e.g., incentive, and tariffs) as well as social and institutional issues (e.g., bureaucratic 

constraint, public opinions, protected environments, historical and archaeological sites, tourism 

facilities, and residential settlements) (Babatunde et al., 2020; Latinopoulos and Kechagia, 

2015). One of significant factors determining the feasibility of wind farm is power system 

flexibility (Papaefthymiou et al., 2018). The power system flexibility is the ability of power 

system to balance power supply and consumption rapidly in order to preserve the system 

stability (Heggarty et al., 2020). Therefore, factors influencing the power system flexibility 



could be from supply, demand, grid, storage, and market sides (Babatunde et al., 2020; 

Heggarty et al., 2020; IRENA, 2018; Papaefthymiou et al., 2018). 

A measure in supply side to improve the flexibility is to limit the share of variable 

renewable energy (VRE) in a power system. For an instance, Zakeri et al. (2015) suggested the 

maximum VRE share on total electricity production is 19%. Al Irsyad et al. (2020) assessed 

the impact of VRE share limit on Indonesia power plant expansions under emission reduction 

targets. As results, wind energy is a cost-effective power plant to substitute coal-fired power 

plants. It is clear from Table 1 that no study has specifically assessed wind energy potentials 

from two different perspectives, i.e., resources potentials, and financial feasibility. Moreover, 

Our resource assessment lays on an assessment model built from WRF Four-Dimensional Data 

Assimilation System (WRF-FDDA) and FNL and CCMP dataset. These two approaches could 

provide more accurate and higher resolution data without requiring huge computation resources 

(Lorenc, 1986). The finding of this study calls for more discussions about opportunities of wind 

energy investments in Indonesia as detailed out in section 5 of the paper.    

 

3. Methodology 

We estimated wind energy potentials in RUEN by constructing an atmospheric 

mesoscale model resulting from a regional wind map. MEMR improved the model by 

experimental wind resource assessments coupled with a data assimilation technique. For this 

purpose, we used the atmospheric mesoscale WRF model with a spatial resolution of 5 x 5 km 

to map wind resources at 50 meters (m) above ground level (agl). Figure 1 shows the setup of 

WRF with two 2-way nested model domains. The outer domain has a horizontal resolution of 

27 km and the resolution for the inner domain is 5 km. It has 35 vertical levels and the lowest 

crucial levels are at around 10, 30, 52 and 97 m agl. Initial and boundary conditions is from 

FNL datasets with a spatial resolution of 1 x 1º.  

 

Figure 1. Model domain 



We assimilated ocean surface wind data provided from the CCMP satellite data by 

coupling numerical model with the Newtonian relaxation technique. The CCMP data contains 

high-resolution wind data generated from the integrations of wind measurements from Remote 

Sensing Systems (REMSS) satellites and Variational Analysis Method (VAM). The CCMP 

surface winds dataset contains 0.25º gridded ocean surface wind or about 25 km in the region 

near the equator. We then added prognostic equations nudging the predicted variables toward 

available observations (interpolated in each model grid). Nudging the Four-Dimensional Data 

Assimilation System (FDDA) is an effective and efficient way to reduce model errors. The 

nudging technique improves lateral boundary condition and relaxation of model forecast 

towards observed conditions. The nudging equation is given by: 

𝜕∅𝑚

𝜕𝑡
=  

(∅𝑜𝑏𝑠 − ∅𝑚)

𝜏
 

(1) 

where ∅𝑚 is the variable of prognostic model, ∅𝑜𝑏𝑠s is the measured variable, and 𝜏 is the time 

scale of a relaxation. The spatial variation of nudging is: 

𝑓(𝑟) =  𝑒
−𝑟

𝑟0⁄  

(2) 

where r is the distance from the measuring point, and r0 is a reference distance representing 

the nudging range. The weight of the nudging is obtained by multiplying Equations (1) and (2). 

As results, the selected optimal relaxation time scale is one hour and the selected nudging radius 

is 25 km. We then convert the estimated wind speed data into wind energy potentials by 

assuming that a 1 MW wind turbine is for one hectare of land with wind speed above 6 m/s and 

a 100 kW wind turbine is for one hectare of land with wind speed between 4 – 6 m/s.   

 

4. Results 

Figure 2 shows the modelled annual mean wind speed at 50 m agl by using the 

Geographic Information System (GIS). We classified the wind speed into eight speed classes 

between the lowest wind speed (< 3 m/s) represented by green color to the highest wind speed 

(> 9m/s) represented by red color. Wind resources in coastal areas are extremely high 

exceeding 5 m/s, which is the average cut-in wind speed of many typical commercial wind 

turbines (Akour et al., 2018; Li and Chen, 2008). Furthermore, Figure 2 shows that the wind 

speed along the west part of Indonesian offshore areas is often over 7 m/s, which is very 

attractive wind resources for wind farms.  



 

Figure 2. Indonesia global wind speed at 50 m height - resolution 5 km 

We evaluated the model by using wind measurement data at a height of 50 m agl at 

University of Cendrawasih (Uncen) - Jayapura, Tamanjaya - West Java, and Bantaeng - South 

Sulawesi. The three meteorological masts (met masts) in Jayapura, Sukabumi, and Bantaeng 

observed climatological and weather conditions. The sites of met mast and the measuring 

period are summarized in Table 2. The time series data obtained from the model is hourly 

average values at the physical site. The time series data from the three sites at 50m agl is shown 

in Figure 3. The blue and red lines are the measurement data and the modelling result with 

nudging respectively. The average wind speeds in Jayapura based on the measurement is 2.33 

m/s while the model result is 2.78 m/s. Meanwhile, the average measured wind speed in 

Sukabumi is 6.70 m/s while wind speed from the model is 7.20 m/s. For Bantaeng, the actual 

average wind speed is 4.66 m/s, while modelled wind speed is 5.44 m/s. In general, the 

modelling slightly overestimates the wind speed and the deviations are related to local 

topographical feature and at low- high wind speed. This analysis emphasizes that the model 

outputs have realistic meteorological patterns.  

Table 2. The coordinate of met mast and measuring periods 

Site Coordinate Measuring periods 

Jayapura -2.58249 140.6575 October 2005 to December 2006 

Sukabumi -7.2688 106.5288 January 2008 to December 2008 

Bantaeng,  -5.5825 120.0475 June to December 2006 



 

(a) Jayapura site 

 

(b) Sukabumi site 

 

(c) Bantaeng site 

Figure 3. Wind speed data at 50 m agl from met masts in three sites 

 

Table 3 summarizes statistical parameters of bias, root mean square error (RMSE), and 

correlations between model and observed wind data. The RMSE for the Bantaeng is the highest 



among the other sites; however, the bias is below 0.5 m/s for all sites or lower than the 

maximum bias (i.e., + 0,5) proposed by Emery et al. (2001). The correlations for all sites are 

between 0.6 and 0.7. The WRF model produces overestimated results at low wind speeds and 

underestimated results at wind speed above 9 m/s at all sites.  

                                         

Table 3. Bias, RMSE and correlation of model results and actual data 

 Bias RMSE Correlation 

Jayapura 0.324 2.300 0.734 

Sukabumi 0.368 2.373 0.736 

Bantaeng 0.324 2.870 0.667 

 

Comparing geographical characteristics on different sites is useful to identify the effects 

of terrain on wind distribution data. Figures 4, 5, and 6 show wind speed distributions and their 

Weibull-fits for both the observed and modelled wind speed at 50 m agl for each mast. The 

figures show that the distribution shapes are different for each location. Sukabumi data in 

Figure 5 shows the widest range of wind speeds while the lowest range of wind speed is in 

Jayapura site as in Figure 4. In Bantaeng, most observed data is low wind speed while the 

modelled data is mostly high wind speed as in Figure 6. The deviation is due to the inaccurate 

representations of surface roughness elements like forests and buildings. Therefore, the 

representation in numerical weather models should be improved for this specific site. The 

application of a roughness length alone is not enough to characterize the interaction of 

atmospheric flows with the surface.  

 

(a) Observation   (b) Modelled 

Figure 4. Histograms for wind speeds at Jayapura at 50 m agl 



 

(a) Observation   (b) Modelled 

Figure 5. Histograms for wind speeds at Sukabumi at 50 m agl 

 

(a) Observation   (b) Modelled 

Figure 6. Histograms for wind speeds at Bantaeng at 50 m agl 

 

Figures 7, 8, and 9 show the related wind roses that display wind speed, frequency, and 

direction. The modelled data appears to capture the directional wind distribution of observation 

data quite well. Figure 7 shows that the modelled wind speed in Jayapura is stronger than the 

observed data, but the wind direction in both modelled and observed data is similar. The 

channeling in Sukabumi (Figure 8) is clearly visible; however, the modelled wind speeds are 

lower than in the observations. One of the possible causes is that terrain model is too smooth. 

Moreover, Figure 9 shows that the WRF model cannot precisely replicate wind directions in 

Bantaeng even though the terrain is flat. The observation data has higher wind speeds and more 

northerly component than the modelled data.  



 

(a) Observation   (b) Modelled 

Figure 7. Windrose for wind speeds in Jayapura 

 

Figure 8. Windrose for wind speeds in Sukabumi 

 

(a) Observation   (b) Modelled 

Figure 9. Windrose for wind speeds in Bantaeng 

 



5. Investment Opportunities 

We convert the average wind speed data in Figure 2 into wind energy potentials. The 

potential data is then used by RUEN (GOI, 2017) as seen in Table 4 and Figure 10. The largest 

potentials are on systems of Java, Madura, and Bali (JAMALI) (24,011 MW) and East Nusa 

Tenggara (10,188 MW). RUEN has expected to build wind farms with total capacity for 716 

MW and 266 MW in those regions respectively (GOI, 2017). Yet, the feasibility of wind farm 

should consider at least two other factors that are grid flexibility and electricity tariffs.  

The JAMALI system is the largest electricity grid system with total electricity supply 

149,9 TWh in 2019. Currently, the main electricity supply in the JAMALI system is mainly 

coal-fired power plants and combined cycle gas turbine (CCGT) for 70.3% and 22.6% of 

respectively (DGE, 2020b). The JAMALI system does not have neither solar farms nor wind 

farm yet; however, PV rooftop in the system is growing with installed capacity 4,849 kWp in 

December 2019 (DGE, 2020a). Moreover, RUEN (GOI, 2017) also expects that the JAMALI 

system will have wind farms with total capacity 716 MW by 2025. However, wind farm 

investment in JAMALI system is less interesting since the average PLN generation cost in the 

JAMALI system is only 6.91 ¢US$/ kWh (please see Table 4), which is the ceiling price for 

PLN to buy renewable-based electricity from independent power producers (IPP).  The 

regulation of Minister of Energy and Mineral Resources (MEMR) No. 53 /2018 (MEMR, 2018) 

and No. 50 /2017 (MEMR, 2017) sets PLN regional generation cost in previous year as the 

ceiling price for regions with generation costs lower than the PLN’s average national 

generation cost, i.e., 7.86 ¢US$/ kWh in 2019. 

In contrast, East Nusa Tenggara systems have average regional generations costs (i.e., 

17.58 ¢US$/ kWh) higher than the PLN’s average national generation cost. East Nusa Tenggara 

actually has several separated grid systems with different generation costs. The largest system 

(and the generation cost in 2019) are Sumba system (20.81 ¢US$/ kWh), Timor system (18.17 

¢US$/ kWh), West Flores (17.58 ¢US$/ kWh), and East Flores (21.28 ¢US$/ kWh). The 

generation costs for smaller systems in Nusa Tenggara reached 21.34 ¢US$/ kWh in 2019. For 

such regions, MEMR (2018) and MEMR (2017) allows PLN to buy renewables-based 

electricity at maximum 85% of regional electricity production costs. It means that the ceiling 

tariff will be between 14.94 and 18.14 ¢US$/ kWh, which are higher than average levelized 

cost of energy (LCOE) of wind power plants around the world, i.e., 4.6 to 9.9 ¢US$/ kWh in 

2019 (IRENA, 2020). However, by assuming VRE only can supply 20% of total electricity 

productions, East Nusa Tenggara only can take 200 GWh electricity generated from wind 

turbine. If the capacity factor is 35% (IRENA, 2020), total capacity of wind farms that could 

be installed in East Nusa Tenggara is around 65 MW. Beyond the attractive ceiling tariff, the 

Indonesia government offers three incentives that are: 

a. Import duty exemptions for two years that can be extended for one year (MoF, 2015); 

b. Tax holiday up to 20 years (MoF, 2020b); 

c. Tax allowance (MoF, 2020a).  

 



Table 4. Wind energy potentials and other feasibility parameters of wind farm investments 

Regions 
Potentials 

(MW) 

Wind turbine 

plan by 2025* 

(MW) 

Average PLN's 

generation cost+ 

(¢ US$/kWh) 

Electricity 

demand+ (GWh) 

Peak loads+ 

(MW) 

Available 

capacity of power 

plant+ (MW) 

Sumatera 4,688  82  8.83  34,645  7,866  22,493  

Riau Archipelago 922  -    12.53  3,346  647  723  

Bangka Belitung 1,787  -    12.63  1,167  254  287  

Java, Madura, & Bali (JAMALI) 24,011  716  6.91  179,299  26,608  27,745  

West Kalimantan 554  28  10.70  2,573  122  336  

South Kalimantan, East Kalimantan, North 

Kalimantan & Central Kalimantan 
2,109  255  11.19  8,131  2,107  2,440  

North Sulawesi & Gorontalo 1,351  21  13.46  2,325  81  95  

South Sulawesi, Central Sulawesi & West 

Sulawesi 
5,615  313  8.24  7,472  2,627  2,798  

Southeast Sulawesi  1,414  57  16.29  987  39  45  

West Nusa Tenggara 2,605  72  14.35  1,950  497  609  

East Nusa Tenggara 10,188  266  17.58  1,000  227  304  

Maluku 3,188  114  21.13  519  159  278  

North Maluku 504  -    16.13  538  52  58  

Papua 1,411  69  15.17  1,058  92  122  

Papua Barat 437  11  14.17  510  294  336  

Note: * is derived from RUEN (GOI, 2017) and + is 2019 data and derived from PLN (2020).  

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

The red coloured areas have average wind energy speed larger than 6 m/s while the green coloured area have average wind energy speed between 4 to 6 m/s. 

Figure 10. Map of on-shore wind energy potentials and PLN’s average generation costs in 2018 
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An IPP establishing a wind farm project in Indonesia should obtain various permits and 

documents from Ministry of Energy and Mineral Resources (MEMR), Investment 

Coordinating Board (BKPM), other ministries, Bank of Indonesia, PLN, and local governments 

as in Table A.1 in the Appendix. The IPP should also follow IPP procurement procedures in 

MEMR (2007). PLN could select IPP through three procedures that are direct appointment, 

direct selection, and open tender. The direct appointment is only for emergency or crisis of 

electricity power supply and expansion project in the same location of the same system. The 

direct selection procedure is for energy diversification and expansion project in the different 

location of the same system. The eligible power plant under these two procedures are coal-fired 

power plant, gas-fired power plant, and hydroelectric power plant. An IPP project that is not 

eligible for direct appointment or direct selection should follow open tender procedure to seek 

the lowest price proposal submitted by the bidders. The open tender procedure can be used for 

all types of power plant (MEMR, 2007). 

Figure 11 shows the process of open tender procedure. First of all, the wind farm project 

should be listed in PLN’s Electricity Supply Business Plan (RUPTL) published annually. PLN 

announces its plan to build wind energy power plants and invites IPP to submit pre-

qualification proposal. If applicants passing requirements are higher than one then PLN uses 

tender scheme; otherwise, PLN uses direct appointment. PLN and the selected IPP then sign 

the power purchase agreement (PPA).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: PQ = Pre-qualification; adm = administration; and tech = technical 

Figure 11. The process for power purchase agreement for wind energy power plants 
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6. Conclusions and Recommendations 

This study uses WRF and GIS models to estimate theoretical wind energy resources in 

Indonesia. The modelled data is then validated by using empirical data measured by three met 

masts in Jayapura, Bantaeng and Sukabumi.  As results, the WRF model is reliable to estimate 

mean wind speeds in all Indonesia provinces. The wind speeds, presented in a GIS map, are 

useful information for wind energy planning in national and regional levels. It is the first map 

for Indonesia context and it also has been used officially by the General National Energy Plan 

(PRI, 2017). Thereafter, we discuss the implications of our analysis results into wind farm 

investment opportunity in Indonesia. We review other influencing factors especially data for 

assessing regional power system flexibility and ceiling prices of renewable energy in Indonesia. 

Specifically, investment feasibilities in JAMALI and East Nusa Tenggara systems are briefly 

discussed as examples.      

Our WRF model validated by three measurement data is the initial stage to provide 

more robust wind maps for the entire of Indonesia. Once more data is available, future studies 

should conduct spatial analysis by points by using other prominent methods such as Inverse 

Distant Weight and Kriging in GIS environment. Moreover, wind energy potential data should 

be extended to offshore wind energy potentials. Compared to the on-shore wind farm, the off-

shore wind farm can produce higher and more stable electricity (Bilgili et al., 2011; Perveen et 

al., 2014). Therefore, this advantage should be further evaluated to examine its technical 

feasibility especially its impacts on grid stability in other regions. 
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