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1. Introduction 

Over the years, East Asian students have consistently performed well in international 

achievement tests, especially in mathematics and science. In the recent Programme for 

International Student Assessment (PISA) and Third International Mathematics and Science 

Study (TIMSS), East Asian countries (regions) assumed the top positions in the rankings 

(OECD, 2019; Mullis et al., 2020). Higher test scores are considered to reflect higher levels of 

educational quality and human capital, which significantly and positively impact workers’ 

labor market outcomes, as well as a nation’s economic growth and human development 

(Hanushek and Kimko, 2000; Lee and Barro, 2001; Barro and Lee, 2015; Angrist et al, 2021). 

Hanushek and Woessmann (2016) asserted that the better student performance in average math 

and science test scores, was a major factor accounting for the strong growth of East Asian 

economies. 

The purpose of this study is to explore the possible reasons for the high performance of 

East Asian students in international mathematics tests using machine learning (ML) techniques. 

We investigate factors relating to country, school, and student characteristics that have high 

relevance in predicting the higher mathematics test scores of secondary East Asian students, 

focusing on the differences between East Asian countries (regions) and non-East Asian 

countries. To address this issue, we use a state-of-the-art ensemble method that combines 

several base ML models and produces an optimal predictive model using gradient boosting 

algorithm (Dietterich, 2000; Mullainathan and Spiess, 2017). The ML algorithms can fit very 

flexible functional forms, such as nonlinear interactions and discontinuous relationships among 

input and outcome variables. By applying the ML method to the PISA 2018 mathematics test 

scores across 76 countries, including seven East Asian countries (regions), we construct a 

prediction model and identify the important variables that explain the differences in students’ 

mathematics achievements across all countries, as well as the academic achievement gap 

between East Asian and non-East Asian students. We not only assess the extent to which 

student and school background variables contribute to high mathematics scores, but also how 

a country’s socioeconomic factors contribute to the higher average score of East Asian students. 

As per our knowledge, this is the first study that investigates the possible reasons for the 

excellent performance of East Asian students in international mathematics tests using a ML 

technique. 
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The high academic performance of East Asian countries has raised strong interest 

among researchers, policy makers, and the public. Thus, there have been many studies that 

have searched for the factors that influence East Asian children’s high achievements in 

mathematics and science. A number of student-, family-, and school-related factors, as well as 

country-specific characteristics, have been pointed out as possible reasons for East Asian 

students’ strong performances.  

Earlier works indicate that the superior mathematics achievement of East Asian 

students could be attributed to home and school life, rather than intellectual abilities (Stevenson 

et al., 1985; Stevenson et al., 1986). East Asian pupils appear to place more value on academic 

achievement in general, and believe more strongly in the value of hard work than their peers in 

many other countries (Hess et al., 1987; Valverde and Schmidt, 2000; Leung, et al., 2015). East 

Asian students tend to spend more time per day on mathematics in school and homework, than 

students in Western countries. Some researchers also argued that a family’s strong interest in 

and support of a child's education, has a positive impact on student achievement (Francis and 

Archer, 2005; Kim, 2021).  

However, other researchers claim that the outstanding intellectual abilities of East 

Asian students have to do with their individual success in mathematics, regardless of their 

efforts or parents’ support (Lynn, 1982; Ho and Hau, 2008). A few studies suggested that the 

counting systems of East Asian languages, which facilitate number representation, are 

favorable to students’ numerical abilities (Miura et al., 1988; Fuson and Kwon, 1991; Dowker 

and Li, 2019). For instance, some scholars pointed out that certain East Asian languages, such 

as Chinese and Korean, directly name the values of ten and one in two-digit numbers, while 

the English language is more irregular and opaquer. 

Many scholars have also focused on teacher- and school-related aspects. Some 

emphasized that East Asian mathematics teachers have greater subject knowledge and provide 

clearer instruction, as supported by continuous professional training programs (Ma, 1999; 

Leung, 2001; Jerrim, and Vignoles, 2016). Several researchers have also suggested that in East 

Asian countries, the standards for math and science subjects are more consistent and focused, 

which can be related to their more centralized school systems (Valverde and Schmidt, 2000; 

Kim, 2005; Kaya and Rice, 2010). Some researchers have pointed out that the Confucian 

culture is an East Asian identity which has greatly influenced mathematics education and 

achievement (Biggs 1996; Leung 2001; Leung, et al., 2015; Wang and Lin, 2015). 
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Confucianism emphasizes that learning is key to personal success and national development. 

In East Asia, the teaching profession is highly respected and attracts highly qualified people.  

Contrary to previous studies that adopt case studies and conventional statistical 

methods, this study adopts ML techniques to identify the factors that are closely associated 

with the mathematics achievement of East Asian students. The distinct difference between a 

ML approach and a statistical approach is that while the latter assumes an appropriate data 

model and uses the data to estimate parameters, the former avoids beginning with the model 

and instead uses an algorithm to learn about the relationship between the predictors and the 

responses (Mullainathan and Spiess, 2017; Athey and Imbens, 2019). Since a ML approach 

identifies the dominant patterns between the input and response data without the imposition of 

functional forms a priori by the researcher, it can overcome common specification errors. The 

ML algorithms can fit complex and very flexible functional forms to the data without 

overfitting, and thus can search for functions that are good predictors out of the sample. The 

ML models also have another merit of avoiding the multicollinearity problem that arises from 

correlated covariates (Sandri and Zuccolotto, 2008). Hence, the ML techniques are useful 

enough to identify important school, student, and country-related factors in explaining high 

PISA math scores for East Asian students. 

Over the past decade, many studies have adopted ML techniques to identify factors 

predicting student performance (Masci et al., 2018). They considered it inappropriate to 

presume a specific functional form a priori, and opted for a flexible model that does not impose 

any functional relationships between covariates (school resources) and educational outcomes. 

In addition, the availability of raw data from large-scale student assessments have facilitated 

educational data mining, with a focus on predicting student academic performance using a set 

of predictors related to student and school characteristics (Gamazo and Martínez-Abad, 2020). 

The studies have adopted a diverse array of ML techniques for performance prediction. 

Some have used decision-tree based algorithms such as classification and regression trees 

(CART) (Ma, 2005; Gabriel et al., 2018; She et al., 2019), chi-squared automatic interaction 

detection (CHAID) (Asensio-Muñoz et al., 2018), and C4.5 (Liu and Ruiz, 2008; Oskouei and 

Askari, 2014; Martínez-Abad, 2019, Gamazo and Martínez-Abad, 2020). Recent studies have 

used the ensemble learning method, including random forest (Cortez and Silva, 2008) and 

boosting (Masci et al. 2018) techniques. ML techniques such as least absolute shrinkage and 

selection operator (LASSO) are also used for variable selection and regularization (Sansone, 
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2019; Kerwin and Thornton, 2021). Knaus (2021) investigated the effects of musical practice 

on a student’s academic skills, using the causal machine learning approach based on the Double 

Machine Learning (DML) estimator of Farrell (2015). 

This study builds on this line of literature by applying boosting techniques to investigate 

the factors that are associated with academic performance. Our study focuses specifically on 

explaining the differences in mathematics achievement between East Asian and non-East Asian 

students. We consider a variety of student and school characteristics as predictors, as in 

previous literature, using the information drawn from the PISA 2018 survey. However, our 

approach is distinct from other studies, in that the model also includes a number of additional 

country-level variables as predicting variables. We consider how a country’s level of 

development and socioeconomic environment can influence student academic achievement.  

The ML results indicate that a country’s student- and school-related factors, as well as 

its socioeconomic factors, are all important to predict the elevated PISA mathematics scores of 

East Asian students. We determine that a country’s proportion of youth not in education, 

training, or employment, as well as the number of researchers in R&D, are the two most 

important features contributing to the higher average score of East Asian students. The student- 

and school-related variables — such as metacognition–assess credibility, mathematics learning 

time, duration in early childhood education and care, grade repetition, school type and size, 

class size, and student behavior hindering learning at school — also render important 

contributions. We also visualize the pattern between the predictors and predicted mathematics 

test scores across all individual students, and analyze the marginal effect of each predictor on 

the predicted test scores. The results highlight the nonlinear and complex relationships between 

educational input and outcomes. 

The rest of the paper is organized as follows: Section 2 describes the data, Section 3 

explains ML techniques, Section 4 presents and discusses estimation results, and Section 5 

concludes the paper.   

 

2. The Data  

This paper uses the micro data of the PISA 2018, as well as several country-level macro 

data, to analyze the factors explaining the mathematics test scores. The PISA is a cross-national 

survey conducted by the Organization for Economic Co-operation and Development (OECD) 
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with 15-year-old students that assesses students’ academic performance in mathematics, 

reading, science, and problem solving (OECD, 2019). The PISA provides internationally 

comparable test scores and a lot of background information on both students and schools, which 

allows for the comparison and evaluation of students on a global level. Since its launch in 2000, 

the PISA assessment has been conducted every three years. This study uses the dataset 

assembled from the 2018 PISA wave, focusing on mathematics performance. Combining the 

available data, the dataset contains information on 590,102 students in 77 countries.1 

In 2018, China2 scored the best with 613 PISA points in mathematics, followed by 

Singapore, Macao SAR, Hong Kong SAR, and Chinese Taipei (Taiwan). Japan and Korea are 

also high-performing East Asian countries (regions). Among the non-East Asian countries, 

Estonia, the Netherlands, Poland, and Switzerland demonstrated the highest performance, 

while Panama, the Philippines, and the Dominican Republic scored lowest. On average, the 

mean score in mathematics was 554 in East Asia, compared to 454 in non-East Asia countries.3 

As can be seen from Table 1, East Asian students consistently performed better than non-East 

Asian students not just in terms of the mean, but rather across all corresponding percentiles. 

Figure 1 displays the kernel density estimates for students’ mathematics test scores for East 

Asian versus non-East Asian countries. East Asian test scores show a distribution that is more 

concentrated.   

Since the primary concern of this study is to explore the reasons that cause the 

differences in mathematics test scores between East Asian and non-East Asian countries, the 

output variable is the individual student test scores. The rich set of input variables includes 

student background information (characteristics of the students and their family) and school 

background information (characteristics of schools and teaching staff). The literature has 

shown that student and school characteristics are significantly associated with student academic 

achievements in international assessments (Hanushek and Woessmann, 2011; Barro and Lee 

 
1 The sample excludes Cyprus due to unavailability of PISA micro data.  
2 The PISA in 2018 was administered in four provinces including Beijing, Shanghai. Jiangsu, and 

Zhejiang of the People's Republic of China. 
3 The superior mathematics performance of East Asian countries is also shown in another major 

international assessment of student achievement such as the Trends in International Mathematics and 

Science Study (TIMSS) 2019. 
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2015). Appendix Table 1 provides a description of all 68 variables from the PISA dataset used 

in this study.  

Table 1. Descriptive statistics of students’ 2018 PISA test scores in mathematics. 

Region (No. of country) Mean p1 p5 p10 p25 p50 p75 p90 p95 p99 
PISA score           
Pooled (77) 462 231 292 326 387 461 536 598 633 694 
East Asia (7) 554 315 389 428 493 561 622 671 701 751 
non-East Asia (70)  454 229 288 322 381 453 525 586 619 678 
Gap with East Asia’s PISA score 
non-East Asia  100 87 100 106 111 108 96 86 81 73 

Source: Authors’ calculations from OECD (2019)  

 

Figure 1. Kernel density distribution of PISA mathematics score: East Asia vs. non-East Asia 

Source: Authors’ calculations from OECD (2019)  

In addition to considering the country’s level of development and socioeconomic 

environment, we employ 10 additional variables, namely GDP per capita; life expectancy at 

birth; infant mortality rate; adolescent fertility rate; proportion of youth not in education, 

employment, or training (% of youth population); percentage of unemployed people with basic 

education (% of total labor force with basic education); number of researchers in R&D (per 

million people); R&D expenditure (% of GDP); secondary school enrolment rate; and the Gini 

index. Using a ML algorithm, we have selected these variables among 1,106 predictors that 

consist of country-level variables involving macroeconomy, population, labor market, 
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education, health, and the environment. The data are collected from the World Bank’s World 

Development Indicators (World Bank, 2020).4 We have adopted recursive feature elimination 

and cross-validation selection (RFECV) to identify the variables providing the smallest root 

mean squared errors.  

 

3. The Methodology  

We employ an ensemble ML method in which the final model is a combination of 

simple prediction models, termed base learners. The base learners are assumed to be some class 

of functions such as simple linear models, spline functions, or regression trees. The gradient 

boosting technique, which was originally developed by Friedman (2001), adds the best new 

possible model sequentially to the prior base-learner models, to minimize overall prediction 

error. The algorithm of the gradient boosting machines or GBMs constructs the base-learners 

that are maximally correlated with the negative gradient of the predetermined loss function 

associated with the whole ensemble, thereby minimizing the expected loss (Natekin and Knoll, 

2013). Hence, the learning procedure consecutively fits new models to provide a more accurate 

estimate of the response variable.   

An important concern about building a machine-learning model is overfitting, which is 

when the final model does well in predicting only the training data itself, rather than fit out of 

sample. Thus, the ML algorithm aims to improve the derived final model through cross-

validation. It randomly divides the original sample into subsamples (a training set and a test 

set) and experiments out-of-sample predictions within the original sample. Next, the training 

set is divided into a training set and a validation set once again. The estimation process then 

involves successively fitting a model on the training set and evaluating it on the validation set 

for a range of regularization parameters, such as the number of iterations and learning rate. 

Finally, the algorithm selects the hyperparameters with the best estimated average performance 

(Mullainathan and Spiess, 2017). In this study, we divide the sample into a training set (80%) 

and a test set (20%) and adopt 10-fold cross-validation. 

We use the lightGBM (Light Gradient Boosting), which is a gradient boosting 

technique widely used in the ensemble method. The lightGBM technique uses a decision-tree 

 
4 Data for Taiwan are collected from its National Statistics and CEIC database. 

https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021/full#B19
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ensemble that is a combination of multiple trees. It can handle missing values without an 

imputation process. Gradient boosting algorithms minimize the loss function, given the 

assumption that missing values contain information. The lightGBM approach is known to 

outperform other gradient boosting techniques in large-scale data sets (Ke et al., 2017). 

We compare the performance of our model with that of other models, such as linear 

regression, ridge regression, and random forest, in predicting the mathematics test scores using 

the same set of predictors. This allows evaluating whether the lightGBM strategy is more 

suitable for predicting academic performance than the regression models, or other ML 

algorithms. The conventional linear regression approach is widely used in the literature and 

typically imposes a linear functional form based on the education production function. Ridge 

regression is designed to eliminate multicollinearity among features by imposing a penalty 

termed L2-norm, which is the sum of the squared coefficients. By contrast, the ML techniques 

assume a non-linear and complex relationship between the predicting variables and the test 

scores. They also avoid multicollinearity problems. 

Table 2 presents four measures to compare predictive performance between the 

lightGBM and the alternative models. The root mean-squared error (RMSE) and the coefficient 

of determination or R-squared (R2) values are two statistical measures that are typically used 

for model selection. The RMSE represents the root of the residual sum of squares, resulting 

from the comparison of the actual test score values to the predicted values. R2 is determined by 

the proportion of the variance of the test scores that are explained by the predicting variables 

in the model. Table 2 also reports two other measures, such as mean absolute error and median 

absolute error, that evaluate the model fit. The results show that our lightGBM model 

outperforms the other three models in all four indicators.  

Table 2. Comparing the predictive performance of linear regression and the lightGBM 

 Performance Measures 

 Root Mean  

Square Error 

Mean  

Absolute Error 

Median  

Absolute Error 

R-squared 

The lightGBM 62.77 49.74 41.67 0.638 

Random forests 81.85 64.91 54.46 0.385 

Ridge regression 75.49 59.85 50.12 0.476 

Linear Regression 75.65 59.96 50.22 0.474 
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4. The Results  

Due to the complex relationships and interactions among the variables, the results from 

the lightGBM technique do not necessarily provide a simple explanation regarding the 

relationship between the predictor and the outcome variables; therefore, it is sometimes stated 

to be similar to being trapped inside a black box. This contrasts with the linear regression model, 

in which the regression coefficient shows the effect of a predictor on the outcome. In the ML 

model, we use the concept of “feature importance” to assess the relative importance of each 

input feature (predictor variables) in predicting an outcome variable. There are two approaches 

to measuring feature importance. One approach measures how much the prediction error 

increases when one of the given predictors is eliminated. The other gauges how much each 

feature contributes to the model’s prediction. We adopt the latter approach using the concept 

of SHAP (Shapley Additive exPlanations), proposed by Lundberg and Lee (Lundberg and Lee, 

2017). SHAP is a game theoretic approach to explain the output of any machine learning 

model (Štrumbelj and Kononenko, 2014). It shows the extent to which each feature pushes the 

model output from the base value (the average model output of the training dataset) to the final 

model output (the predicted outcome). Applying the SHAP value, we can then assess the exact 

degree to which each predictor renders the predicted test scores of individual students either 

higher or lower than the global average score. 

Figure 2 displays the SHAP value of each predictor for each student’s predicted score 

in the sample. It lists the top 15 variables that contribute most significantly to predicting 

individual test scores. The predictors are listed on the y-axis and individuals (instances) are on 

the x-axis. In the figure, f(x) represents the predicted test scores. The dotted horizontal line 

across the line of f(x) represents the global average test score. This graphic representation of 

test scores demonstrates that most East Asian students perform better compared to the global 

average.  

https://www.sciencedirect.com/science/article/pii/S0001457519311790?casa_token=BepQAyolA-QAAAAA:ecbjmXkuWqdmQwK1320dJUf1Jn6qdidWelh90xbPLryYnHsW-T-L7XCdicgHSAn_Z8vaGVhYYQ#bib0135
https://www.sciencedirect.com/science/article/pii/S0001457519311790?casa_token=BepQAyolA-QAAAAA:ecbjmXkuWqdmQwK1320dJUf1Jn6qdidWelh90xbPLryYnHsW-T-L7XCdicgHSAn_Z8vaGVhYYQ#bib0135
https://www.sciencedirect.com/science/article/pii/S0001457519311790?casa_token=BepQAyolA-QAAAAA:ecbjmXkuWqdmQwK1320dJUf1Jn6qdidWelh90xbPLryYnHsW-T-L7XCdicgHSAn_Z8vaGVhYYQ#bib0245
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Figure 2. The SHAP values of each predictor for the predicted scores of individual students 

Notes: The figure displays the SHAP value of each predictor for the predicted scores across all students 

in the sample. The predictors are listed on the y-axis, individuals (instances) are on the x-axis, and f(x) 

indicates the predicted test scores. The darker the red color, the more positively the predictor contributes 

to the predicted test score of the student. Conversely, the darker the blue color, the more negatively the 

predictor contributes. The top 15 variables that contribute most significantly to the predicted test scores 

are listed, as measured by the sum of absolute SHAP values for each predictor (represented by the bar 

on the right side of the figure). The full names of the predictors are shown in Appendix Table 1 and 

Appendix Figure 1. 

The SHAP values are expressed in various colors. When the SHAP value of a predictor 

is marked in white, the predictor does not have any contribution to the predicted test score of 

the student compared to the global average score. Meanwhile, the dark red color of the SHAP 

value indicates that the predictor contributes positively to the student’s predicted test score, by 

rendering it higher than the global average. The darker the color, the larger the positive 

contribution is. Conversely, the darker the blue color of the SHAP value, the more negatively 

the predictor contributes to the predicted test scores of the student. If the color of the SHAP 

value for a predictor changes from a dark red to a dark blue, uniformly across all individuals 

— from the highest performing student to the lowest performing student — then this predictor 



12 

is considered an immensely important variable that causes significant differences in test scores 

across students.  

By comparing the sum of absolute SHAP values of each predictor across individual 

students, it is possible to identify the predictors that contribute largely to differences in students' 

mathematics performance. Figure 2 lists the top 15 predictors selected by the sum of absolute 

SHAP values, and the magnitudes are displayed in a bar on the right side.5  

The top 15 variables consist of country-, school-, and student-related factors. More 

specifically, they consist of two country factors (namely the number of researchers in R&D; 

RESEARCHER and the proportion of youth not in education, training, or employment; NEET), 

one school factor (namely student behaviors that hinder learning; STUBEHA), and 12 student 

features. The student factors include three metacognition variables (METASPAM, METASUM, 

UNDREM); mathematics learning time (MMINS); grade repetition (REPEAT); index of 

economic, social, and cultural status (ESCS); ICT resources at home (ICTRES); perception of 

difficulty of the PISA test (PISADIFF); student’s expected occupational status (BSMJ); self-

efficacy regarding global issues (GCSELFEFF); student’s awareness of global issues 

(GCAWARE); and eudaemonia–meaning in life (EDUMO).  

The top 15 features include 12 student background variables, related to a student’s 

cognitive abilities, study time, family background, ICT resources, and expected occupational 

status. Previous literature that employed multivariate regression analysis or case studies have 

highlighted these student background variables as important factors for student academic 

performance (Hanushek and Woessmann, 2011; Barro and Lee, 2015). Recent studies have 

also discussed the impact of ICT use on student academic achievement (Beland and Murphy, 

2016). Our study confirms the significance of these variables on student math performance 

using the ML method. In addition, we find that country-related factors, including NEET and 

the number of researchers in R&D, significantly correlate with student math scores. These 

variables can have a significant influence on an environment or society and can impact a 

student’s motivation to learn. However, the causal relationship may go the other way, as higher 

 
5 The sum of absolute SHAP values for the top 15 predictors with their full variable names are shown 

in Appendix Figure 1.  
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academic achievement increases the proportion of youth in higher education and employment, 

and produces more researchers in R&D. 

Feature importance as a concept, is useful in determining the variables that bring about 

differences in academic performance among all individual students in the sample. However, 

we do not know which predictors are most significantly related to the difference in math test 

scores between East Asian and non-East Asian students. The key aim of this study is identifying 

the important features that predict the elevated mathematics performance of East Asian 

students. To answer this question, we decompose the predicted math score of an average East 

Asian student into the contributions from the predictors. We first construct a machine using the 

student data from all countries and predict the math score of an (artificial) average East Asian 

student. The predicted value is 557.5 points, which is 96.6 points higher than the global average 

of 460.9. The SHAP value of each predictor measures its contribution to the difference between 

the average East Asian student’s score and the global average score.  

Figure 3 displays the SHAP value of each predictor for the student’s score across all 

individual East Asian students. It lists the top 15 variables that contribute most significantly to 

the predicted outcome. They contain three country-related factors (NEET, number of 

researchers in R&D, and percentage of unemployed with basic education), four school-related 

factors (school type–private independent, school size, class size, and student behaviors that 

hinder learning), and eight student-related factors (metacognition–assess credibility, 

mathematics learning time, grade repetition, duration in early childhood education and care, 

ICT use outside of school for leisure, discriminating school climate, student's attitudes toward 

immigrants, and work mastery).  
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Figure 3. The SHAP values of each predictor for the predicted scores of East Asian students 

Notes: The figure displays the SHAP value of each predictor for the predicted scores of East Asian 

students. Please also refer to the notes in Figure 2. 

Compared to the top 15 variables that best predict the mathematics scores of all students 

in Figure 2, substantial changes occur in the new model. Although many student factors, such 

as metacognition–assess credibility, mathematics learning time, and grade repetition, remain 

important for predicting the difference between the average East Asian student’s score and the 

global average score, some student factors — such as the index of economic, social, and 

cultural status; self-efficacy regarding global issues; awareness of global issues; and 

eudaemonia or meaning in life — do not appear important. On the other hand, many school 

characteristics, including school type (private/public, independent/government dependent), 

school size, class size, discriminating school climate, and student's attitudes toward immigrants, 

appear important in explaining the elevated average mathematics score of East Asian students 

relative to their peers. The literature has emphasized the significant impact of school 

characteristics and school climate (Hanushek and Woessmann, 2011; Thapa et al., 2013) on 

student learning outcomes. The duration of early childhood education and care is also identified 

as an important factor for student achievement, which is consistent with other studies’ findings 

(for instance, Heckman, 2006). Two country-related factors, including NEET and the number 
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researchers in R&D, as well as another percentage of unemployed people with basic education 

variable, are identified as being a part of the top 15 features. 

Table 3 presents the decomposition results using the SHAP values. The model output, 

that is the predicted math score of the artificial East Asian student, is 557.5 points, compared 

to the actual mean of 550.4 points. Based on the concept of SHAP, we decompose the predicted 

average score of 557.5 into the global average score of 460.9 points and the contributions by 

each of the 78 predictors. The SHAP value indicates how much each predictor contributes to 

rendering the average East Asian student’s score higher (or lower) than the global average 

score.  

Table 3. Analysis of the predicted score of an average East Asian student 

Actual average score of East Asian students 550.4 
Predicted average score of East Asian students 557.5 
Contribution to predicted average score   

Global average student score 460.9 
(Country) Proportion of youth not in education, employment, or training 17.0 
(Country) Number of researchers in R&D (per million people) 10.8 
(Student) Meta-cognition: assess credibility 7.1 
(Student) Mathematics learning time (minutes per week) 4.8 
(School) School type: private Independent 4.6 
(Student) Grade repetition 4.2 
(School) School size 4.0 
(Student) Duration in early childhood education and care 3.9 
(Student) ICT use outside of school (leisure) 3.7 
(Student) Discriminating school climate 3.6 
(Student) Student's attitudes toward immigrants 3.5 
(Country) Unemployment with basic education 3.4 
(Student) Work mastery 3.2 
(School) Class size 3.2 
(School) Student behaviors that hinder learning 3.1 
62 other features -12.7 

Notes: The value is constructed using the SHAP (Shapley Additive exPlanations) value. The SHAP 

value of each variable measures its contribution to the difference between the average East Asian 

student’s score and the global average score. The variables consist of country-, school-, and student-

related factors, as indicated in parenthesis before the variable name. 
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Among the top 15 variables that contribute to higher East Asian scores (compared to 

the global average), NEET and the number of researchers in R&D are the two most important 

features, contributing 17.0 and 10.8 points, respectively. Student-related features are also 

important, including metacognition–assess credibility which measures competence in 

assessing the quality and source credibility of information, mathematics learning time, and 

grade repetition, as these specific features contribute 7.1, 4.8, and 4.2 points, respectively, to 

the average score of East Asian students. School background variables, such as school type–

private independent, school size, and class size, also contribute significantly to the average East 

Asian student score, by 4.6, 4.0, and 3.1 points respectively. 

 Differences in the key input variables between East Asian and non-East Asian students 

must have influenced PISA mathematics test scores and academic performance as a whole. 

Table 4 compares the average values of each predictor, presenting significant differences 

between East Asian and non-East Asian countries. For example, the average value of NEET is 

3.4% in East Asia, compared to 16.7% in non-East Asian countries. East Asian countries, on 

average, have more researchers in R&D when adjusted for population size. Also, on average, 

East Asian students have better metacognition–assess credibility than non-East Asian students: 

0.078 vs. -0.262. The average mathematics study time per week for East Asian and non-East 

Asian students is 257 and 241 minutes, respectively. In addition, the grade repetition rate is 

lower in East Asian countries, compared to non-East Asian counterparts.  

Furthermore, East Asian students usually have a better learning environment than non-

East Asian students, indicated by a less discriminating school climate, a more positive attitude 

towards immigrants, and fewer student behaviors that hinder learning. Generally, East Asian 

schools are larger in size, and are more private-independent. Appendix Table 2 compares the 

distribution of the top 15 variables in terms of percentiles, between the two samples of East 

Asian and non-East Asian students.  

 

Table 4. Comparing the top 15 features among the global, East Asian, and non-East Asia 

countries 

Features Global East Asian Non-East 

 (Country) Proportion of youth not in education, 

   

16.13 3.44 16.72 
(Country) Number of researchers in R&D (per million 

 

2252.8 4135.6 2048.8 
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(Student) Meta-cognition: assess credibility -0.227 0.078 -0.262 
(Student) Mathematics learning time (minutes per week) 242.9 256.8 241.1 
(School) School type: private Independent 0.102 0.189 0.093 
(Student) Grade repetition 0.148 0.074 0.153 
(School) School size 1058.3 1324.6 1027.5 
(Student) Duration in early childhood education and care 2.525 3.095 2.458 
(Student) ICT use outside of school (leisure) -0.017 -0.174 0.001 
(Student) Discriminating school climate 0.151 -0.493 0.172 
(Student) Student's attitudes toward immigrants -0.109 0.408 -0.125 
(Country) Unemployment with basic education 7.818 2.797 7.928 
(Student) Work mastery 0.141 0.130 0.143 
(School) Class size 32.23 35.95 31.80 
(School) Student behavior hindering learning 0.083 -0.167 0.110 

  

Each variable’s contribution to the predicted test score can also be analyzed in more 

detail using partial dependency plots (PDPs). Partial dependence demonstrates the effect of a 

predictor on the modeled response, after marginalizing out all other input features. Figure 4 

plots PDPs using the information between each predictor and its SHAP value, calculated from 

all available observations. A red line indicates the nonparametric relationship between the 

SHAP value and the predictor, using LOWESS smoothing. The solid, dotted, and (loosely) 

dashed vertical lines indicate the average values of each predictor in the global, East Asian, 

and Non-East Asian samples, respectively. 

Figure 4.a shows the partial dependency plot for the most influential feature, which is 

the number of researchers in R&D. The overall positive relationship indicates that an increase 

in researchers tends to increase the expected test scores. However, as observed in the plot, a 

nonlinear relationship exists between these factors. For the students who receive scores just 

below the global average, the predicted score increases sharply with the increased number of 

researchers, yet this does not change for the range of math scores above the world average. 

Figure 4.b shows a clear negative relationship between NEET and student’s predicted test 

scores. The overall negative relationship suggests that a lower value of this variable has a 

positive effect on East Asian students’ test scores.  

In Figure 4.c, student’s metacognition–assess credibility has a clear positive 

relationship with predicted test scores. East Asian students’ higher metacognition ability seems 
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to contribute unequivocally to their better mathematics achievement. When the distribution of 

the metacognition index is examined (see Appendix Table 2), East Asian students are seen to 

have fewer students at the 25th percentile of the distribution, which renders the average 

expected test score of East Asian students higher than that of non-East Asian students. 

Figure 4.d shows the importance of study time for expected test scores, especially for 

those students in the left tail of the distribution. The average mathematics learning time is 

slightly longer in East Asian students than in non-East Asian students (257 vs. 241 minutes per 

week). The distribution of math learning time is skewed more leftwards in the sample of non-

East Asian students than the East Asian students (Appendix Table 2). The fact that a relatively 

large proportion of students spend less time studying mathematics in non-East Asian countries 

than in East Asian ones, appears to contribute to the lowering of the average math scores in 

non-East Asian countries. 

Figure 4.e shows the nonlinear relationship between student’s ICT use outside of school 

for leisure and predicted test scores. The inverted-V type relationship indicates that expected 

math scores tend to be lower if a student has too much interest in ICT or too little. Figure 4.f 

shows school size has a positive relationship with test scores, especially in the range of school 

size below the world average.  

Figure 4.g and 4.h presents evidence for the importance of the quality of learning 

environment for mathematics achievement. Both the discriminating school climate and student 

behaviors that hinder learning variables have significantly negative relationships with students' 

expected test scores. On average, East Asian students have better learning environments than 

their non-East Asian peers, as shown in Appendix Table 2, which presumably contributes to 

their better mathematics performance. 

(a) (b) 

  
(c) (d) 



19 

  
(e) (f) 

  
(g) (h) 

  
Figure 4. Marginal effects of individual features 

Notes: The LOWESS line represents the nonparametric relationship between SHAP values and 

predictor values. The solid, dotted, and (loosely) dashed vertical lines indicate the average values of 

each predictor in the global, East Asian, and non-East Asian samples, respectively. 

In summary, the significant differences in the key predictors between East Asian and 

non-East Asian students seem to contribute to the higher average mathematics test scores of 

East Asian students. The PDPs in Figure 4 suggest that there are nonlinear and complex 

relationships between predicting variables and students’ mathematics achievement.  

 

5. Concluding remarks 
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This study explores the relationships between student, school, and country 

characteristics and students’ mathematics achievement using the 2018 PISA data. Adopting the 

ML techniques, we have identified the top 15 factors that have the highest predicting powers 

and assessed the extent that each factor contributes to increasing the predicted average math 

score of East Asian students compared to the global average score.  

Our ML results demonstrate that variations in the 2018 PISA mathematics scores 

among students of 77 countries and regions are not only closely associated with student- and 

school-related factors, but also country-level socioeconomic factors. We find student- and 

school-related factors, such as metacognition–assess credibility, mathematics learning time, 

duration in early childhood education and care, grade repetition, school type and size, class 

size, and student behavior hindering learning, as important predictors of the elevated test scores 

of East Asian students. Moreover, several country-level factors — such as the proportion of 

youth not in education, training, or employment; the number of researchers in R&D; and the 

percentage of unemployed with basic education — have high predicting power for the higher 

average scores of East Asian students. In summary, higher math scores for East Asian students 

stem from their hard work, higher cognitive abilities, better school learning environments, as 

well as better societal labor market opportunities. 

We have also visualized the pattern between the predictors and predicted test scores 

using the PDPs and analyzed the marginal effect of each variable to predicted test scores across 

all individual students. We found that the relationship between educational inputs and outcomes 

is not linear; therefore, non-linearities and discontinuities must be considered, to further 

investigate the complex and unknown process of student's learning.  

The ML approach employed here is conceptually different from other modeling 

approaches, in that it is very strongly data-driven and imposes no specific functional form 

between input and outcome variables, yet the results are highly intuitive. Although ML 

techniques do not provide direct causal inference, they are useful in identifying important input 

factors that explain outcomes. In the field of ML, novel techniques are being actively developed. 

In this study, we used one type of algorithm, namely gradient boosting, and did not conduct an 

in-depth analysis of the causal interpretation for deriving policy implications. As ML is 

currently undergoing rapid advancements, the analytical field can help us advance the 

implementation of educational data mining and our understanding of the effects of certain 

policies on educational outcomes.    
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FOR ONLINE PUBLICATION 

Appendix Table 1. List of variables 

Variable Description No. of  
country 

No. of  
Obs. 

MATH Mathematics 77 590,102 
    
Student-level predictors (52)   
AGE Age 77 590,102 
ATTIMM Student's attitudes towards immigrants 58 360,801 
ATTLNACT Attitude towards school: learning activities 77 545,716 
AUTICT Perceived autonomy related to ICT use 51 292,278 
AWACOM Awareness of intercultural communication 63 414,745 
BEINGBULLIED Student's experience of being bullied 73 447,071 
BELONG Subjective well-being: Sense of belonging to school 74 514,859 
BSMJ Student’s expected occupational status 77 456,604 
CHANGE Number of changes in educational biography 31 223,353 
COGFLEX Cognitive flexibility/adaptability 64 422,122 
COMPETE Competitiveness 76 536,324 
COMPICT Perceived ICT competence 52 299,508 
CULTPOSS Cultural possessions at home 77 567,381 
DISCRIM Discriminating school climate 57 331,090 
DURECEC Duration in early childhood education and care 76 439,275 
EMOSUPS Parents' emotional support perceived by student 75 464,491 
ENTUSE ICT use outside of school (leisure) 52 326,871 
ESCS Index of economic, social and cultural status 77 576,168 
EUDMO Eudaemonia: meaning in life 72 487,115 
GCAWARE Student's awareness of global issues 66 436,380 
GCSELFEFF Self-efficacy regarding global issues 64 427,046 
GFOFAIL General fear of failure 75 522,614 
GLOBMIND Global-mindedness 62 385,660 
HEDRES Home educational resources 77 572,942 
ICTHOME ICT available at home 51 348,250 
ICTRES ICT resources 77 574,929 
IMMIG1 Immigration status: Native 76 558,280 
IMMIG2 Immigration status: Second-Generation 76 558,280 
IMMIG3 Immigration status: First-Generation 76 558,280 
INFOCAR Information about careers 32 222,628 
INTCULT Student's interest in learning about other cultures 62 393,730 
INTICT Interest in ICT 52 305,682 
JOYREAD Joy/Like reading 75 553,154 
MASTGOAL Mastery goal orientation 75 521,195 
METASPAM Meta-cognition: assess credibility 75 508,444 
METASUM Meta-cognition: summarizing 75 516,029 
MMINS Mathematics Learning time (minutes per week) 75 450,778 
PERCOMP Perception of competitiveness at school 76 461,586 
PERCOOP Perception of cooperation at school 76 447,365 
PERSPECT Perspective-taking 64 423,445 
PISADIFF Perception of difficulty of the PISA test 74 532,480 
REPEAT Grade Repetition 74 554,010 
RESILIENCE Resilience 75 518,203 
RESPECT Respect for people from other cultures 63 406,347 
SCCHANGE Number of school changes 31 225,011 
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SCREADCOMP Self-concept of reading: Perception of competence 73 521,386 
SCREADDIFF Self-concept of reading: Perception of difficulty 71 518.226 
SOIAICT ICT as a topic in social interaction 50 288.199 
SWBP Subjective well-being: Positive affect 68 467,548 
UNDREM Meta-cognition: understanding and remembering 75 515,609 
WEALTH Family wealth 77 576,799 
WORKMAST Work mastery 76 526,542 
    
School-level predictors (16)   
CLSIZE Class Size 74 528,444 
CREACTIV Creative extra-curricular activities 77 560,820 
PROATCE Index proportion of all teachers fully certified 73 500,668 
RATCMP1 Number of available computers per student at modal grade 77 518,850 
RATCMP2 Proportion of available computers connected to the Internet 77 523,744 

SCMCEG School principal's view on teachers' multicultural and egalitarian 
belief 63 460,923 

SCHSIZE School Size 73 500,033 
SCHLTYPE1 School type: Private Independent 73 549,024 
SCHLTYPE2 School type: Private Government-dependent 73 549,024 
SCHLTYPE3 School type: Public 73 549,024 
EDUSHORT Shortage of educational material  77 564,233 
STAFFSHORT Shortage of educational staff  77 564,749 
STUBEHA Student behavior hindering learning  77 567,251 
STRATIO Student-Teacher ratio 73 492,283 
TEACHBEHA Teacher behavior hindering learning 77 566,864 
TOTAT Total number of all teachers at school 72 511,696 
    
Country-level predictors (10)   
ADFERT Adolescent fertility rate (births per 1,000 women ages 15-19) 75 585,044 
ENROLNET School enrollment, secondary (% net) 69 536,118 
GDPPC GDP per capita, PPP (current international $) 76 590,102 
GINI Gini index 71 553,577 
LIFEEXP Life expectancy at birth, total (years) 76 590,102 
MORT Mortality rate, infant (per 1,000 live births) 73 575,232 

NEET Proportion of youth not in education, employment or training (% 
of youth population) 70 539,335 

RESEARCHER Number of researchers in R&D (per million people) 66 521,648 
RNDEXP Research and development expenditure (% of GDP) 70 553,755 

UNEMPBASIC Unemployment with basic education (% of total labor force with 
basic education) 72 559,507 

Source: Author’s calculation from PISA 2018 Technical Report 

(https://www.oecd.org/pisa/data/pisa2018technicalreport/) 

 

 

https://www.oecd.org/pisa/data/pisa2018technicalreport/
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Appendix Table 2. Comparison of the percentiles of the top 15 features between the samples of East Asian and non-East Asian students 

 East Asia Non-East Asia 

Features p10 p25 p50 p75 p90 p10 p25 p50 p75 p90 

(Country) Proportion of youth not in education, 
employment or training 3.27 3.27 4.50 6.10 6.10 6.54 9.49 13.32 19.25 24.33 

(Country) Number of researchers in R&D (per million 
people) 1224.8 1224.8 3782.3 6802.5 7497.6 485.4 707.7 2383.1 4325.7 5387.9 

(Student) Meta-cognition: assess credibility -1.41 -0.96 -0.04 0.87 1.33 -1.41 -1.41 -0.04 0.42 1.33 

(Student) Mathematics learning time (minutes per week) 150 200 240 300 385 120 180 220 250 360 

(School) School type: Private independent 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 

(Student) Grade repetition 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 

(School) School size 455 708 979 1449 2382 218 404 677 1062 1613 

(Student) Duration in early childhood education and care 2.00 3.00 3.00 4.00 4.00 1.00 2.00 3.00 3.00 4.00 

(Student) ICT use outside of school (leisure) -0.82 -0.44 -0.08 0.34 0.77 -0.90 -0.44 -0.05 0.43 0.93 

(Student) Discriminating school climate -1.15 -1.15 -0.42 0.59 0.94 -1.15 -1.15 0.10 0.59 1.42 

(Student) Student's attitudes towards immigrants -0.64 -0.20 -0.20 0.94 1.50 -1.18 -0.62 -0.20 0.64 1.50 

(Country) Unemployment with basic education 2.28 2.61 3.53 3.87 3.87 1.17 6.50 10.44 15.36 23.85 

(Student) Work mastery -1.03 -0.23 -0.10 0.71 1.82 -1.07 -0.65 -0.10 0.88 1.82 

(School) Class size 23.00 28.00 33.00 38.00 43.00 18.00 23.00 28.00 33.00 43.00 

(School) Student behavior hindering learning -2.07 -1.19 -0.34 0.47 1.76 -1.38 -0.62 0.08 0.82 1.41 
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Appendix Figure 1. Top 15 most important features for predicting student test score 

Note: This feature importance is measured by the sum of absolute SHAP values for each predictor, which is also 

shown by the bar on the right side of the figure 3. 
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