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1. Introduction

A recent literature has demonstrated the significance of modeling macroeconomic uncer-

tainty in the US economy (see, among others: Bloom (2009); Mumtaz and Zanetti (2013);

Born and Pfeifer (2014); Fernández-Villaverde et al. (2015); Jurado et al. (2015); Baker et al.

(2016); Basu and Bundick (2017); Carriero et al. (2017); Mumtaz and Theodoridis (2017a)).

Since idiosyncratic shocks are the primary cause of the US business cycle, researchers tend to

model the macroeconomic environment under the assumption of an autarkic state. The re-

sult is that little information is known about the effects of international uncertainty spillovers.

While such information is not of first-order importance to policy makers in large economies, it

is especially important for those in small open economies (SOEs); who are highly susceptible to

international shocks. For instance, Justiniano and Preston (2010) suggest that around half of 2

year-ahead Canadian output growth volatility is explained by first-moment US shocks. Given

the known importance of general spillovers, it is natural for policy makers to ask: what are the

effects of international uncertainty spillovers in SOEs?

We address this policy-relevant question by developing a common stochastic volatility in

mean (CSVM) panel VAR (PVAR). In this model, which we label CSVM-PVAR, our measures

of country-specific macroeconomic uncertainty are defined as the common component in the

second-moment of a particular country’s macroeconomic variables. As in theoretical DSGE

models, changes in the second-moment are allowed to directly impact the mean dynamics of the

observable variables in our model. This enables us to empirically test the statistical significance

of aggregate domestic and international sources of uncertainty in a SOE environment.

A second contribution of our paper is to develop an efficient Markov chain Monte Carlo

(MCMC) sampler for estimating this new model. In traditional multivariate stochastic volatility

(SV) models, such as the idiosyncratic SV model in Del Negro and Primiceri (2015), or the

common SV (CSV) model in Carriero et al. (2016), the (log-)volatilities are sampled with the

auxiliary mixture sampler developed in Kim et al. (1998). In our specification however, the

volatilities directly enter the conditional mean equation making this procedure infeasible. To

overcome this computational issue, we propose an efficient MCMC sampler that builds on recent

developments in band and sparse matrix algorithms—in particular it turns out that the Hessian

of the conditional density of the (log-)volatilities is a band matrix.

A third contribution of our paper is that we investigate the necessity of modeling uncer-

tainty by conducting an in-sample Bayesian model comparison exercise, through the Bayes

factor. For comprehensiveness, we also conduct an out-of-sample forecasting exercise that com-
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pares our proposed model against two commonly used benchmarks: a traditional PVAR and

a CSV-PVAR, and various restricted versions of our CSVM-PVAR model. To the best of our

knowledge, this is the first paper to conduct such model comparison exercises in the uncertainty

literature.

In our empirical analysis we investigate the effects of domestic and international sources

of uncertainty shocks in three commonly studied SOEs: Australia, Canada and New Zealand.

Using the US as the large economy, and data on each country’s real GDP growth, inflation

and bank rates, our main results can be summarized as follows: First, the in-sample model

comparison exercise suggests that while foreign uncertainty spillovers shape the macroeconomic

conditions in all SOEs, domestic uncertainty is important for Australia and Canada, but not in

New Zealand. Second, analysis of non-linear impulse response functions indicate that foreign

uncertainty shocks tend to reduce real GDP and raise inflation in all SOEs, however the interest

rate responses are idiosyncratic; being positive in Australia and New Zealand, and negative

in Canada. Conversely, domestic uncertainty shocks tend to raise all three macroeconomic

variables. Finally, our results from the pseudo out-of-sample forecasting exercise suggest that

the proposed model forecasts better than PVAR and CSV-PVAR benchmarks.

In terms of empirical methods, our model can be viewed as a multivariate extension of the

autoregressive SVM model in Koopman and Hol Uspensky (2002). Alternatively, it can be

viewed as an extension of the CSV-VAR in Carriero et al. (2016), to a framework in which

the time-varying second moments have first-order effects (i.e. CSVM). In this manner, it is

similar to the CSVM-VAR in Mumtaz and Theodoridis (2017a). While both papers utilize a

CSVM framework, we highlight four key differences between them. First, from an empirical

perspective, Mumtaz and Theodoridis (2017a) analyze the US economy, while we consider the

transmission of uncertainty shocks from large to small open economies. This difference in

research question induces a cross-country panel dimension in the data, which can be captured

through the use of a Panel VAR model. It also makes the CSVM component multivariate—

instead of a scalar—which creates a non-trivial estimation problem. Second, we develop an

efficient MCMC algorithm to estimate this new model. Third, we investigate the statistical

importance of modeling uncertainty in our sample of countries by conducting a formal Bayesian

model comparison exercise. Fourth, we also consider the importance of the CSVM component

in an out-of-sample forecasting exercise.

In terms of empirical application, our research extends the wide literature on international

macroeconomic spillovers (Schmitt-Grohé, 1998; Canova, 2005; Canova et al., 2007; Canova

and Ciccarelli, 2012; Justiniano and Preston, 2010; Guerron-Quintana, 2013; Faccini et al.,
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2016), and is intimately related to the small literature on international uncertainty spillovers

(Caggiano et al., 2017; Cross et al., 2017; Mumtaz and Theodoridis, 2017b). While our research

complements each of these papers, there are key differences between our paper and the already

existing studies. For instance, Cross et al. (2017) employ a theoretical DSGE model in which

macroeconomic uncertainty shocks are assumed to be statistically relevant and are unidirec-

tional in nature; flowing from the US to Canada but not vice versa. In contrast, our model

allows us to empirically test the significance of both domestic and international uncertainty

shocks, along with the hypothesis of bidirectional spillovers—which turns out to be especially

important when modeling Canada and the US. Next, Caggiano et al. (2017) utilize the economic

policy uncertainty (EPU) index in Baker et al. (2016), to assess the effects of policy uncertainty

spillovers from the US on Canadian unemployment over the business cycle. In contrast, we ex-

plore the general impacts of macroeconomic uncertainty by adopting a CSVM approach. This

deviation in methodology is important, as recent research has shown that uncertainty indexes

are prone to measurement errors; which generates bias in the associated uncertainty shock

(Mertens and Ravn, 2014; Carriero et al., 2015). Finally, Mumtaz and Theodoridis (2017b) use

a factor model to consider the effects of global shocks in driving macroeconomic and financial

conditions in 11 OECD countries. In contrast, we focus on transmissions of country-specific

uncertainty spillovers.

The rest of this paper is structured as follows. In Section 2 we introduce the CSVM-PVAR

model and develop the efficient posterior simulator. In Section 3 we present the main empirical

results. This includes both in-sample model selection and discussion of the effects that uncer-

tainty shocks have in each of the SOEs, as well as a pseudo out-of-sample forecasting exercise.

Finally, in Section 4 we conclude our findings and discuss some future research directions.

2. Panel VAR with Common Stochastic Volatility in Mean

2.1. The Model

In this section we introduce the Panel VAR with Common Stochastic Volatility in Mean

model (CSVM-PVAR).2 To set the stage, let yt = (yL′
t ,yS′

t )′ denote a vector of variables of

interest, where the superscripts respectively denote the set of variables in the large and small

economy. In our empirical study, both yL
t and yS

t are n × 1 vectors, however the model can

2See Canova and Ciccarelli (2013) for a nice overview of Panel VAR models, and how they differ from
traditional VARs and global VARs.

4



also accommodate vectors of distinct size. The proposed model is given by:

yt = c+

p∑
i=1

Biyt−i +A

⎛⎝eh
L
t

eh
S
t

⎞⎠+ εt, εt ∼ N (0,Σt), (1)

where N (·, ·) denotes the Gaussian distribution, c is a 2n × 1 vector, Bi, i = 1, . . . , p are

conditional mean coefficients of size 2n, A is a 2n × 2 “uncertainty impact matrix” and the

time-varying covariance matrix: Σt, is specified as:

Σt =

⎛⎝eh
L
t ΣL 0

0 eh
S
t ΣS

⎞⎠ ,

where both ΣL and ΣS are full matrices of size n. When estimating the model it will be

convenient to express equation (1) as:

yt = Xtβ +A

⎛⎝eh
L
t

eh
S
t

⎞⎠+ εt, εt ∼ N (0,Σt). (2)

where β = vec([c,B1, , . . . ,Bp]
′) and Xt = I2n⊗(1,y′

t−1, . . . ,y
′
t−p). The common log-volatilities

are assumed to follow stationary AR(1) processes:

hL
t = ρLh

L
t−1 + εLt , εLt ∼ N (0, σ2

L), (3)

hS
t = ρSh

S
t−1 + εLt , εSt ∼ N (0, σ2

S), (4)

where |ρi| < 1 and hi
1 ∼ N (0, σ2

i /(1− ρ2i )) for i ∈ {L, S}.

The model defined in equation (2) - equation (4) can be used to investigate the effects of

domestic and international sources of macroeconomic uncertainty shocks on both the small and

large economies. We highlight that the covariance matrix: Σt, is changing over time, and this

time-variation is driven by the common stochastic volatilities from both the large open econ-

omy: eh
L
t , and the small open economy: eh

S
t . As in theoretical DSGE models, these common

volatilities also enter the conditional mean equation. In line with this literature, we use the

volatilities as a measure of uncertainty, and refer to unanticipated changes in these volatilities

as uncertainty shocks. Finally, we also highlight that the covariance matrix is block diagonal.

While this assumption may be viewed as strong, in our empirical study we show that this
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parsimonious specification leads to enhanced in- and out-of-sample fit, when compared to a full

covariance structure.

2.1.1. Nested Specifications

We highlight that our CSVM-PVAR model nests both the traditional PVAR and a common

stochastic volatility PVAR (CSV-PVAR) models. As such, we can easily compare the statistical

relevance of both the CSVM and CSV modeling features. In addition to these specifications,

we also investigate the significance of both domestic and international uncertainty shocks by

imposing four economically motivated restrictions on the impact matrix A. To ease exposition,

recall that:

A =

⎛⎝a11 a12

a21 a22

⎞⎠ .

We consider the following four restrictions: 1) a12 = 0; 2) a21 = 0; 3) a12 = a21 = 0; 4)

a12 = a22 = 0. Set in this manner, restriction 1 hypothesizes that uncertainty spillovers in

the SOE do not transmit to the large economy; restriction 2 that uncertainty spillovers in the

large economy do not transmit to the small economy; restriction 3 that uncertainty is purely

idiosyncratic (i.e. no spillovers); restriction 4 that the only source of global uncertainty is from

the large economy. We also highlight that the CSV-PVAR model can be viewed as a restricted

version of the CSVM-PVAR with A = 0.

2.1.2. Full Covariance Structure

To investigate the plausibility of our block diagonal covariance matrix structure, we also

consider a common stochastic volatility model with full covariance structure (CSVM-PVAR-F).

The measurement equation for this model is given by:

yt = Xtβ +A

⎛⎝eh
L
t

eh
S
t

⎞⎠+B−1
0 εt, εt ∼ N (0,Σt), (5)

where Xt and β are defined as in equation (3), and B0 is a lower triangular matrix with ones

on the main diagonal. For identification purposes, the covariance matrix is given by:

Σt =

⎛⎝eh
L
t ΩL 0

0 eh
S
t ΩS

⎞⎠ , (6)
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where ΩL = diag(σ2
1L, . . . , σ

2
nL), ΩS = diag(σ2

(n+1)S, . . . , σ
2
2nS) and the log-volatilities follow the

same processes as in equation (3) and equation (4). It is worth noting that the CSVM-PVAR

considered in the previous section is a parsimonious version of the CSVM-PVAR-F model. To

see this, the block diagonal covariance matrix in equation (2) can be decomposed as:

Σt =

⎛⎝B−1
0,11 0

0 B−1
0,22

⎞⎠⎛⎝eh
L
t ΩL 0

0 eh
S
t ΩS

⎞⎠⎛⎝B−1
0,11 0

0 B−1
0,22

⎞⎠′

,

where both B0,11 and B0,22 are lower triangular matrices with ones on the main diagonal. Hence

the CSVM-PVAR can be seen as a restricted version of the CSVM-PVAR-F with B0 to be the

block diagonal lower triangular matrix with ones on its diagonal.

2.1.3. Prior Specifications

To complete the model specification, we assume independent prior distributions for each of

the model parameters. We assume a Gaussian prior for the VAR coefficients and the uncertainty

impact matrix: β ∼ N (β0,Vβ) and a = vec(A)′ ∼ N (a0,Va). Moreover, the country-

specific covariance matrices for the CSVM-PVAR model are assumed to follow inverse-Wishart

distributions:

ΣL ∼ IW(ΦL, δL), ΣS ∼ IW(ΦS, δS),

while the AR(1) coefficients and variances in the state equations follow truncated normal and

inverse-Gamma distributions:

ρL ∼ N (ρL0 , VρL)1(|ρL| < 1), σ2
L ∼ IG(νL, γL),

ρS ∼ N (ρS0 , VρS)1(|ρS| < 1), σ2
S ∼ IG(νS, γS).

The 1(Q) is the indicator function which equals to one if statement Q is true and zero otherwise.

The prior distributions for ρS and ρL are restricted to be in the range (−1, 1) which implies

that the AR(1) processes for the log-volatilities are stationary. For the CSVM-PVAR-F, let b0

be the vector stacking the parameters in each row of B0, and we assume b0 ∼ N (b00,Vb). The

diagonal elements of the ΩL and ΩS are independently distributed as

σ2
iL ∼ IG(ηiL, ωiL), i = 1, . . . , n,

σ2
jS ∼ IG(ηjS, ωiS), j = n+ 1, . . . , 2n.
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We summarize all 8 models specifications in Table 1, and defer precise details of the model

comparison exercise to Section 4.1.1.

Table 1: A list of models.

PVAR constant PVAR
CSV-PVAR with common SV
CSVM-PVAR-F with full covariance structure
CSVM-PVAR with common SVM
CSVM-PVAR-R1 with common SVM with a12 = 0
CSVM-PVAR-R2 with common SVM with a21 = 0
CSVM-PVAR-R3 with common SVM with a12 = a21 = 0
CSVM-PVAR-R4 with common SVM with a12 = a22 = 0

2.2. Bayesian Estimation

In this section we introduce an efficient Metropolis-within-Gibbs, Markov chain Monte Carlo

(MCMC) algorithm for simulating posterior draws from the CSVM-PVAR model defined in

equation (2) - equation (4). We note that only minor modifications are required for the esti-

mation of the remaining other models.

For notational convenience, let y = (y1, . . . ,yT )
′, hL = (hL

1 , . . . , h
L
T )

′ and hS = (hS
1 , . . . , h

S
T )

′.

Posterior draws can be obtained by sequentially sampling from:

1. p(hL|hS,A,β,ΣL,ΣS, ρL, ρS, σ
2
L, σ

2
S,y) = p(hL|hS,A,β,ΣL,ΣS, ρL, σ

2
L,y);

2. p(hS|hL,A,β,ΣL,ΣS, ρL, ρS, σ
2
L, σ

2
S,y) = p(hS|hL,A,β,ΣL,ΣS, ρS, σ

2
S,y);

3. p(A,β|hL,hS,ΣL,ΣS, ρL, ρS, σ
2
L, σ

2
S,y) = p(A,β|hL,hS,ΣL,ΣS,y);

4. p(ΣL|hL,hS,A,β, ρL, ρS, σ
2
L, σ

2
S,y) = p(ΣL|hL,A,β,y);

5. p(σ2
L|hL,hS,ΣL,ΣS,A,β, ρL, ρS,y) = p(σ2

L|hL, ρL);

6. p(ρL|hL,hS,ΣL,ΣS,A,β, σ2
L, σ

2
S,y) = p(ρL|hL, σ2

L);

7. p(ΣS|hL,hS,A,β, ρL, ρS, σ
2
L, σ

2
S,y) = p(ΣS|hS,A,β,y);

8. p(σ2
S|hL,hS,ΣL,ΣS,A,β, ρL, ρS,y) = p(σ2

S|hS, ρS);

9. p(ρS|hL,hS,ΣL,ΣS,A,β, σ2
L, σ

2
S,y) = p(ρS|hS, σ2

S).

The main difficulty arises in sampling from the non-standard conditional distributions of

the log-volatilities in Step 1 and Step 2. Since the common stochastic volatilities: ehS
t and eh

S
t ,

appear in both the conditional mean and the conditional variance of the model, the efficient

auxiliary mixture sampler of Kim et al. (1998) cannot be applied. In recent studies examining

the impact of uncertainty on the US economy, Mumtaz and Theodoridis (2017a) sample such

states using the single-move Metropolis-Hasting algorithm developed in Jacquier et al. (2002),

while Carriero et al. (2017) propose a particle Gibbs sampler based on the auxiliary particle
8



filter of Pitt and Shephard (1999). In this paper, we develop an efficient single-block sampler for

estimating our new model. More precisely, it turns out that the Hessian of the log-conditional

densities of the log-volatilities in Step 1 and Step 2 of the MCMC procedure are a band matri-

ces. Our proposed approach therefore builds upon recent advances in band and sparse matrix

algorithms (Rue et al., 2009; Chan and Jeliazkov, 2009; McCausland et al., 2011), which have

been shown to perform efficiently in the estimation of state space models (Chan and Grant,

2016; McCausland, 2012; Chan, 2017). We now discuss how to sample from Steps 1-9 of the

MCMC procedure.

To sample from the conditional distribution in Step 1, let:

ỹt = yt −
p∑

i=1

Biyt−i − eh
S
t

⎛⎝a12

a22

⎞⎠ , (7)

where a12 and a22 are n × 1 vectors from the uncertainty impact matrix A. Substituting

equation (2) into equation (7) gives:

ỹt = eh
L
t

⎛⎝a11

a21

⎞⎠+ εt.

Thus, by a change of variable, it follows that:

p(hL|hS,A0,β,ΣL,ΣS, ρL, σ
2
L,y) ∝ p(y|hL,hS,A0,β,ΣL,ΣS)p(h

L|ρL, σ2
L),

∝ p(ỹ|hL,hS,A0,β,ΣL,ΣS)p(h
L|ρL, σ2

L).

The resulting log-likelihood can then be written as log p(ỹ|hL) =
∑T

t=1 log p(ỹt|hL
t ); where we

suppress the conditional parameters except hL for notational convenience. Taking a second-

order Taylor expansion around h̃L yields the approximation:

log p(ỹ|hL) ≈ log p(y|h̃L) + (hL − h̃L)′f − 1

2
(hL − h̃L)′G(hL − h̃L),

= −1

2

(
hL′

GhL − 2hL(f +Gh̃L)
)
+ c1,

where c1 is a constant independent of hL, f = (f1, . . . , fT )
′ and G = diag(G1, . . . , GT ), with

ft =
∂

∂hL
t

log p(ỹt|hL
t )|hL

t =
˜hL
t
, Gt = − ∂2

∂hL
t
2 log p(ỹt|hL

t )|hL
t =

˜hL
t
.
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Thus, the log-conditional density of ỹt is given by:

log p(ỹt|hL
t ) = −nhL

t

2
− 1

2
e−hL

t

(
ỹ1,t − eh

L
t a11

)′
Σ−1

L

(
ỹ1,t − eh

L
t a11

)
, (8)

− 1

2
e−hS

t

(
ỹ2,t − eh

L
t a21

)′
Σ−1

S

(
ỹ2,t − eh

L
t a21

)
. (9)

It is easy to check that:

∂

∂hL
t

log p(ỹt|hL
t ) = −1

2

(
n− e−hL

t ỹ′
1,tΣ

−1
L ỹ1,t + eh

L
t a′

11Σ
−1
L a11

)
+ eh

L
t −hS

t ỹ′
2,tΣ

−1
S a21 − e2h

L
t −hS

t a′
21Σ

−1
S a21, (10)

∂2

∂hL
t
2 log p(ỹt|hL

t ) = −1

2

(
e−hL

t ỹ′
1,tΣ

−1
L ỹ1,t + eh

L
t a′

11Σ
−1
L a11

)
+ eh

L
t −hS

t ỹ′
2,tΣ

−1
S a21 − 2e2h

L
t −hS

t a′
21Σ

−1
S a21. (11)

Next, the prior density for hL in equation (3), can be stacked over all dates t = 1, . . . , T to

give:

HρLh
L = εL, (12)

where εL = (εL1 , . . . , ε
L
T ) and HρL is defined as follows:

HρL =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0

−ρL 1 0 · · · 0

0 −ρL 1 · · · 0
...

... . . . . . . 0

0 0 · · · −ρL 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Since HρL is a lower triangular matrix with ones along the main diagonal it follows that

det (HρL) = 1, implying that HρL is invertible. Thus, we can write equation (12) as:

hL = H−1
ρL
εL. (13)

By a change of variable, it follows that hL ∼ N
(
0,

(
HρL

′S−1
hLHρL

)−1
)

where ShL = diag(σ2
L/(1−

ρ2L), σ
2
L, . . . , σ

2
L). Hence, the log-prior density is given by:

log p(hL|ρL, σ2
L) = −1

2
hL′

H′
ρL
S−1
hLHρLh

L + c2, (14)

10



where c2 is a normalization constant that is independent of hL.

Combining the log-likelihood in equation (9) with the log-prior density in equation (14)

gives the log-posterior distribution:

log p(hL|hS,A,β,ΣL,ΣS, ρL, σ
2
L,y)

= log p(ỹ|hL,hS,A,β,ΣL,ΣS) + log p(hL|ρL, σ2
L)

≈− 1

2

(
hL′

GhL − 2hL(f +Gh̃L)
)
− 1

2
hL′

H′
ρL
S−1
hLHρLh

L + c3

=− 1

2

(
hL′

Khh
L − hL′

kh

)
+ c4,

where c3 and c4 are all constant independent of hL, Kh = G+H′
ρL
S−1
hLHρL and kh = f +Gh̃.

It can be seen that the above equation is the log-kernel of the Gaussian distribution. To im-

plement the Step 1, we first set h̃L to be the mode of the distribution p(hL|hS,A,β,ΣL,ΣS, ρL, σ
2
L,y),

which can be obtained by applying the Newton-Raphson method. The resulting Gaussian distri-

bution N (h̃L, K̃−1
h ) is then used as our proposal in the acceptance-rejection Metropolis-Hastings

step, where K̃h is the Kh evaluated at h̃L.3 The acceptance rates of the sampler for various

common stochastic volatility in mean models listed in Table 1 are all above 85%, which indicates

that the proposed approach performs well.

Since the problem of sampling in Step 2 is symmetric to that of Step 1, it can be accomplished

through a similar sampling procedure. Moreover, since Steps 3-9 of the posterior sampler are

standard, we defer estimation details to Appendix Appendix A.

We close by making a few remarks on the computation. First, the common stochastic

volatilities are drawn as a single block which is more efficient than a single-move sampler4.

Second, due to the availability of the first and second order derivatives of the log-conditional

density, the Newton-Raphson method can be used to efficiently obtain the mode of the log-

density. Lastly, since the precision matrix: K̃h, is a band matrix, we can efficiently obtain

draws from the proposal distribution by applying the precision sampler in Chan and Jeliazkov

(2009).

3As seen in equation (11), there is no guarantee that K̃h is a positive definite matrix. To overcome this
problem we adopt the following strategy: First, we initialize K̃h as an identity matrix. Next, in each MCMC
iteration, we check whether the proposed Hessian K̃h is positive definite. If it is, then we use it in the proposal
distribution, otherwise we use the K̃h from the previous MCMC iteration.

4In general, single-block sampler is shown to be more numerically efficient than single-move sampler when
the posterior samples are highly correlated.
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3. Data and Priors

The data for each country consists of quarterly data on real GDP, CPI inflation and a

short-term interest rate—taken to be the country’s bank-rate—from 1978Q3-2016Q4. All series

were sourced from the International Monetary Fund’s (IMF’s) International Financial Statistics

(IFS) database. Before entering the model, both real GDP and CPI indexes were converted to

annualized growth measures.

To conduct the analysis, we set a Minnesota type of prior for the VAR coefficients. In

particular, the prior mean is set to a zero vector, β0 = 0, and the prior covariance matrix is

diagonal with its corresponding elements set as follows:

Var(c) = 100× I2n,

Var(Bij
l ) =

⎧⎪⎨⎪⎩
λ2
1λ2

lλ3
σi

σj
for l = 1, . . . , p and i �= j,

λ2
1

lλ3
for l = 1, . . . , p and i = j,

where Bij
l denotes the (i, j) th element of the matrix Bl and σr is set equal to the standard

deviation of the residual from AR(p) model for the variable r. The hyperparameters are set to

be λ1 = 0.2, λ2 = 0.5, λ3 = 2. We assume a relatively non-informative prior on the uncertainty

impact matrix. To be specific, we set a0 = 0 and Va = 5×I2n. For the CSVM-PVAR model, the

degree of freedom parameters of the covariance matrices are set to δS = n+ 4 and δL = n+ 4,

and the scale matrices ΦL = (δL − n − 1)In and ΦS = (δS − n − 1)In. These values imply

that the expected value of ΣL and ΣS are equal to identity matrices of size n. We also set

νL = 10, νS = 10, γL = 0.05(νL − 1) and γS = 0.05(νS − 1). These hyperparameters imply that

the prior mean of σ2
L and σS are both equal to 0.05. For the autoregressive coefficient for the

log-volatility, we set ρL0 = ρS0 = 0.9 and VρL = VρS = 0.22. For the CSVM-PVAR-F model, we

set ηiL = ηjL = 10 and ωiL = ωiS = 9 for i, j = 1, . . . , n. This implies that E(σ2
iL) = E(σ2

iS) = 1.

Lastly, we let b00 = 0 and Vb = 5I2n(n−1). All posterior estimates in our empirical results

are based on 55000 posterior draws from the MCMC method after a burnin-in-period of 5000

draws.

4. Empirical Results

In this section we discuss our main empirical results on the effects of domestic and inter-

national macroeconomic uncertainty spillovers between the US and three commonly studied

SOEs: Australia, Canada and New Zealand. To facilitate our discussion, we split the results

12



into two sub-sections: In-sample and out-of-sample analysis. To maintain consistency with the

broader uncertainty literature, we select a lag length of p = 2 for the PVAR coefficients (e.g.,

Caggiano et al. (2017); Carriero et al. (2017); Mumtaz and Theodoridis (2017b)).

4.1. In-Sample Analysis

Before examining the effects of uncertainty shocks, we first demonstrate the ability of our

model to capture the dynamics of each country’s data. We do so by conducting a formal

Bayesian model comparison exercise, via the Bayes factor. Having selected the best model,

we then discuss the qualitative properties of our proposed uncertainty measures. Finally, we

address our main empirical question by investigating both the direct and indirect effects of the

domestic and international uncertainty shocks in each SOE.

4.1.1. Model Selection

To identify the significance of modeling uncertainty in each of the SOEs, we compare in-

sample statistics of the proposed CSVM-PVAR model against the seven alternative model

specifications in Table 1. Since we employ Bayesian estimation, the natural metric for in-sample

fit is the Bayes factor—a special case of the posterior odds ratio. To illustrate this procedure,

let M1 and M2 denote two arbitrary models. The posterior odds ratio for M1 against M2, is

defined as:

PO1,2 =
P (M1|yo)

P (M2|yo)
,

where P (Mi|yo) denotes the (conditional) probability of Mi, i = 1, 2, given the observed data:

yo = (yo
1, . . . ,y

o
T ). By the law of conditional probability, the posterior odds ratio can be written

as:

PO1,2 =
p (yo|M1)

p (yo|M2)
× P (M1)

P (M2)
,

where p (y|Mi) and P (Mi) respectively denote the marginal likelihood and prior model prob-

ability for Mi, i = 1, 2, where the marginal likelihood is defined as:

p(yo|Mi) =

∫
Θi

p(yo|θi,Mi)p(θi|Mi)dθi,

where θi is a vector of the parameters in model Mi, and Θi is the associated parameter space.

To compute this integral, we use the fact that it can be represented as a product of one-step-

ahead predictive likelihoods evaluated at the observed data (Geweke and Amisano, 2011). That
13



is:

p(yo|Mi) = p(yo
1|Mi)

T∏
t=2

p(yo
t |yo

1, . . . ,y
o
t−1,Mi)

The ratio of two such likelihoods is known as the Bayes factor. It can easily be seen that the

posterior odds ratio reduces to the Bayes factor of M1 against M2, denoted BF1,2, under the

assumption of equal prior model probabilities (i.e. P (M1) = P (M2)). Since it is a special

case of the posterior odds ratio, the Bayes factor takes on a probabilistic interpretation. For

instance, if BF1,2 = 2 then M1 is twice as likely as M2 given the data.

The results for each of the models in Table 1 are provided in Table B.2 in Appendix B.1.

The general conclusion is that the (log-)marginal likelihoods provide overwhelming support in

favor of our class of CSVM-PVAR models against the PVAR and CSV-PVAR models across

all countries. For instance, in the case of Australia, the Bayes factors for the CSVM-PVAR-

R1 against the CSV-PVAR is approximately 1 million (i.e. exp (−903.64 + 917.47)). More

specifically, the plain CSVM-PVAR provides the best fit for Canada, the CSVM-PVAR-R1

variant for Australia, and the CSVM-PVAR-R4 for New Zealand. These results suggest that

while international uncertainty spillovers are a key feature of the macroeconomic environment in

each of the SOEs, domestic uncertainty is important in both Australia and Canada, but not in

New Zealand. Interestingly, selection of the CSVM-PVAR in Canada indicates that uncertainty

spillovers between the US and Canada are bilateral in nature. In contrast, the selected model

variants for Australia and New Zealand indicate that uncertainty spillovers are unilateral—

flowing from the US to the SOE but not vice versa. Finally, we note that the CSVM-PVAR

model outperforms the more general CSVM-PVAR-F model, thus providing empirical support

for the diagonal covariance matrices in the CSVM-PVAR model.

4.1.2. Aggregate Uncertainty Measures

Having identified the best models for the in-sample analysis, we now discuss the qualitative

behavior of the implied measures of uncertainty. To this end, Figures B.1 and B.2 in Appendix

B.2 present the posterior distributions of the macroeconomic uncertainty index for both Aus-

tralia and Canada. In each figure, the blue line represents the posterior mean, and the red

lines represent the 90% credible set. Since the model comparison section revealed that domes-

tic macroeconomic uncertainty is not statistically relevant for New Zealand, no such figure is

presented.

The broad differences in the two macroeconomic uncertainty measures are particularly strik-

ing. Uncertainty in Australia is relatively smooth, starts high and then declines over the sample

period. In contrast, uncertainty in Canada tends to fluctuate around a constant mean.
14



On an individual level, uncertainty in Australia increases following the 1979 energy crisis,

before declining after the movement to a flexible exchange rate regime in 1983. The subsequent

spike in the late 1980s is likely due to uncertainty surrounding the international “Black Monday"

stock market crash of October 19, 1987 and subsequent recession. Interestingly, the adoption of

inflation targeting in the early 1990s seems to coincide with the decline in uncertainty over the

next two decades. The notable spike in the early 2000’s likely relates to the “Dot-Com bubble".

Finally, the relatively mild spike in 2008 corresponds to the Global Financial Crisis (GFC).

Similar to Australia, uncertainty in Canada increases following the 1979 energy crisis before

returning to baseline by the mid-1980s, where it remained for the duration of the Great Mod-

eration, ending in 2007. Two notable spikes in this period surround the recessions of 1990 and

the early 2000s. In contrast to the Australian case, the spike in uncertainty during the GFC is

the largest in Canada’s history. This result will be emphasized in the next section, where we

show that Canada and the US are highly linked, while Australia’s responsiveness to US shocks

declines over the sample period. Finally, the uncertainty measure spikes again around the 2015

recession.

4.1.3. Effects of uncertainty shocks

What effect do international macroeconomic spillovers have on a SOE? To answer this ques-

tion, we first consider the estimated impact matrix of the implied best model in Section 4.1.1,

and then analyze generalized impulse response functions (GIRFs).5 Knowledge of the impact

matrix is useful as it highlights the sign and magnitude effects of an uncertainty shocks in the

initial period. In this sense, we can measure the direct effects of both domestic and interna-

tional sources of uncertainty shocks. Moreover, GIRFs are useful as they provide information

about the how uncertainty shock propagate throughout the economy. In this sense, we can

also measure the indirect effects of the uncertainty shocks. The various estimates of the impact

matrix and GIRFs are presented in Appendix B.3. We now discuss each in turn.

The columns of Tables B.3-B.5 respectively represent the US and SOE uncertainty shock,

while the rows represent the various macroeconomic variables in the US and SOEs: real GDP

growth, CPI inflation and interest. To ease exposition we have divided the matrix into four

quadrants. The first quadrant represents the impact of spillovers from the SOE shock on the

US; the second quadrant the US shock on itself; the third quadrant spillovers from the US to the

5Since the measures of aggregate uncertainty are time varying, we follow Koop et al. (1996) and compute
GIRFs. The difference between GIRFs and traditional IRFs, is that future shocks are not “zeroed-out” by
assumption, but instead “integrated-out” through a Monte Carlo integration procedure, details of which are
provided in Koop et al. (1996).
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SOE; and the fourth quadrant the SOE on itself. For instance, in the case of New Zealand (see

Table B.5), the CSVM-PVAR-R4 model has no domestic uncertainty shocks, implying that the

second column is all zeros. Similarly, in the case of Australia (Table B.3), the CSVM-PVAR-R1

model has no direct uncertainty spillovers from Australia to the US, implying all entries in the

first quadrant are zero.

A few general observations can be made. First, international uncertainty spillovers have

negative impacts on real GDP and interest, however the inflation response is positive. While

this result is novel for the set of SOEs used in our study, they are broadly consistent with those

in Mumtaz and Theodoridis (2015); who find that uncertainty shocks from the US negatively

effect UK real GDP and interest, but positive impact inflation. Second, the impact of domestic

uncertainty shocks in Australia and Canada are all positive. Third, in line with the broad

literature on the US economy, we find that domestic uncertainty shocks decrease output while

increasing inflation and interest rates (Born and Pfeifer, 2014; Mumtaz and Theodoridis, 2015;

Carriero et al., 2017; Mumtaz and Theodoridis, 2017a).

While the impact matrix provides information about the direct transmission of uncertainty

shocks, it is silent on how such shocks propagate throughout the economy. To further inves-

tigate the effects of uncertainty shocks over our sample period, we now discuss the GIRFs in

Figures B.3-B.7. In each figure, the curves represent mean point estimates to a (time-varying)

one-standard deviation shock of the log-uncertainty measures. Subplots in rows respectively

represent the US and SOE response to a given uncertainty shock, while those in columns

represent the macroeconomic variables. Finally, the x-axis represents an impulse horizon of 20

quarters (5 years), the y-axis shows the sample dates and the z-axis is percentage point changes.

Since there are general differences in the transmission of US shocks throughout the SOEs, we

briefly discuss each country’s responses in turn.

The Australian inflation and real GDP responses to a US uncertainty shock are qualitatively

similar to those in the US, however the interest rate moves in the opposite direction. Also, the

magnitudes of the Australian responses are about half the size of those in the US. For instance,

following a US uncertainty shock, the peak real GDP response in the US is about −2 percent,

compared to −1 percent in Australia. Similarly, following an uncertainty shock from Australia,

the peak inflation response in the US is about 0.4 percent, compared to 1.5 percent in Australia.

In contrast, the effects of domestic uncertainty shocks are much smaller and are also decreasing

over the sample period. Note that despite having zero direct impact on the US economy,

uncertainty shocks from Australia indirectly affect the US through changes in the Australian

macroeconomic variables. That being said, these impacts are generally small (less than 25 basis
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points).

Next, the GIRFs between Canada and the US are both qualitatively and quantitatively

similar. This suggests close links between Canada and the US economies. Interestingly, while

the inflation and interest rates remain positive over the entire impulse horizon, the contempo-

raneous impact of a US shock is negative, but quickly rebounds to be positive. This result is

in line with Bloom (2009) who finds that uncertainty shocks in the US tend to generate short,

sharp recessions and recoveries. In contrast, uncertainty shock from Canada tend to have a

long lasting reduction in each variable. Importantly, the finding that uncertainty impacts from

Canada has a large impact on the US suggests that bi-lateral uncertainty transmissions between

Canada and US are important.

Finally, in the case of New Zealand, the US inflation and real GDP responses are similar

to those seen in Australia and Canada. As in Australia, the New Zealand inflation and real

GDP responses tend to follow those in the US, however the interest rate respnses are unique.

Moreover, while the inflation responses are almost identical, the real GDP responses are ap-

proximately half the size. Since the CSVM-PVAR-R4 model restricts uncertainty shocks to the

US, there is no corresponding set of domestic impulse responses for New Zealand.

4.2. Forecasting Results

In addition to in-sample model comparison, we also conduct an out-of-sample forecasting

exercise. In this step, we compare the ability of each model in Table 1 to predict key macroe-

conomic variables: real GDP, inflation and the short-term interest rate, of the various SOEs

in our study. We evaluate the iterated h-step-ahead forecast of each model with h = 1, 2, 4, 8,

and the forecast evaluation period is from 1990Q1 - 2016Q4.

To assess the point forecast accuracy we report both the root mean squared forecast error

(RMSFE) and the mean absolute forecast error (MAFE):

RMSFE =

√∑T−h
t=t0

(
yo
t+h − E(yt+h|y1:t)

)2
T − h− t0 + 1

,

MAFE =

∑T−h
t=t0

∣∣yo
t+h − ŷM

t+h

∣∣
T − h− t0 + 1

,
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where E(yt+h|y1:t) is the posterior mean of the predictive density and ŷM
t+h is the posterior

median of the predictive density.

In addition to point forecasts, we also compute density forecasts for each model. To eval-

uate these forecasts, we report the average log-predictive likelihoods (ALPL) and the average

continuous rank probability score (ACRPS):

ALPL =

∑T−k
t=t0

log pt+h(yt+k = yo
t+h|yo

1, . . . ,y
o
t−1)

T − h− t0 + 1
,

ACRPS =
1

T − h− t0 + 1

T−h∑
t=t0

CRPSt,

where CRPSt =
∫∞
−∞

(
Ft+h(z)− 1(yo

t+h < z)
)2

dz = Ept+h
|yt+h − yo

t+h| − 0.5Ept+h
|yt+h − y′

t+h|
and Ft+h is the cumulative distribution of the predictive dnsity at time t+h given all information

up to time t. the A small the value of the ACRPS indicates a better forecasting performance.

The point and density forecast results for each of the models in Table 1 are reported in

Appendix B.4. To facilitate comparison, we report relative scores to a PVAR benchmark. Set

in this manner, a relative RMSFE, MAFE and ACRPS of less than one indicates that the given

model provides a better forecast than the PVAR benchmark. Conversely, a positive value for

the relative ALPL indicates a better forecasting performance than the benchmark.

While there is no strictly dominant model for any country or variable, the general trend is

that models with CSVM components forecast better than the alternatives. In fact, with just

one exception, the CSVM-PVAR models provide better forecasts than both the PVAR and

CSV-PVAR. This exception is real GDP in New Zealand, for which the simple PVAR model

tends to produce the best point forecasts, however the CSVM component is particularly useful

at one-step-ahead prediction and dominates the PVAR when conducting density forecasts.

Combined with the in-sample analysis, our forecasting results provide overwhelming support

for our proposed CSVM-PVAR model—or one of its restrictions—against both the traditional

PVAR and CSV-PVAR models. Economically, this suggests that uncertainty spillovers play a

key role in shaping the macroeconomic environments in all SOEs.

5. Concluding Remarks and Future Research

In this paper, we estimated the effects of domestic and international sources of macroeco-

nomic uncertainty in three commonly studied small open economies (SOEs): Australia, Canada
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and New Zealand. To this end, we proposed a common stochastic volatility in mean panel VAR

(CSVM-PVAR) model. To estimate the model, we developed an efficient Markov chain Monte

Carlo algorithm that built upon recent advances in band and sparse matrix algorithms. Our

results showed that foreign uncertainty spillovers shape the macroeconomic conditions in all

SOEs, however domestic uncertainty shocks are important for Australia and Canada, but not

New Zealand. The general mechanism is that foreign uncertainty shocks reduce real GDP and

raise inflation in all SOEs, however the interest rate responses are idiosyncratic; being positive in

Australia and New Zealand, and negative in Canada. Conversely, domestic uncertainty shocks

tend to raise all three macroeconomic variables. Finally, in a pseudo out-of-sample forecast-

ing exercise, the proposed model also forecasts better than traditional PVAR and CSV-PVAR

benchmarks.

In closing, we point towards three avenues for future research. First, it would be interesting

to investigate whether the international transmission mechanism of the identified uncertainty

shocks is changing over time. Second, given the recent surge of interest surrounding financial

versus macroeconomic shocks, it would be useful to investigate transmissions of financial uncer-

tainty from large to small open economies. Finally, given the empirical relevance of uncertainty

spillovers from Canada to the US, it would be useful to extend the US literature by investigating

the transmission mechanism in an open economy DSGE model.

Appendix A. Technical Appendix

In this Appendix we explain how to obtain draws from Steps 3-9 of the posterior sampler

in Section 2.2. To this end, given hL and hS, we first write Equation (2) as:

yt = Xtβ + Z̃ta+ εt εt ∼ N (0,Σt), (A.1)

where Zt = I2n ⊗ (eh
L
t , eh

S
t ) and a = vec(A′). Stacking the above equation over t = 1, . . . , T ,

we get:

y = Zγ + ε, ε ∼ N (0,Σ),
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where y = (y1, . . . ,yT )
′, γ = (β′,γ ′)′, Σ = I2n ⊗Σt and:

Z =

⎛⎜⎜⎜⎝
X1 Z̃1

...
...

XT Z̃T

⎞⎟⎟⎟⎠ .

For the Step 3 of the sampler, let Vγ = diag(Vβ,Va) and γ0 = (β′
0, a

′
0)

′, then using the

standard results from linear regression, we have:

(
A,β|hL,hS,ΣL,ΣS,y

) ≡ (
γ|hL,hS,ΣL,ΣS,y

) ∼ N (γ̂,Dγ) , (A.2)

where D−1
γ = Z′Σ−1Z+V−1

γ and γ̂ = Dγ

(
Z′Σ−1y +V−1

γ γ0

)
.

To implement Step 4 - Step 6, we first collect the first n equations in (A.1) to get:

yL
t = XL

t β + Z̃L
t a+ εLt εLt ∼ N (0, eh

L
t ΣL).

Then, for Step 4, we have:

(ΣL|hL,A,β,y) ∼ IW(Φ̂L, δ̂L),

where Φ̂L = ΦL +
∑T

t=1 e
−hL

t

(
yL
t −XL

t β − Z̃L
t a

)(
yL
t −XL

t β − Z̃L
t a

)′
and δ̂L = δL + T .

In Step 5, the conditional conjugate prior on the variance of the log-volatilities yields an

Inverse-gamma distribution:

(σ2
L|hL, ρL) ∼ IG

(
νL +

T

2
, γ̂L

)
,

where γ̂ = 1
2

(
(1− ρ2L)h

L
1
2
+
∑T

t=2(h
L
t − ρhh

L
t−1)

2
)
. For Step 6, we implement an indepdence-

chain Metroplis-Hasting step with a truncated Gaussian proposal distribution bounded between

−1 and 1. The mean of the proposal distribution is set to be the mode of the full conditional

distributin, which can be obtained using the Newton-Raphson method, and the variance of the

proposal distribution is set to be the inverse of the negative Hessian evaluated at the mode.

Finally, the implementation for Steps 7-9 are similar to those estimation procedures in Steps

4-6.

Drawing the log-volatilities form the CSVM-PVAR-F is similar to those for the CSVM-
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PVAR. To see this, we first multiply B0 to both sides of the equation (5) and rewrite it as

˜̃yt = X̃tβ + Ã

⎛⎝eh
L
t

eh
S
t

⎞⎠+ εt, εt ∼ N (0,Σt), (A.3)

where ˜̃yt = B0yt, X̃t = B0Xt and Ã = B0A. The covariance matrix Σt is defined as in the

equation (6) which is a (block) diagonal matrix. It can be seen that the equation (A.3) is in

the same form as the equation (2), thus the draws from the full conditional distribution of the

log-volatilities hL and hS can be obtained using the efficient approach proposed in this paper.

Given the log-volatilites, the posterior draws for (β,A) can be obtained similarly as in (A.2).

For sampling B0, we can first rearrange the equation (5) as

B0y
∗
t = εt, εt ∼ N (0,Σt), (A.4)

where y∗
t = (y∗1,t, . . . , y

∗
2n,t)

′ and it is defined as

y∗
t = yt −Xtβ +A

⎛⎝eh
L
t

eh
S
t

⎞⎠ .

Since the B0 is a lower triangular matrix with ones in its diagonal, it can be seen that the

equation (A.4) can be rewritten into a form of standard linear regression model:

y∗
t = Wtb0 + εt, εt ∼ N (0,Σt),

where b0 is a column vector stacking the parameters in each row of B0 and

Wt =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · · · · · · · · 0

−y∗1,t 0 0 · · · · · · · · · 0

0 −y1,t −y∗2,t · · · · · · · · · 0
...

... . . . ... · · · · · · 0

0 · · · · · · −y∗1,t −y∗2,t · · · −y∗2n−1,t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Thus, standard results for the linear regression model can be applied to obtain draws of b0.

The full conditional distributions for the variance of the shock is standard. In particular, it
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follows

σ2
iL ∼ IG(T

2
+ ηiL, ωiL +

T∑
t=1

dy2i,te
−hL

t ), i = 1, . . . , n

σ2
jS ∼ IG(T

2
+ ηjS, ωjS +

T∑
t=1

dy2j,te
−hS

t ), j = n+ 1, . . . , 2n,

where dyi,t is the jth element of the vector y∗
t −Wtb0.

Appendix B. Tables and Figures

Appendix B.1. Marginal Likelihood Results

Table B.2: Estimated log marginal likelihoods for various models in
Table 1.

Australia Canada New Zealand

PVAR 990.02 −923.65 −1187.20

CSV-PVAR −917.47 −887.59 −1050.79

CSVM-PVAR −904.54 −859.79 −1051.38

CSVM-PVAR-F −921.48 −875.77 −1053.61

CSVM-PVAR-R1 −903.64 −869.16 −1041.01

CSVM-PVAR-R2 −905.76 −869.02 −1047.93

CSVM-PVAR-R3 −917.23 −879.18 −1053.87

CSVM-PVAR-R4 −916.41 −870.20 −1037.95

Note: Best model for each country is in bold.
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Appendix B.2. Uncertainty Measures
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Figure B.1: Uncertainty Index: Australia
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Figure B.2: Uncertainty Index: Canada
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Appendix B.3. Estimation Results

Appendix B.3.1. Australia

Table B.3: Estimated A matrix of CSVM-PVAR-R1 for Australia

−0.93 (−1.84,−0.29) 0.00 (0.00, 0.00)
1.05 (0.42, 2.00) 0.00 (0.00, 0.00)
0.03 (−0.12, 0.20) 0.00 (0.00, 0.00)
−0.32 (−1.07, 0.30) 0.52 (−1.80, 2.76)
0.37 (−0.19, 1.06) 3.17 (1.18, 5.28)
−0.54 (−1.06,−0.22) 3.48 (2.08, 5.32)
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Figure B.3: GIRF: 1% uncertainty shock from US
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Figure B.4: GIRF: 1% uncertainty shock from Australia

Appendix B.3.2. Canada

Table B.4: Estimated A matrix of CSVM-PVAR for Canada

−3.35 (−5.40,−1.65) 1.59 (0.24, 3.10)
1.13 (−0.43, 2.71) 2.30 (1.14, 3.61)
−1.25 (−2.35,−0.45) 1.93 (1.30, 2.73)
−2.39 (−4.08,−0.98) 0.90 (−0.40, 2.28)
1.64 (−0.02, 3.44) 1.78 (0.42, 3.25)
−0.88 (−1.68,−0.31) 1.56 (0.99, 2.25)
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Figure B.6: GIRF: 1% uncertainty shock from Canada
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Appendix B.3.3. New Zealand

Table B.5: Estimated A matrix of CSVM-PVAR-R4 for New Zealand

−1.03 (−1.89,−0.35) 0.00 (0.00, 0.00)
1.36 (0.62, 2.33) 0.00 (0.00, 0.00)
0.15 (−0.02, 0.37) 0.00 (0.00, 0.00)
−0.54 (−1.55, 0.34) 0.00 (0.00, 0.00)
1.82 (0.91, 2.99) 0.00 (0.00, 0.00)
−0.06 (−0.25, 0.11) 0.00 (0.00, 0.00)
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Figure B.7: GIRF: 1% uncertainty shock from US

Appendix B.4. Forecasting Results

Appendix B.4.1. Australia

Table B.6: Real GDP forecast for Australia

RMSFE MAE ALPS ACRPS
h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8

PVAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00
CSV-PVAR 0.99 0.97 0.96 0.98 0.97 0.96 0.95 0.98 0.05 0.08 0.12 0.16 0.97 0.95 0.93 0.93
CSVM-PVAR 0.98 0.94 0.95 1.01 0.95 0.89 0.92 1.01 0.11 0.17 0.17 0.13 0.96 0.91 0.92 0.97
CSVM-PVAR-R1 0.99 0.95 0.94 0.97 0.96 0.92 0.92 0.97 0.10 0.15 0.17 0.15 0.97 0.92 0.91 0.93
CSVM-PVAR-R2 0.99 0.95 0.94 0.97 0.97 0.92 0.92 0.97 0.10 0.15 0.17 0.15 0.97 0.93 0.91 0.94
CSVM-PVAR-R3 0.98 0.96 0.94 0.98 0.96 0.94 0.92 0.97 0.10 0.14 0.16 0.16 0.96 0.93 0.91 0.93
CSVM-PVAR-R4 0.99 0.96 0.93 0.97 0.97 0.93 0.92 0.96 0.05 0.10 0.15 0.18 0.98 0.95 0.91 0.92
CSVM-PVAR-F 0.99 0.96 0.94 0.98 0.98 0.94 0.92 0.97 0.09 0.15 0.17 0.17 0.99 0.95 0.92 0.94
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Table B.7: inflation forecast for Australia

RMSFE MAE ALPS ACRPS
h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8

PVAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00
CSV-PVAR 1.00 0.99 0.99 0.98 0.96 0.97 0.97 0.97 −0.01 0.02 0.05 0.13 0.98 0.98 0.97 0.95
CSVM-PVAR 1.00 0.99 0.97 0.98 0.95 0.93 0.91 0.96 0.10 0.14 0.16 0.20 0.97 0.95 0.93 0.92
CSVM-PVAR-R1 0.97 0.95 0.93 0.94 0.94 0.91 0.88 0.93 0.12 0.15 0.20 0.23 0.95 0.93 0.89 0.88
CSVM-PVAR-R2 0.97 0.95 0.92 0.93 0.94 0.91 0.87 0.92 0.13 0.15 0.20 0.23 0.95 0.93 0.89 0.88
CSVM-PVAR-R3 0.97 0.95 0.92 0.93 0.95 0.92 0.89 0.93 0.11 0.16 0.20 0.22 0.95 0.92 0.89 0.88
CSVM-PVAR-R4 1.00 0.99 0.98 0.99 0.95 0.94 0.91 0.96 −0.01 0.00 0.09 0.14 0.98 0.98 0.95 0.94
CSVM-PVAR-F 0.99 0.99 0.97 0.98 0.96 0.96 0.91 0.97 0.11 0.10 0.14 0.18 0.98 0.98 0.96 0.95

Table B.8: Interest rate forecast for Australia

RMSFE MAE ALPS ACRPS
h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8

PVAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00
CSV-PVAR 0.96 0.99 1.01 1.00 0.88 0.91 0.98 1.00 0.43 0.31 0.19 0.16 0.82 0.88 0.94 0.96
CSVM-PVAR 0.84 0.88 0.91 0.91 0.75 0.76 0.80 0.85 0.51 0.34 0.26 0.32 0.78 0.83 0.85 0.85
CSVM-PVAR-R1 0.77 0.81 0.82 0.82 0.71 0.71 0.76 0.81 0.50 0.37 0.27 0.40 0.79 0.81 0.79 0.76
CSVM-PVAR-R2 0.78 0.81 0.82 0.82 0.71 0.71 0.77 0.80 0.49 0.34 0.26 0.39 0.80 0.82 0.80 0.77
CSVM-PVAR-R3 0.83 0.85 0.83 0.83 0.75 0.74 0.78 0.81 0.44 0.23 0.21 0.29 0.83 0.85 0.81 0.78
CSVM-PVAR-R4 0.95 0.98 0.99 0.98 0.85 0.88 0.93 0.96 0.44 0.30 0.20 0.19 0.81 0.87 0.93 0.95
CSVM-PVAR-F 0.97 1.00 1.01 0.99 0.93 0.95 1.00 1.00 0.26 0.18 0.13 0.19 0.92 0.97 1.02 1.00

Appendix B.4.2. Canada

Table B.9: Real GDP forecast for Canada

RMSFE MAE ALPS ACRPS
h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8

PVAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00
CSV-PVAR 0.96 0.94 0.97 1.02 0.96 0.95 0.97 1.02 0.04 0.09 0.06 0.03 0.97 0.95 0.98 1.03
CSVM-PVAR 0.93 0.90 0.94 0.97 0.95 0.91 0.94 0.97 0.11 0.16 0.10 0.10 0.96 0.92 0.97 0.98
CSVM-PVAR-R1 0.95 0.92 0.94 0.95 0.96 0.95 0.94 0.96 0.06 0.09 0.08 0.09 0.98 0.94 0.96 0.97
CSVM-PVAR-R2 0.95 0.92 0.94 0.95 0.96 0.95 0.94 0.95 0.06 0.09 0.08 0.10 0.97 0.94 0.96 0.97
CSVM-PVAR-R3 0.96 0.92 0.95 0.97 0.95 0.93 0.95 0.97 0.09 0.14 0.09 0.10 0.96 0.93 0.97 0.98
CSVM-PVAR-R4 0.95 0.93 0.95 0.97 0.96 0.95 0.96 0.96 0.05 0.10 0.09 0.08 0.97 0.94 0.96 0.98
CSVM-PVAR-F 0.92 0.90 0.93 0.95 0.95 0.92 0.93 0.96 0.09 0.14 0.12 0.11 0.95 0.93 0.96 0.97

Table B.10: Inflation forecast for Canada

RMSFE MAE ALPS ACRPS
h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8

PVAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00
CSV-PVAR 0.97 0.94 0.97 0.92 0.96 0.94 0.95 0.92 0.02 0.04 0.01 0.09 0.98 0.95 0.96 0.90
CSVM-PVAR 0.94 0.94 0.95 0.89 0.91 0.91 0.86 0.86 0.11 0.07 0.06 0.11 0.94 0.93 0.91 0.84
CSVM-PVAR-R1 0.95 0.93 0.93 0.88 0.92 0.90 0.86 0.87 0.04 0.08 0.08 0.15 0.96 0.93 0.90 0.83
CSVM-PVAR-R2 0.95 0.93 0.93 0.89 0.92 0.90 0.86 0.87 0.04 0.08 0.07 0.15 0.96 0.93 0.91 0.84
CSVM-PVAR-R3 0.95 0.91 0.94 0.89 0.93 0.88 0.88 0.86 0.00 0.08 0.04 0.10 0.98 0.92 0.92 0.84
CSVM-PVAR-R4 0.95 0.92 0.93 0.89 0.91 0.90 0.87 0.87 0.07 0.09 0.05 0.13 0.96 0.93 0.92 0.84
CSVM-PVAR-F 0.93 0.91 0.93 0.91 0.90 0.89 0.87 0.88 0.14 0.13 0.04 0.09 0.93 0.91 0.92 0.86

Table B.11: Interest rate forecast for Canada

RMSFE MAE ALPS ACRPS
h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8

PVAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00
CSV-PVAR 1.01 0.92 0.84 0.80 0.99 0.93 0.80 0.74 0.21 0.25 0.23 0.23 0.94 0.87 0.81 0.77
CSVM-PVAR 0.93 0.87 0.82 0.81 0.91 0.89 0.74 0.67 0.24 0.28 0.29 0.30 0.91 0.87 0.80 0.74
CSVM-PVAR-R1 0.95 0.94 0.92 0.89 0.91 0.95 0.88 0.78 0.29 0.25 0.15 0.04 0.93 0.93 0.88 0.81
CSVM-PVAR-R2 0.95 0.94 0.92 0.89 0.90 0.95 0.87 0.79 0.29 0.25 0.15 0.04 0.93 0.92 0.88 0.81
CSVM-PVAR-R3 0.98 0.94 0.92 0.88 0.91 0.94 0.85 0.78 0.26 0.26 0.17 0.04 0.95 0.92 0.88 0.81
CSVM-PVAR-R4 0.94 0.90 0.86 0.85 0.93 0.92 0.80 0.73 0.27 0.28 0.24 0.18 0.90 0.87 0.82 0.77
CSVM-PVAR-F 0.99 0.95 0.92 0.91 0.95 0.96 0.90 0.88 0.14 0.16 0.17 0.15 1.00 0.97 0.92 0.89
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Appendix B.4.3. New Zealand

Table B.12: Real GDP forecast for New Zealand

RMSFE MAE ALPS ACRPS
h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8

PVAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00
CSV-PVAR 0.98 1.02 1.02 1.02 0.98 1.02 1.00 1.02 0.24 0.25 0.31 0.30 0.91 0.92 0.88 0.88
CSVM-PVAR 0.98 1.02 1.01 1.01 0.98 1.02 1.01 1.00 0.27 0.27 0.29 0.29 0.90 0.91 0.89 0.88
CSVM-PVAR-R1 0.98 1.02 1.01 1.01 0.98 1.02 1.01 1.01 0.27 0.28 0.31 0.31 0.90 0.91 0.88 0.87
CSVM-PVAR-R2 0.98 1.02 1.01 1.01 0.98 1.02 1.01 1.01 0.27 0.28 0.31 0.31 0.90 0.91 0.88 0.87
CSVM-PVAR-R3 0.98 1.01 1.00 1.01 0.98 1.02 1.00 1.01 0.25 0.26 0.31 0.31 0.91 0.91 0.88 0.87
CSVM-PVAR-R4 0.98 1.02 1.02 1.02 0.98 1.02 1.00 1.02 0.24 0.24 0.31 0.31 0.91 0.92 0.89 0.88
CSVM-PVAR-F 0.97 1.02 1.01 1.01 0.97 1.02 1.01 1.01 0.27 0.26 0.30 0.31 0.90 0.91 0.88 0.87

Table B.13: Inflation forecast for New Zealand

RMSFE MAE ALPS ACRPS
h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8

PVAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00
CSV-PVAR 0.93 0.93 0.86 0.82 0.93 0.89 0.82 0.81 0.25 0.25 0.34 0.39 0.87 0.86 0.81 0.76
CSVM-PVAR 0.84 0.83 0.80 0.72 0.84 0.77 0.71 0.67 0.36 0.38 0.44 0.51 0.81 0.78 0.72 0.63
CSVM-PVAR-R1 0.84 0.84 0.79 0.71 0.85 0.76 0.70 0.65 0.36 0.38 0.45 0.53 0.81 0.78 0.71 0.62
CSVM-PVAR-R2 0.84 0.84 0.79 0.71 0.85 0.77 0.70 0.65 0.36 0.38 0.44 0.53 0.81 0.78 0.72 0.62
CSVM-PVAR-R3 0.89 0.83 0.74 0.71 0.92 0.79 0.68 0.65 0.29 0.35 0.48 0.54 0.86 0.80 0.71 0.64
CSVM-PVAR-R4 0.85 0.85 0.81 0.75 0.84 0.78 0.74 0.71 0.33 0.35 0.42 0.48 0.82 0.80 0.75 0.68
CSVM-PVAR-F 0.84 0.84 0.78 0.71 0.83 0.79 0.71 0.66 0.34 0.36 0.46 0.53 0.82 0.81 0.73 0.64

Table B.14: Interest rate forecast for New Zealand

RMSFE MAE ALPS ACRPS
h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8

PVAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00
CSV-PVAR 0.95 0.95 0.93 0.91 0.92 0.95 0.94 0.95 0.36 0.29 0.18 0.10 0.85 0.89 0.90 0.90
CSVM-PVAR 0.92 0.92 0.89 0.85 0.96 0.97 0.94 0.86 0.32 0.19 0.03 −0.02 0.88 0.91 0.88 0.81
CSVM-PVAR-R1 0.93 0.93 0.89 0.85 0.97 0.99 0.94 0.85 0.32 0.18 0.01 −0.05 0.88 0.92 0.88 0.81
CSVM-PVAR-R2 0.93 0.93 0.89 0.85 0.97 0.99 0.95 0.85 0.32 0.19 0.02 −0.06 0.88 0.92 0.89 0.81
CSVM-PVAR-R3 0.90 0.89 0.84 0.82 0.92 0.94 0.89 0.85 0.33 0.23 0.12 0.07 0.86 0.88 0.85 0.81
CSVM-PVAR-R4 0.94 0.95 0.93 0.90 0.92 0.95 0.93 0.95 0.37 0.30 0.19 0.07 0.85 0.89 0.90 0.90
CSVM-PVAR-F 0.94 0.95 0.90 0.86 0.96 0.98 0.95 0.89 0.28 0.21 0.12 0.06 0.90 0.93 0.91 0.85
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