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Initial Beliefs Uncertainty

Jaqueson K. Galimberti∗

Abstract

This paper evaluates how initial beliefs uncertainty can affect data weighting and the

estimation of models with adaptive learning. One key finding is that misspecification of

initial beliefs uncertainty, particularly with the common approach of artificially inflating

initials uncertainty to accelerate convergence of estimates, generates time-varying profiles

of weights given to past observations in what should otherwise follow a fixed profile of

decaying weights. The effect of this misspecification, denoted as diffuse initials, is shown

to distort the estimation and interpretation of learning in finite samples. Simulations of

a forward-looking Phillips curve model indicate that (i) diffuse initials lead to downward

biased estimates of expectations relevance in the determination of actual inflation, and (ii)

these biases spill over to estimates of inflation responsiveness to output gaps. An empirical

application with U.S. data shows the relevance of these effects for the determination of

expectational stability over decadal subsamples of data. The use of diffuse initials is also

found to lead to downward biased estimates of learning gains, both estimated from an

aggregate representative model and estimated to match individual expectations from survey

expectations data.

Keywords: expectations, adaptive learning, bounded rationality, macroeconomics.

JEL codes: E70, D83, D84, E37, C32, C63.

“The longer you can look back,
the farther you can look forward.”

–Winston Churchill

1 Introduction

Adaptive learning can generate out-of-equilibrium expectations that help explain deviations
from rational expectations and an economy’s transitional dynamics towards equilibrium. Under
adaptive learning, agents’ beliefs are modelled through the assumption of a recursive learning
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mechanism that updates agents’ perceptions about the economy as new data observations be-
come available. The weights given to these observations are key determinants of the degree
of persistence introduced by adaptive learning in the evolution of expectations, and, hence, are
important factors in the explanation of economic dynamics. Due to the recursive nature of
learning, initial beliefs and an estimate of agents’ uncertainty about those beliefs need to be
specified and can account for some of the explanatory power of learning. In this paper I study
the implications of alternative specifications of initial beliefs uncertainty regarding how new
information is weighted relative to assumed initial beliefs, and the effects of these assumptions
on the estimation of models with adaptive learning.

The main contribution of this paper is to show that misspecification of initials uncertainty
can distort the weights given to observations in the assumed process of expectations formation
of agents, and that these distortions lead to significant biases in the estimation of models with
learning. There are two main components of learning involved here: initials uncertainty and
data weighting. From a model estimation point of view, “initials uncertainty” is a parameter
determining the confidence agents have, or are assumed to have, on their beliefs at the begin-
ning of the estimation sample. Such initial beliefs, nevertheless, are only initial to the extent
that they refer to the beginning of the econometrician’s estimation sample – initial beliefs are
otherwise assumed to represent the continuation of a learning process that was ongoing prior to
the start of the sample, and a similar interpretation is given to the uncertainty surrounding these
initial beliefs. The weighting of data under learning is regulated, or so it is often thought, by a
sequence of so-called learning gains, and the specification of this sequence can be associated
with different behavioural rationales for how agents process information in their expectations.
Intriguingly, I find that the weighting ascribed to new data information into agents’ beliefs can
be substantially affected by the uncertainty assumed around agents’ initial beliefs. Thus, one
key new insight of this paper is to show that the weighting of data under learning is regulated
by both the sequence of learning gains and the initials uncertainty.

I focus on applications with a recursive least squares, a popular learning mechanism as-
sumed to represent agents’ econometric learning in the bounded rationality literature. The pace
of recursive least squares learning is regulated by the sequence of learning gains, which also de-
termines how different pieces of information are weighted in the implied estimates of agents’
perceived law of motion. One popular specification is that of a constant gain, according to
which the weights given to past observations decrease geometrically and lead to the emergence
of perpetual learning. Importantly, the influence of initial beliefs can become non-negligible in
applications with constant-gain learning, and this is where initials uncertainty matters the most.
Particularly, I find that the assumption of diffuse initials, representing a rather extreme situation
where the agent is completely uncertain about his/her initial beliefs, implies that the profile of
weights given to past observations under constant-gain learning is in fact time-varying, causing
a geometric decay of weighting faster than would have been expected from asymptotic analysis
of the learning algorithm. In other words, the use of diffuse initials is equivalent to the use
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of higher starting learning gains that decrease as the sample grows and only converges to the
actual constant gain asymptotically.

I show that this result can have important implications for the estimation of models with
learning, as it can lead to an overweighting of the initial sample of observations used for model
estimation. Without a proper account for the initials uncertainty, the estimation of models under
the assumption of a constant gain over increasing samples of data would imply agents give a
decreasing weight to more recent observations. In other terms, as we accumulate more data
about the economy, and use this additional data in the estimation of models, the underlying
estimated expectations are likely to become less sensitive to new information than they used
to be with the earlier, and hence smaller, samples of data. This can introduce a downward
bias on renewed estimates of the relevance of the expectations formation mechanism in the
determination of the latest economic developments. On the other hand, diffuse initials can be
used as a way to speed up convergence of learning estimates. In most applications, learning is
assumed to represent a process that was ongoing prior to the beginning of the econometrician’s
estimation sample. In the lack of proper estimates of such initial beliefs, diffuse initials offer
an interesting alternative to be used in training samples. Hence, the effect of misspecified
initials uncertainty I discuss in this paper is a concern mainly for its use within the model
estimation sample. Considering that this approach has been considered in previous applications
in the literature – discussed below – it is important to understand the effects that the associated
information weighting distortions can have on model estimates.

To quantify these potential biases I simulate the estimation of a forward-looking Phillips
curve model and find that, indeed, diffuse initials lead to stronger small sample distortions
in the model estimates. Particularly, the misspecified initials result in a systematic underes-
timation of the relevance of expectations in this model, as well as an overestimation of the
responsiveness of inflation rates to measures of economic slack. The simulation analysis also
allows an investigation of the channels through which these effects emerge, pointing to an in-
crease in the variance of expectations associated with the diffuse initials as the main cause
for the estimation biases. This result is consistent with the analysis of information weighting
of constant-gain learning using diffuse initials; particularly, the equivalent higher gains at the
beginning of the estimation sample lead to higher variability in the learning estimates, which
ultimately increases the variance of the implied expectations. Empirical estimates with decadal
sub-samples of U.S. data also indicate that the diffuse initials can distort estimates of the relev-
ance of expectations for the determination of inflation, particularly implying a lower degree of
violations to expectational stability conditions across the different sub-samples.

Another important implication of initials uncertainty misspecification is that it can bias the
estimation of learning gains. Consider again the case of diffuse initials under constant-gain
learning. Because the diffuse initials distort the weighting that a constant gain gives to sample
observations, particularly leading to higher equivalent gains at the beginning of the sample,
the best-fitting gain values to represent agents expectations formation process will tend to be
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biased downwards. To validate this claim I explore the effects of initials uncertainty on the
estimation of individual gains using survey data on inflation expectations from professional
forecasters. Heterogeneity of learning gains constitute an important source for the emergence
of heterogeneous expectations across individuals – the related literature is discussed below.
Namely, allowing agents to differ on how much weight they give to real-time data when forming
their expectations can naturally generate distributions of expectations. As expected, I find
that gain estimates based on expectations calculated with diffuse initials are systematically
lower than gain estimates obtained with initials uncertainty estimated from a pre-sample of
data – i.e., with initials uncertainty consistent with the idea of an ongoing learning process.
Throughout the sample period, from 1968q4 to 2019q4, the average individual gains obtained
under diffuse initials fluctuate between values of 0.02 and 0.07, while those obtained with the
pre-sample initials uncertainty fluctuate between 0.07 and 0.12 – it is noteworthy that typical
gain calibrations sit around a value of 0.03 for applications with quarterly macroeconomic
data. Considering that a higher gain attenuates the relevance of initial beliefs, it is intriguing
that the misspecification of initials uncertainty, particularly in terms of making initial beliefs
more diffuse, leads to such a substantial underestimation of the learning gains.

1.1 Relation to literature

This paper is related to several branches of the literature. First, the role of initial beliefs in
adaptive learning has been previously studied by Carceles-Poveda and Giannitsarou (2007),
who showed that initials can have non-negligible effects in applications with constant-gain
learning. Slobodyan and Wouters (2012b) examined the effects that initial beliefs can have on
the estimation of macroeconomic models with learning, particularly pointing to its effects on
model dynamics. Berardi and Galimberti (2017b) evaluate methods used to obtain the initial
estimates from data and show that misspecified initials can lead to significant biases in the
estimation of other model parameters too. However, the focus of this literature has been mainly
on the effects and determination of the initial beliefs, without much attention to the issue about
initials uncertainty. This paper contributes to that extant literature by showing the relevance of
initials uncertainty.

Initial beliefs uncertainty are especially important for the estimation of models with ad-
aptive learning (e.g., Milani, 2007; Chevillon et al., 2010). One important feature of such
applications is that the learning gain, commonly assumed to be constant, is estimated jointly
with other model parameters. The rationale for a constant gain is that it allows the modelling
of persistent deviations of expectations from equilibrium while agents give a higher weight to
more recent observations. As I show in this paper, the misspecification of the initials uncer-
tainty can distort the profile of weights given to sample observations by a constant-gain learning
mechanism. One important implication is that the joint estimation of initials uncertainty and
the learning gain, as in, e.g., Milani (2008, 2011); Slobodyan and Wouters (2012b), can distort
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the behavioural and statistical identification of these parameters. Namely, in this paper I show
that the effect of an initially higher learning gain can be equivalently obtained with a higher
degree of initials uncertainty, and vice versa.

This finding is also related with the literature assessing the impact of the specification of
prior beliefs on the dynamics of expectations (Cho et al., 2002; Sargent and Williams, 2005).
In this literature, prior beliefs are defined within a Bayesian estimation context and represent
agents’ beliefs about time-varying perceived laws of motion. Sargent and Williams (2005)
show that such priors determine not only the convergence of learning to equilibria, but also the
transient dynamics of expectations towards equilibria. It is important to note that these prior
beliefs determine the specification of both the learning gains and the proper initialization of
beliefs according to the corresponding model of agents’ beliefs. For example, when agents are
assumed to update their beliefs with a constant-gain recursive least squares learning mechan-
ism, as in the applications covered here, this assumption corresponds to a specific Bayesian
prior about drifting beliefs (see Berardi and Galimberti, 2013). An important contribution of
this paper is to stress and quantify the importance of initial beliefs uncertainty for the implied
transient dynamics of expectations estimated under this popular prior belief assumption.

In this paper I show that the use of diffuse initials, by which the uncertainty agents are
assumed to assign to initial beliefs is overstated, can be particularly harmful to the estimation of
models with learning. Typical applications of learning in the literature evaluate the robustness
of estimation results to alternative specifications of initials, occasionally including the diffuse
initials approach in the analysis. For example, Slobodyan and Wouters (2012a), in a context of
Kalman filter learning, find that the fit and evolution of beliefs within a macroeconomic model
can be strongly affected by the use of diffuse initials. Lubik and Matthes (2016) also find
that diffuse initials can affect inferences about equilibrium indeterminacy, particularly with
respect to the U.S. Great Inflation period of the 1970s. Matching survey expectations data
with adaptive learning, Markiewicz and Pick (2014) favour the diffuse initials for providing a
superior forecasting performance of a range of macroeconomic and financial variables. Thus,
an important concern for applications of adaptive learning is the lack of guidance on what is
the appropriate approach to initialize learning beliefs. This paper attempts to address this issue
with respect to the specification of initials uncertainty. Particularly, the diffuse initials approach
is shown to lead to a distortion of information weighting as well as biased estimates of model
parameters and the learning gain.

This is also related with a recent strand of the literature attempting to understand the het-
erogeneity of individual inflation expectations through the lens of adaptive learning. Pfajfar
and Santoro (2010) identified different mechanisms of expectations formation to model the
distribution of consumers inflation expectations. Malmendier and Nagel (2016) propose an
age-dependent adaptive learning model whereby individual lifetime experiences of inflation
help explain the distribution of consumer inflation expectations. Within a benchmark New
Keynesian macroeconomic model, Cole and Milani (2021) estimate individual learning gains
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that help explain the heterogeneity of individual expectations observed from survey of profes-
sional forecasters data on output growth and inflation. Intriguingly, previous applications in
the literature commonly report that gain estimates obtained under diffuse initials tend to be
lower than those obtained under non-diffuse initials. In this paper I show that this result is to
be expected and reflects the weighting distortion associated with an artificial and unwarranted
increase of initial beliefs uncertainty.

This paper also contributes to the analysis of structural estimation of forward-looking Phil-
lips curve models (see, e.g., Mavroeidis et al., 2014; Coibion et al., 2018). One of the key
findings in this paper relates to the impact of initials uncertainty on the estimation of the para-
meter determining the relevance of inflation expectations, which ends up downward biased
when estimated under diffuse initials. In the standard New Keynesian Phillips curve model,
this parameter corresponds to the subjective discount factor, a parameter that is commonly cal-
ibrated close to unity. Under learning this parameter is also a key determinant of expectational
stability, and here I consider estimation of this parameter as a mean to infer the emergence
of unstable expectations. This approach also relates to recent research giving emphasis to ad-
ditional behavioural channels to the discounting term of forward-looking variables, such as:
limited common knowledge (Angeletos and Lian, 2018), finite planning horizons (Woodford,
2019), or cognitive discounting (Angeletos and Lian, 2018). This paper contributes to this lit-
erature by showing that (mis)specification of initial beliefs uncertainty can affect estimates of
the relevance of forward-looking expectations for economic dynamics.

Finally, this paper contributes to the literature drawing analytical expressions for the weight-
ing of information implied by different specifications of the learning algorithm, particularly fo-
cusing on the recursive least squares algorithm. The formulation of the recursive least squares
algorithm can be traced back to the systems identification literature (see, e.g., Ljung and Soder-
strom, 1983), where this algorithm is derived as the recursive formulation of a weighted least
squares estimator. Here, I describe a renewed and more general non-recursive representation of
this algorithm. Namely, I show that the recursive least squares is more properly represented by
a penalized weighted least squares estimator, where a penalty term accounts for the effects of
the learning initial estimates. The framework proposed in this paper provides flexible analytical
expressions for the calculation of data weights under alternative assumptions on the behaviour
of the learning gains, including the traditional decreasing-gain (Marcet and Sargent, 1989) and
constant-gain (Sargent, 1999) specifications, as well as more sophisticated mechanisms such as
endogenous gain-switching (Marcet and Nicolini, 2003) and age-dependent (Malmendier and
Nagel, 2016) gain specifications.

1.2 Paper organization

The remainder of this paper is split into five other sections: Section 2 outlines the learning
framework and derives the main analytical expressions about information weighting and initials
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uncertainty; Section 3 presents simulation analysis of the distortionary effects of diffuse initials
in the estimation of a forward-looking Phillips curve model with learning; Section 4 presents
an empirical application of the same model to U.S. data; Section 5 shows the relevance of
initials uncertainty for the estimation of individual learning gains; Section 6 concludes with
some remarks. Detailed derivations and supplementary results are provided in the Appendix.

2 Learning Framework

In this section I outline the general framework of recursive learning in order to derive the in-
formation weighting implications of different specifications of the learning gains and initials.
Focusing on the case of a constant-gain, I then show how the specification of uncertainty about
the initial learning estimates can distort the profile of weights that this popular learning mech-
anism assigns to observations at the beginning of estimation samples.

2.1 Background

In models with adaptive learning a perceived law of motion (PLM) is specified relating the
variables agents are assumed to observe and those variables they care and need to form expect-
ations about. Focusing on a univariate case, a typical PLM specification is given by a linear
regression model of the form

yt = x′tΦt + εt , (1)

where yt is assumed to be related to a vector of (pre-determined) variables, xt = (x1,t , . . . ,xk,t)
′,

through the vector of (possibly time-varying) coefficients Φt = (φ1,t , . . . ,φk,t)
′, and εt denotes

a white noise disturbance term. This specification can be easily extended to a multivariate
context, by augmenting yt , εt , and Φt with extra columns, and to different specifications of
lag/lead in the timing of expectations, by adjusting the timing of xt elements.

In a typical economic modelling context, the observations of yt needed to estimate (1), as
well as some or all of the regressors in xt , are endogenously determined within a hypothetical
structural model. These observations are the result of market equilibrium and the interac-
tion between the economic decisions by the many different actors that compose the economy,
such as households, firms, and policymakers. Hence, due to the relevance of expectations for
these agents’ economic decisions, the same macroeconomic outcomes that are relevant for the
formation of expectations are themselves determined by expectations, a feature often called
self-referentiality.

Notwithstanding, for the purposes of deriving weighting expressions I will abstract from
one side of this self-referential nature of expectations, and focus instead on the modelling of
agents’ PLM. I.e., I will assume agents form expectations according to equation (1) without
accounting for the endogeneity of the involved variables. Notice, as is usually the case in
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applications of adaptive learning, this implies some degree of bounded rationality in the way
agents form expectations. The effects of self-referentiality are taken into account in the simu-
lation and empirical estimation exercises presented in later sections.

2.2 Learning and initials uncertainty

A recursive estimator is assumed to represent how agents update their PLM estimates as new
observations become available. One popular algorithm is given by the Recursive Least Squares
(RLS),

Φt = Φt−1 + γtR−1
t xt

(
yt−x′tΦt−1

)
, (2)

Rt = Rt−1 + γt
(
xtx′t−Rt−1

)
, (3)

where Rt stands for an estimate of regressors’ matrix of second moments, E [xtx′t ], and γt is
a learning gain parameter. The learning gain is an important parameter of the learning mech-
anism because it determines how quickly new information is incorporated into the recursive
estimates, and hence, how quickly agents react to different pieces of information (this relation
will be discussed in the next subsection). Moreover, as a recursive process, these estimates
need to initialized: Φ0 are initial estimates representing agents’ beliefs at the beginning of the
econometrician’s sample of data, and the inverse of R0 can be interpreted as a measure of the
uncertainty agents assign to these initial estimates.

The main focus of this paper is about the determination of the initial beliefs uncertainty, R0,
in a context of econometric estimation of economic models with learning. Naturally, the initial
estimates should ideally be set or estimated to be consistent with plausible agents’ beliefs at
the beginning of the modelled sample. Berardi and Galimberti (2017b) study methods for the
estimation of Φ0 aimed to achieve such a goal, although assuming a fixed R0 across model
estimation exercises. As it turns out, alternative assumptions of R0 can play an important role
in the estimation of models with learning. The main contribution of this paper is to provide an
analysis of this component.

From a Bayesian point of view, Rt is inversely related to the uncertainty in the correspond-
ing Kalman filter estimates of Φt modelled as a random walk (see Evans et al., 2010; Berardi
and Galimberti, 2013). Hence, R0 → 0, henceforth denoted as diffuse initials, can be inter-
preted as increasing the uncertainty about the initial estimates, in which case the observations
at the beginning of the estimation sample will be given extra weight to compensate for the
initials uncertainty.1

This effect has two main implications for the estimation of models with learning. First, dif-
fuse initials can be used as a way to accelerate convergence of learning estimates to a process

1Also, notice that if R0 = 0 (exactly rather than as a limit), (2)-(3) implies that Φ1 = (x1x′1)
−1 x1y1, which

will be indeterminate for k > 1. For this reason, in the applications that follow I approximate diffuse initials by
downscaling a reference R0 towards zero by multiplying it by a small constant.
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representing ongoing learning that was already happening prior to the beginning of the econo-
metrician’s estimation sample. This particular property makes the diffuse initials an interesting
alternative to be used in training samples. Second, within an estimation sample, the overweight-
ing of initial observations distorts the representativeness of the implied expectations, which, in
turn, can affect model estimates that depend on the behaviour of such expectations. To be more
precise, in what follows I show how information weighting can be traced back to the joint
definition of the learning gains and initials using a renewed and more general non-recursive
representation of the learning algorithm.

2.3 Non-recursive form and information weighting

The weight given to a sample observation determines the amount of information from that
particular observation that is incorporated into the PLM estimates. In the RLS algorithm of
equations (2)-(3), such weighting of information is controlled by the sequence of learning gains.
More precisely, the sequence of learning gains can be related with the relative weights given
to sample observations in the estimation process. In order to draw this relationship it is useful
to consider the non-recursive formulation corresponding to this estimation problem. When
initialized from arbitrary initials, Φ̃0 and R̃0, the RLS has a non-recursive form given by

Φt = argmin
Φ̃t

t

∑
i=1

ωt,i
(
yi−x′iΦ̃t

)2
+ωt,0

(
Φ̃
′
0− Φ̃

′
t

)
R̃0
(
Φ̃0− Φ̃t

)
, (4)

=

[
t

∑
i=1

ωt,ixix′i +ωt,0R̃0

]−1[ t

∑
i=1

ωt,ixiyi +ωt,0R̃0Φ̃0

]
, (5)

where the weights are related to the sequence of learning gains according to

ωt,i =


∏

t
j=1
(
1− γ j

)
f or i = 0(initial),

γi ∏
t
j=i+1

(
1− γ j

)
f or 0 < i < t,

γt f or i = t.

(6)

Thus, when the initials are taken into account, the RLS is equivalent to a Weighted Least
Squares (WLS) estimation problem augmented with a penalty on squared deviations between
estimates and initials. To the best of my knowledge this non-recursive formulation of the RLS
for arbitrary initials has never been outlined in the previous literature. In fact, the origins of
the RLS can be traced back as the recursive formulation of the WLS solution (without the
penalty on initials) to the minimization of the sum of weighted error squares in the systems
identification literature (see, e.g., Ljung and Soderstrom, 1983). Hence, the innovation here
stems from following the inverse approach, i.e., taking the recursive form of (2)-(3) with initials{

Φ̃0, R̃0
}

as the starting point, I obtain (5)-(6), which, in turn, can be translated as a solution
to the estimation problem in equation (4).
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The non-recursive formulation above allows the calculation of such weights for any arbit-
rary sequence of learning gains. Also notice that the weights, ωt,i, defined in equation (6), are
already in relative terms, as obtained by dividing the absolute weights by the sum of weights
given to sample observations and the initials. This follows from the fact that, under the corres-
pondence between the RLS and the penalized WLS outlined in this paper, the sum of weights
will always be equal to unity.

Moreover, it is often interesting to evaluate how the observation weights evolve relative to
the last observation in the sample, i.e., redefining equation (6) in terms of lags relative to the
end of the sample, ϖt,l = ωt,t−l , in which case we look at

ϖt,l =


∏

t
j=1
(
1− γ j

)
f or l = t,

γt−l ∏
l−1
j=0
(
1− γt− j

)
f or 0 < l < t,

γt f or l = 0.

(7)

2.4 Constant-gain learning and diffuse initials

The constant-gain (CG) learning specification was introduced in the applied learning literature
by Evans and Honkapohja (1993) and became popular after Sargent (1999) for its improved
capability of tracking the evolution of time-varying environments. This specification has also
been under the spotlight of the most recent research on the dynamic modelling of expectations
for its potential of generating escape dynamics over finite stretches of time (see Williams, 2019)
and asymptotically stable distributions of beliefs (see Galimberti, 2019).

One important property of the CG-RLS relates to the persistent influence of the learning
initials. Under CG-RLS learning, γ

cg
t = γ̄ , and the weights are given by

ω
cg
t,i =

(1− γ̄)t f or i = 0,

γ̄ (1− γ̄)t−i f or 0 < i≤ t.

Hence, the relative weights given to sample information by the CG-RLS decrease with the
observation lag (l = t − i), while the weight given to the initials decreases with the sample
size. However, the duration of the effects of the initials within finite samples will depend on
the learning gain. For example, the number of observations needed to equate the cumulative
weight given to sample information to the weight given to the initials can be easily calculated
as

i∗

∑
j=1

ω
cg
t, j = ω

cg
t,0,

i∗ =
log(1/2)

log(1− γ̄)
.
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For a learning gain of γ̄ = 0.03, a value typically found in applications with quarterly macroe-
conomic data (see Berardi and Galimberti, 2017a, for a review), i∗ ' 23, i.e., it takes about six
years of quarterly data for the CG-RLS to assign a higher weight to the sample of observations
than the weight given to the learning initials in the PLM estimates. This clearly highlights the
importance of properly estimating such learning initials under CG learning.

Another important property of the CG-RLS relates to its asymptotic weighting behaviour
relative to lagged observations. Although the CG-RLS assigns a vanishing weight to any given
sample observation i, the weight given to observations at a fixed lag l do not change with t. This
property makes the CG-RLS particularly well suited for modelling the behavioural assumption
that agents give a higher emphasis to the more recent observations than to those collected farther
into the past.

However, without a proper initialization of R0, the weights given to lagged observations by
the CG-RLS can decay faster than the profile of weights expected from its asymptotic operation.
Particularly, under diffuse initials, R0→ 0, the CG-RLS weights are given by

ϖ
dcg
t,l =

0 f or l = t,
γ̄(1−γ̄)l

1−(1−γ̄)t f or 0≤ l < t,
(8)

where the information from the initials are completely discarded.2 More importantly, the
weight given to sample observations are declining not only with the observation lag, but also
with the size of the sample. These effects are illustrated in figure 1, which depicts the lagged
weights given to sample observations under diffuse initials for varying sample sizes. Notice the
asymptotic weights depicted in figure 1 are in fact equivalent to ϖ

cg
t,l . Hence, although the rel-

ative sample weights under diffuse initials still decrease as the observation becomes outdated,
the actual profile of sample weights is not time-invariant. As we will show in the next section,
other than the distortion that such diffuse initials can cause to the behavioural interpretation of
CG learning, such weighting distortions can generate non-negligible estimation biases in small
samples.

Before turning to a quantification of such estimation biases, notice that an alternative view
about the distortionary effects of diffuse initials is obtained by solving for the equivalent time-
varying gains. Namely, equating equation (7) to equation (8) one can find that

γ̃t = γ̄/
(
1− (1− γ̄)t) , (9)

where γ̃t stands for the time-varying gains equivalent, in terms of information weighting, to a
constant-gain γ̄ under diffuse initials. The behaviour of such time-varying gains are illustrated
in figure 2. Notice the equivalent gain used on the first observation under diffuse initials is

2To see why the initials receive zero weight under diffuse initials, notice from equation (5) that Φt becomes
insensitive to Φ̃0 when R̃0→ 0.
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Figure 1: Constant-gain weights under diffuse initials.
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Figure 2: Equivalent time-varying gains under diffuse initials.
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Notes: The equivalent time-varying gains are calculated according to equa-
tion (9).

equal to 1 – this is consistent with the observation above that a diffuse initial gives a zero
weight to the initials, which means the first learning estimate will be determined entirely by the
first sample observation (see also footnote (1)). Hence, the use of CG learning under diffuse
initials is equivalent to the application of a decreasing sequence of gains that only converges to
the underlying constant gain asymptotically.

3 Simulation Analysis

One key finding of the analysis of information weighting under least squares learning above
is that the assumption of diffuse initials can distort the profile of weights given to sample
observations by a constant-gain mechanism. An immediate question of interest is how much
can such weighting distortions lead to biases in the estimation of models with learning. I now
turn to a quantification of these effects with a simulation of the estimation of a macroeconomic
model.
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3.1 Model

I focus on a standard New Keynesian Phillips Curve (NKPC) model, given by

πt = βπ
e
t+1 +λxt +α +ut , (10)

xt = ρxt−1 + vt ,

where πt is inflation; πe
t+1 represents agents’ expectations for next period inflation; xt is a

proxy for real marginal cost, usually assumed to be proportional to the labour share of income
and the output gap; and, ut is a disturbance that can be interpreted as a measurement error or
as an unobserved cost-push supply shock. The forcing variable, xt , is usually approximated
empirically with measures of output gap, labour share of income, or unemployment rates (see
Mavroeidis et al., 2014). The parameters in equation (10) can be interpreted as semi-structural
when associated to deeper structural parameters of a micro-founded model of firms’ staggered
price setting (see Woodford, 2003, Ch.3). Particularly, under a Calvo framework, β stands for a
discount factor, common across firms, while λ decreases with the fraction of firms that cannot
update their prices in any given period, which leads to a “flatter” Phillips curve.

Under adaptive learning agents form expectations according to a PLM given by

πt = ϕt−1 +φt−1xt + zt , (11)

where zt stands for an expectation error, and Φt = {ϕt ,φt} are parameters estimated with the
RLS algorithm of (2)-(3). These PLM parameters are expected to converge to the rational ex-
pectations equilibrium (REE), φ∗ = λ/(1−βρ) and ϕ∗ = α/(1−β ), as long as β < 1 and
βρ < 1 (E-stability condition, see Evans and Honkapohja, 2001, pp. 198-200). The RE solution
provides an interesting reference to simple reduced form estimates of the Phillips curve rela-
tionship between πt and xt . Particularly, for given α , β and λ , the implied φ∗ and ϕ∗ provide a
description of the trade-off between inflation and, say, unemployment, after expectations have
converged to equilibrium.

3.2 Simulation design

I generate 10,000 samples of artificial series of πt and xt assuming that γ̄ = 0.03, β = 0.9,
λ = 0.2, α = 0, ρ = 0.75, ut ∼ N (0,3), and vt ∼ N (0,1). These are parameter calibrations
close to their empirical counterparts. The learning gain of γ̄ = 0.03 is in the range of calibra-
tions reported by Berardi and Galimberti (2017a, Fig.8) to match survey forecasts of US CPI
inflation from professionals, consumers, and policymakers. The discount factor, β , is often
calibrated at a value close to 1; here I set this parameter to a slightly lower value in order to
avoid being too close to the E-stability upper bound during the estimation. Also note that E-
stability conditions are not strictly stringent in the determination of expectations stability under
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constant-gain learning (see Galimberti, 2019). There is less empirical agreement with respect to
the slope parameter λ , although a positive value with borderline significance is often reported
in the literature (see Mavroeidis et al., 2014).

For each sample I simulate the model for 2,000 observations, and then discard the first 1,000
observations to remove transient effects from PLM initials. Letting t start from -1,000, the PLM
learning coefficients, Φ−1,001, are initialized from their implied REE values and R−1,001 from
E [xtx′t ]. I then use the remaining data for estimation of β and λ , under varying sample sizes and
initial R̂0 assumptions. Particularly, to evaluate the effect of diffuse initials I consider estimates
with: (i) the correct initials uncertainty, R̂0 = R0, which in the artificial data is given by the
estimate from observation 1,000 out of the 2,000 simulated observations; (ii) approximately
diffuse initials, R̂0 = κR0, where κ is set to a small value of 10−4; notice R̂0 cannot be set
exactly to zero as this would lead to degenerate estimates. All other parameters, including the
learning initials Φ0 and the learning gain γ̄ , are set to their actual values – I discuss robustness
checks about these assumptions below in section 3.5.

Since I am fixing γ̄ , ρ , and α , estimation of β and λ is linear on π̂e
t+1 and xt , where π̂e

t+1 is
determined by the PLM (11) and the learning estimates from the LS algorithm (2)-(3), which,
in turn, depend on the simulated data, γ̄ , φ 0, and R̂0. In order to obtain a clearer understand-
ing of the biases introduced by the alternative R̂0 assumptions, I conduct stepwise estimation
exercises, first starting with the separate estimation of β and λ with simple regressions given
by

(πt−λxt) = β̂ π̂
e
t+1 + υ̂1t , (12)

and (
πt−βπ̂

e
t+1
)
= λ̂xt + υ̂2t , (13)

respectively. On another exercise I then estimate β and λ jointly with

πt = β̂ π̂
e
t+1 + λ̂xt + υ̂3t . (14)

All regressions are estimated using OLS. Christopeit and Massmann (2018) examine the asymp-
totic properties of the OLS estimator of structural parameters in models with learning, estab-
lishing its consistency in spite of non-standard distributions for traditional statistical inference.
Interestingly, I found that the inclusion of an intercept in the estimation causes instabilities in
the estimation of β – these effects can be attributed to strong persistence induced in π̂e

t+1 by the
use of a low learning gain, as well as collinearity with the PLM intercept. Given that α = 0 in
the generated data, I estimate regressions without intercept.

3.3 Simulation results

I evaluate the effect of diffuse initials by considering how alternative assumptions of R̂0 affect
the estimates of β and λ . Starting with the individual estimation exercises, figure 3 depicts
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Figure 3: Individual estimates of simulated Phillips curve model with constant-gain learning.
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Notes: Estimates of equation (10) obtained individually, i.e., fixing λ when estimating β and
vice versa, over 10,000 simulations of the model. The simulated data is generated with
γ̄ = 0.03, β = 0.9, λ = 0.2, ρ = 0.75, σ2

u = 3, and σ2
v = 1. Both γ̄ and ρ are pre-

fixed to their true values during estimation. On each box, the central mark indicates the
median, and the bottom and top edges of the box indicate the 25th and 75th percentiles,
respectively; the whiskers extend to ±1.5 times the interquartile range, and estimates
outside this range are considered outliers and are depicted as dots.

the distributions of model estimates for varying sample sizes and initials uncertainty. The β

estimates are clearly downward biased under the assumption of diffuse initials, depicted in red.3

As will be discussed below, this finding can be directly related to the diffuse initials weighting
distortions discussed in the previous section.

The distributions of the β estimates are also highly skewed towards values below the true
value of the parameter, especially for small samples – that is the case even for the estimates
obtained under the correct initials. This result is consistent with the findings of Chevillon et al.
(2010) showing that learning generates non-standard distributions of estimates of structural
model parameters. Interestingly, the individual λ estimates are not affected by the varying
initials, neither their distributions are affected by skewness. Hence, the inference difficulties
caused by non-standard distributions under learning seem tied to the estimation of the model
parameter associated with the expectations variable. As expected, these estimates tend to con-
verge to their actual values for bigger estimation samples.

The results from the joint estimation exercise, depicted in figure 4, are similar to the pre-
vious exercise for the estimates of β , though with significant quantitative differences. For
example, the median β̂ s estimated jointly using diffuse initials are between 0.72 (T = 50) and
0.10 (T = 1,000) below the true value of β , while in the individual estimation exercise these
medians underestimated β by 0.40 (T = 50) and 0.04 (T = 1,000). The bias also increased sig-
nificantly using the correct initials, e.g., rising from -0.04 in the individual estimation exercise

3The notion of bias is commonly defined as the mean difference between the estimate and its true value.
Although the mean estimates are not directly depicted in the boxplot diagrams, the analysis based on the median
estimates leads to equivalent conclusions as with the corresponding mean estimates.
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Figure 4: Joint estimates of simulated Phillips curve model with constant-gain learning.
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Notes: Same as figure 3 except that estimates are obtained jointly.

to -0.28 in the joint estimation one (both with T = 50). The estimates with the correct initials
were also more strongly affected by sampling variation as reflected by the greater dispersion of
estimates under the smaller estimation samples.

Another important difference in the joint estimation exercise relates to a positive bias in
the estimates of λ , especially for the smaller estimation samples. The distributions of these
λ estimates also show non-standard behaviour, though, in contrast to the β estimates, skewed
towards values above the true value of the parameter. More importantly, here we again find that
the estimates using the diffuse initials lead to greater biases. Quantitatively, the median bias
in the jointly estimated λ̂ s using diffuse initials (+0.30 with T = 50, +0.05 with T = 1,000)
are more than twice the bias obtained with the correct initials (+0.14 with T = 50, +0.02 with
T = 1,000).

3.4 Analysis

In order to relate the biases documented above to the weighting distortions induced by diffuse
initials, it is instructive to consider the limiting behaviour of the OLS estimators of the struc-
tural model parameters. Starting with the individual estimation exercises, the OLS estimate of
equation (12) is given by

β̂
ols =

Cov(π−λx, π̂e)

Var (π̂e)
,

=
Cov(π, π̂e)−λCov(x, π̂e)

Var (π̂e)
, (15)

where I drop the variables subscripts for succinctness. Clearly, β̂ ols would only differ, in prob-
abilistic terms considering sampling variation, from the correct estimate of β because of de-
viations in π̂e from its true value. Hence, the difference in estimation biases with respect to
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Figure 5: Evolution of simulated data moments calculated across simulations.
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R̂0 assumptions can be understood as differences caused by such assumptions in the statistical
moments of the simulated data relative to the implied expectations derived from learning.

Figure 5 presents the evolution of such statistics for the simulated data – Cov(π, π̂e) and
Cov(x, π̂e) are presented together in the RHS panel. Of particular interest is the effect of in-
creasing Var (π̂e), which according to equation (15) would cause β̂ ols to decrease. As the LHS
panel of figure 5 indicates, the use of diffuse initials led to a substantial inflation of the variance
of the implied expectations at the beginning of the estimation sample, which explains the down-
ward bias observed in the estimates of β under diffuse initials. This finding is also consistent
with the analysis of the previous section showing that the diffuse initials lead to an overweight-
ing of initial sample observations, or, equivalently, to an increase in the initial learning gains.
As is well known, a higher learning gain leads to more volatile learning estimates (see, e.g.,
Evans and Honkapohja, 2001). Hence, the use of diffuse initials leads to more volatile learning
estimates and their implied expectations, which ultimately translates into more biased estimates
of the relevance of expectations in this model.

Similar analysis can be applied to the other model estimates. For the second exercise, the
OLS estimate of equation (13) is given by

λ̂
ols =

Cov(π−βπ̂e,x)
Var (x)

=
Cov(π,x)−βCov(x, π̂e)

Var (x)
. (16)

In contrast to the first exercise, the individual OLS estimate of λ is not affected by the variance
of the expectations variable – to facilitate analysis, terms not affected by the initials are depicted
with a upper bar. Here, the only component that may cause differences between the initial
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assumptions is the covariance between the exogenous variable and the implied expectations,
Cov(x, π̂e). As the RHS panel of figure 5 indicates, this statistic was not strongly affected by
the use of diffuse initials, which explains why there was no significant difference observed in
the estimates reported for this exercise, in the RHS panel of figure 3.

Finally, for the joint estimation exercise the corresponding OLS estimates are given by

β̂
ols =

Var (x)Cov(π, π̂e)−Cov(x, π̂e)Cov(π,x)

Var (π̂e)
(

Var (x)−Cov(x, π̂e)
) , (17)

λ̂
ols =

Var (π̂e)Cov(π,x)−Cov(x, π̂e)Cov(π, π̂e)

Var (x)(Var (π̂e)−Cov(x, π̂e))
. (18)

Although in this case the effects become more convoluted, it is clear that: (i) the variance of
expectations still has a negative effect on the β estimates if Var (x) > Cov(x, π̂e), which was
the case in the model simulation presented here; (ii) the estimates of λ are now also affected
by initials uncertainty through its effects on the variance of expectations; particularly, it can be
shown that when Cov(x, π̂e)> 0 (generally true for model 10 given that x enters the PLM) and
Cov(π, π̂e)>Cov(π,x) (also generally the case for β > λ ), the λ estimates will be positively
affected by the increasing variance of expectations associated with the diffuse initials. These
two points offer an explanation for the biases caused by the diffuse initials reported in figure 4.

3.5 Robustness checks

I conducted several robustness checks on these simulation exercises, the results of which are
all provided in the Appendix. First, regarding the assumption of correct initial beliefs, a more
realistic situation is one where we need to obtain such estimates from the sample of data avail-
able. To address that concern I considered pre-sample estimates of Φ0 and R0 and obtained
similar results. Particularly, I considered initials obtained from a pre-sample of 25 observations
using a variety of methods: (i) diffuse WLS initials, where Φ0 and R0 are obtained using equa-
tion (5) and assuming R̃−26 = κI; (ii) OLS initials; (iii) diffuse WLS initials departing from
R̃−26 = κR̂ols

0 , where R̂ols
0 is obtained from (ii); (iv) non-diffuse WLS initials departing from

R̃−26 = R̂ols
0 . All these alternatives lead to virtually equal figures as those presented in figures 3

and 4.
Another potentially controversial assumption is about the fixing of the learning gain to its

actual value. For empirical purposes this parameter has to be either calibrated on the basis of
survey data or actuals forecasting performance (see, e.g., Markiewicz and Pick, 2014; Berardi
and Galimberti, 2017a), or jointly estimated with other structural model parameters (see, e.g.,
Milani, 2007; Chevillon et al., 2010; Slobodyan and Wouters, 2012b). Estimation of the learn-
ing gain introduces nonlinearities in the determination of jointly estimated structural model
parameters and is complicated by weak identification and persistent dynamics (Chevillon et al.,
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2010). Particularly, under constant-gain learning RE weak identification issues are propagated
as γ̄ → 0 (no learning), and collinearity between π̂e

t+1 and xt increases the lower the learning
gain.

In spite of these issues, in order to address the fixed gain concern I also conducted exercises
with the joint estimation of the learning gain using nonlinear least squares.4 Figure 6 presents
the resulting estimates of the learning gains – corresponding estimates of β and λ are again
distributed similarly as in figures 3 and 4, hence I provide them only in the Appendix. As
expected from the discussion above, the learning gain estimates tend to be widely dispersed,
especially for smaller samples. Nevertheless, as the sample size increases, the median gain
estimates tend to converge faster to the true gain value under the pre-sample initials than using
the diffuse initials. In fact, notice that the gain estimates obtained under the diffuse initials tend
to concentrate around smaller values than those obtained with a pre-sample. This is consistent
with this paper’s argument that the diffuse initials distort the weights associated with the learn-
ing gains upwards. Because initial sample observations are overweighted, a lower learning
gain is required to explain the same degree of updating. Thus, the re-scaling of R0 generates a
substitution effect on the role played by the learning gain.

4 Empirical Estimation of a Phillips Curve with Learning

I now turn to an empirical evaluation of the effects of diffuse initials on the estimation of the
standard NKPC model with constant-gain learning. As in the simulation analysis of the previ-
ous section, the main focus of this empirical exercise is on the effect that initials uncertainty can
have on the estimates of the model parameters. Particularly, I again consider two alternatives
for the initial matrix of second moments: (i) an estimate obtained with the pre-sample data to
represent the “correct” initials, henceforth denoted as the non-diffuse initials – details about
this initialization are provided below; and, (ii) a downward re-scaled version of (i) to represent
the diffuse initials approach.

4.1 Data and estimation approach

I use U.S. quarterly data covering the period from 1947 to 2019, focusing on estimates of β

and λ across decade sub-samples. The focus on sub-samples allows an analysis of the stability
of the Phillips curve relationship, which has historically attracted great interest in the literature
(see, e.g., Gordon, 2011). Another known issue with empirical estimates of the NKPC relates
to their sensitivity with respect to the data definitions of the measures of price inflation and
production slack (see Mavroeidis et al., 2014).

4Due to the sensitivity of expectations to the values of γ and β , estimation is conducted using a constrained
optimization algorithm, with bounds given by: γ ∈ [0,0.5] and β ∈ [−4,3].
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Figure 6: Estimates of constant-gain from simulated Phillips curve model.

(a) Joint with β (pre-fixing λ ).

50  100 250 1000

0

0.1

0.2

0.3

0.4

0.5

Estimation sample

(b) Joint with λ (pre-fixing β ).

50  100 250 1000

0

0.1

0.2

0.3

0.4

0.5

Estimation sample

(c) Joint with β and λ .

50  100 250 1000

0

0.1

0.2

0.3

0.4

0.5

Estimation sample

(d) Individually (pre-fixing β and λ ).

50  100 250 1000

0

0.1

0.2

0.3

0.4

0.5

Estimation sample

Notes: Same as figure 3 except that gain estimates are obtained by nonlinear least squares jointly
with estimates of β , in panel (a), jointly with estimates of λ , in panel (b), jointly with
estimates of both β and λ , in panel (c), and, individually while pre-fixing β and λ to
their true values, in panel (d).
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To deal with such specification uncertainty, I consider combinations of three inflation meas-
ures, based on the CPI, the core CPI, and the GDP deflator, with four alternative proxies for
real marginal costs, namely, an output gap measure based on real GDP data, non-farm busi-
ness sector labour shares, unemployment rates, and the unemployment rate gap relative to an
estimate of the natural rate. Inflation rates are annualised by multiplying the quarterly rates by
four. For comparative purposes, all measures of xt are filtered over the full sample using the
Hodrick-Prescott filter (with λ HP = 1,600), and all measures, including the inflation rates, are
standardized prior to estimation to have zero mean and variance equal to unity over the full
sample. All data series are obtained from the FRED database of the St. Louis Fed.

To be consistent with the previous simulation analysis, all model estimates are obtained
using OLS. I focus on the joint estimation of β and λ , estimating regressions of the form
of equation (14), while pre-fixing the other parameters to plausible values: γ̄ = 0.03 is again
fixed according to the calibrations reported by Berardi and Galimberti (2017a) to match survey
forecasts; ρ is pre-estimated by fitting a first-order autoregression on the full-sample of each
measure used as xt ; the learning initials {ϕ0,φ0,R0} are estimated over pre-sample data using
WLS in order to obtain initials consistent with the constant-gain learning adopted in the estim-
ation sample (see Berardi and Galimberti, 2017b). The pre-samples include all data available
prior to the start of each decade estimation sample. Note the PLM includes both a constant and
a slope coefficient on xt as in equation (11).

4.2 Results and analysis

Figures 7 and 8 present the estimation results. There is substantial variation in the model estim-
ates across the variables definitions and the sub-samples. The λ estimates are mostly consistent
with their expected signs up to the end of the 20th century, although rarely with statistical signi-
ficance (depicted with a filled marker). In contrast, the majority of the sub-sample β estimates
are statistically significant at the 5% significance level (not depicted). However, as discussed
above, such inferences should be interpreted with caution considering that learning can gener-
ate non-standard distributions of statistical tests.

According to the model estimates, the 1960s may be considered as the “golden days” of
the Phillips curve, as several λ estimates display statistical significance and signs according to
expectations. Similarly, most β estimates in the 1960s sub-sample are statistically significant
and below unity, hence satisfying E-stability conditions in this model. The estimates for the
1970s, in contrast, indicate an important change on the estimates associated with the forward-
looking expectations in this model. Namely, the β estimates increase above unity, also with a
more robust increase using the non-diffuse initials, which suggests a period of unstable inflation
expectations relative to observed inflation rates. The β estimates then return to the E-stability
range during the 1980s, while the λ estimates become less dispersed between the values of 0
and 0.2.
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Figure 7: Estimates of U.S. Phillips curve with constant-gain learning by decades.
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Notes: Estimates of equation (14) obtained using different combinations of data definitions for
inflation, πt = {CPI, core CPI, GDP deflator}, and proxy for real marginal cost, xt = {real
GDP gap, labour share, unemployment, natural rate of unemployment gap}. For com-
parative purposes, both πt and xt are standardized prior to estimation, and estimates with
unemployment as xt are depicted as −λ̂ . All estimates obtained under a fixed learning
gain, γ̄ = 0.03. Statistical significance at the 5% level are depicted for λ̂ with filled
markers and are based on HAC standard errors. Such inferences under learning should
be interpreted with caution since estimators distributions can become nonstandard.
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These results are consistent with the view that a strong correlation between inflation and
economic activity may have misled policymakers to believe on an apparent trade-off between
inflation and unemployment in the 1960s. The associated decline of active stabilization policies
then led to an increase in inflation expectations in the 1970s, here reflected as a period of
unstable expectations, which ultimately increased actual inflation. This is the so-called Great
Inflation period, which prompted the monetary authority to revert to a more active policy of
inflation and expectations stabilization in the 1980s (see, e.g., Orphanides and Williams, 2005;
Primiceri, 2006; Sargent et al., 2006).

The estimates from the 1990s reflect a period of decreased relevance of inflation expect-
ations, a result that, again, seems more robust with the use of the non-diffuse initials. This
result is indicative of a build-up of credibility in the monetary authority resolve to keep in-
flation stable. Interestingly, in the 2000s and 2010s, the β estimates jump again outside the
E-stability range, especially for the estimates based on non-diffuse initials. At the same time,
the λ estimates become more dispersed and move towards negative values. This is consistent
with previous evidence in the learning literature that decreasing beliefs about inflation persist-
ence provide an explanation for lower average and volatility of inflation during the so-called
Great Moderation period (1986–2006) in the U.S, as well as the flattening of the Phillips curve
(Slobodyan and Wouters, 2012a).

More important to the purposes of this paper, the empirical estimates of the NKPC are
found to depend on the assumption about the initials uncertainty. The evolution of the averages
across the different specifications, presented in figure 8, indicate that the β estimates under the
diffuse initials tend to be less sensitive to the sub-samples. This is consistent with the previous
simulation evidence that diffuse initials lead to underestimation of β . Hence, the estimates
obtained under diffuse initials are less informative about violations of expectational stability
over time. For the λ estimates, the use of diffuse initials also point to a smoother flattening of
the Phillips curve relative to the estimates with non-diffuse initials.

Table 1 presents another comparative between these estimates, focusing on one particular
specification that uses the GDP deflator for inflation and the natural rate of unemployment gap
as a proxy for real marginal costs – hence the expected sign of λ is negative. The β estimates
obtained under the diffuse initials are mostly smaller than those obtained with the non-diffuse
ones, except for the 1990-99 decade, when inflation expectations are found to lose significance.
The λ estimates obtained with the two alternative initials assumptions move in different dir-
ections throughout the sub-samples, but agree on their sign and statistical significance for the
1960s. In the last two decades, λ̂ turns positive under both initials, but with a greater increase
and statistical significance (at the 10% level) under the non-diffuse initials for the 2010s. Nev-
ertheless, in conjunction with the results for β̂ , the implied reduced form slope of the Phillips
curve is always negative under the non-diffuse initials, consistent with expectations about this
relationship, while the estimates under diffuse initials imply inverted Phillips curves during the
1970s, 2000s and 2010s.
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Figure 8: Evolution of estimates of U.S. Phillips curve with constant-gain learning by decades.
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Table 1: Empirical estimates of a U.S. Phillips curve with constant-gain learning by decades.

1960-19 1960-69 1970-79 1980-89 1990-99 2000-09 2010-19
(240 qtrs.) (40 qtrs.) (40 qtrs.) (40 qtrs.) (40 qtrs.) (40 qtrs.) (40 qtrs.)

- Under pre-initialized R̂0:
β̂ 0.973 0.843 1.986 0.676 -0.252 1.518 1.270

(0.207) (0.207) (0.295) (0.314) (0.384) (0.301) (0.165)
λ̂ -0.031 -0.447 0.246 -0.008 -0.097 0.044 0.185

(0.094) (0.214) (0.225) (0.088) (0.156) (0.063) (0.107)
φ̂∗ -0.241 -1.823 -0.316 -0.021 -0.080 -0.122 -1.354

(0.762) (0.998) (0.265) (0.229) (0.139) (0.180) (1.144)
- Under diffuse R̂0:

β̂ 0.893 0.646 1.173 0.603 1.097 1.022 1.001
(0.174) (0.096) (0.154) (0.179) (0.350) (0.183) (0.127)

λ̂ -0.036 -0.408 -0.052 -0.066 -0.010 0.038 0.008
(0.090) (0.153) (0.134) (0.087) (0.094) (0.072) (0.083)

φ̂∗ -0.179 -0.968 1.047 -0.143 -0.565 0.440 0.080
(0.457) (0.326) (4.857) (0.221) (6.851) (1.239) (0.858)

- PLM initials:
ϕ̂0 -0.376 -0.376 -0.211 1.002 0.536 -0.161 -0.347
φ̂0 -0.163 -0.163 -0.432 -0.288 -0.128 -0.111 -0.157

Notes: Estimates of equation (14) obtained using GDP deflator for inflation and the natural rate
of unemployment gap as a proxy for real marginal cost. Both variables are standardized
prior to estimation. All estimates obtained under a fixed learning gain, γ̄ = 0.03. The
implied reduced form slope of the Phillips curve, φ̂ ∗, is obtained according to the REE.
The PLM initials are obtained with WLS using all data available prior to the beginning
of each decade estimation sample. Standard errors in parentheses are HAC robust. In-
ference under learning should be interpreted with caution since estimators distributions
can become non-standard.
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5 Estimation of Individual Learning Gains

Another field for which initials uncertainty can be important is the modelling of the distri-
bution of individual expectations. A recent strand of the literature attempts to connect the
heterogeneity of individual inflation expectations to varying aspects of adaptive learning (see,
e.g., Malmendier and Nagel, 2016; Cole and Milani, 2021). Here I will explore the effects of
initials uncertainty on the estimation of individual learning gains using survey micro data on
inflation expectations. The idea is to model the distribution of individual expectations by allow-
ing agents to differ only with respect to their learning gain. In other terms, agents are allowed
to differ on how much weight they give to real-time data when forming their expectations. I
then evaluate how the specification of initials uncertainty affect the estimates of the best-fitting
learning gains.

5.1 Data, model and estimation

I focus on individual inflation forecasts data from the Survey of Professional Forecasters, ob-
tained from the Philadelphia Fed. Particularly, I take one-quarter-ahead individual forecasts of
the U.S. GDP price deflator, here denoted as π

sp f
j,t+1, where j stands for the individual. After fil-

tering out individuals with less than 10 observations, I end up with a sample of 209 individuals
with quarterly forecasts collected between 1968q4 to 2019q4. This is an unbalanced dataset, in
the sense that some individuals participated only at the beginning of the sample, others entered
later, and so on. It is an interesting application because the number of observations for each
individual is often small. To give an idea, the median number of observations across individuals
here is 28.

In order to estimate individual learning gains, γ̂ j, and to keep things simple, I assume agents
use an AR(1) PLM. Importantly, these PLMs are fitted to real-time data and respecting the
timing of the survey, for which individuals normally know only the lagged value of inflation
at the time they submit their forecasts. Hence, to calculate learning-based one-quarter-ahead
expectations, π̂e

j,t+1, I recursively estimate

πt−1 = ϕt−1 +φt−1πt−2 + εt−1, (19)

using first-available real-time inflation rates, and then I calculate iterated forecasts according to

π̂
e
j,t+1 = ϕ̂ j,t−1

(
1+ φ̂ j,t−1

)
+ φ̂

2
j,t−1πt−1. (20)

26



The PLM coefficients, Φ̂ j,t =
{

ϕ̂ j,t , φ̂ j,t
}

, are estimated with CG-RLS, where the individual
gains are obtained by numerically minimizing the mean squared difference between the learn-
ing forecasts, π̂e

j,t+1, and the individual’s forecasts observed in the survey data, π
sp f
j,t+1.5

Because agents enter and exit the survey at different points in time, the PLM estimates
can vary across individuals not only because of the different best-fitting learning gains, γ̂ j, but
also because of varying assumptions about the initial beliefs. Particularly, for an individual
entering the survey at period t = τ , Φ̂ j,τ−1 is set according to a diffuse WLS estimate ob-
tained with equation (5) using all inflation data available up to period τ−1, where the weights
are determined by the learning gain using equation (6).6 I then compare the individual gain
estimates across different specifications of initials uncertainty, R̂τ−1, namely, (i) one using pre-
sample initials uncertainty, R̂τ−1 = R̂wls

τ−1, and (ii) the other with the diffuse initials approach,
R̂τ−1 = (1/100) R̂wls

τ−1, where the pre-sample initials uncertainty are re-scaled towards zero.

5.2 Results and analysis

Figure 9 presents the resulting estimates. The scatterplot in the LHS panel depicts the gain
estimates obtained using diffuse initials against the gains obtained under the pre-sample initials
uncertainty. The diffuse initials approach leads to a downward bias in the estimates of indi-
vidual learning gains. Namely, about 89% of the individual gain estimates based on diffuse
initials are lower than their corresponding estimates using pre-sample initials uncertainty. This
finding is in line with the distortionary effects of diffuse initials pointed out in this paper. Be-
cause the diffuse initials distort the weighting that a constant-gain gives to sample observations,
particularly leading to higher equivalent gains at the beginning of the sample, the best-fitting
gain values end up biased downwards.

A similar pattern emerges by looking at the time evolution of the average gains across the
survey respondents, depicted in the RHS panel of figure 9. The average of individual gains
under the diffuse initials are always lower than the estimates obtained with pre-sample initials,
on average about 0.05 lower throughout the sample. Interestingly, both approaches indicate
an increase in learning gains starting from 1990, which implies agents have been giving more
weight to more recent observations when forming their inflation expectations than they used to
give in the 1970-80s period.

5Estimation is conducted using a standard interior-point constrained optimization algorithm, where the gain is
constrained between 0 and 0.3.

6The use of WLS pre-sample estimates makes the initial beliefs, Φ̂ j,τ−1, depend on the gain estimate too.
Results using the alternative of OLS pre-sample initial estimates are provided in the Appendix and lead to similar
conclusions.
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Figure 9: Estimates of individual learning gains from survey of inflation forecasts.
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Notes: Individual gain estimates obtained by minimizing the mean squared difference between
observed individual’s inflation forecasts from the Survey of Professional Forecasters and
learning-based forecasts constructed using an AR(1) PLM estimated by CG-RLS on real-
time inflation data. The diffuse initials are obtained by downscaling the pre-sample
initials uncertainty by a factor of 100. Filled markers in the first panel depict estimates
for which the use of pre-sample initials uncertainty led to greater gain values than using
diffuse initials. The average gains depicted in the second panel are calculated across the
sample of survey respondents at each period.

6 Concluding remarks

In this paper I proposed a more general non-recursive representation of the recursive least
squares algorithm that is used in the adaptive learning literature to represent how agents form
their expectations in economic settings. According to this new formulation, the recursive learn-
ing mechanism is more properly represented by a penalized weighted least squares estimator,
where a penalty term accounts for the effects of the learning initial estimates. The non-recursive
formulation also allowed a renewed analysis of how information is weighted in the implied
estimates of agents’ perceived law of motion. Such weights are directly determined by the
sequence of learning gains used in the recursive least squares algorithm, and the specification
of the uncertainty around initial learning estimates. The framework proposed in this paper
provides flexible analytical expressions for the calculation of information weighting under dif-
ferent assumptions on the evolution of the learning gains and initial beliefs.

One important finding obtained under this refreshed framework is that, without a proper
account for the initial beliefs uncertainty, the estimation of models under the assumption of
a constant gain over increasing samples of data would imply agents give a decreasing weight
to more recent observations, distorting the real-time tracking interpretation of this mechanism.
The relevance of this distortion was evidenced by simulation and empirical exercises, where
the misspecified initials led to systematic biases to estimates of the relevance of expectations in
a Phillips curve model, as well as to estimates of the responsiveness of inflation rates to output
gaps. In another empirical exercise, estimates of individual learning gains using survey data on
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inflation expectations from professional forecasters were found to be significantly downward
biased under inflated initial beliefs uncertainty. Thus, a proper account of how information is
weighted under alternative learning mechanisms and assumptions about initial beliefs and their
uncertainty are important aspects for the estimation of models with adaptive learning.

Finally, the recommended approach to address the estimation of initial beliefs uncertainty
is to use a training sample for estimation of both beliefs and their uncertainty. According to
the results presented in this paper, this is the most appropriate approach to elicit initial beliefs
that are consistent with the view of learning as an ongoing process prior to the beginning of the
econometrician’s estimation sample. One approach that should be particularly discouraged is
the procedure of inflating initials uncertainty, here denoted as the diffuse initials approach. This
is obtained with a re-scaling of the initial matrix of second moments of the learning estimates.
The results presented in this paper indicate that such approach is unwarranted and will lead to
biased model estimates. However, one concession to the diffuse initials approach is for its use
within training samples, for which the inflated initials uncertainty can accelerate convergence
of beliefs within small pre-samples of data.
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A Proofs and Derivations

A.1 Correspondence between penalized WLS and RLS

To see how the RLS of (2)-(3) can be derived from the penalized WLS formulation of (5) and
(6), first notice that iterating (3) recursively from R0 we have that

Rt =
t

∑
i=1

ωt,ixix′i +ωt,0R0,

which is the inverse of the first term in (5), leading to

φ̂ t = R−1
t

[
t

∑
i=1

ωt,ixiyi +ωt,0R0φ 0

]
. (21)

For the second term notice that

t

∑
i=1

ωt,ixiyi =
t−1

∑
i=1

ωt,ixiyi + γtxtyt ,

= (1− γt)
t−1

∑
i=1

ωt−1,ixiyi + γtxtyt ,

and
ωt,0R0φ 0 = (1− γt)ωt−1,0R0φ 0,

where we use
ωt,i = (1− γt)ωt−1,i,

which follows from (6). Hence, (21) is equivalent to

φ̂ t = R−1
t

[
γtxtyt +(1− γt)

(
t−1

∑
i=1

ωt−1,ixiyi +ωt−1,0R0φ 0

)]
. (22)

Lagging (21) one period we find that

Rt−1φ̂ t−1 =
t−1

∑
i=1

ωt−1,ixiyi +ωt−1,0R0φ 0,

which can be substituted into (22) to yield

φ̂ t = R−1
t
[
γtxtyt +(1− γt)Rt−1φ̂ t−1

]
. (23)

From (3) notice that
(1− γt)Rt−1 = Rt− γtxtx′t ,
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which substituted into (23) and after rearranging leads to

φ̂ t = R−1
t
[
γtxtyt +

(
Rt− γtxtx′t

)
φ̂ t−1

]
,

= γtR−1
t xtyt + φ̂ t−1− γtR−1

t xtx′t φ̂ t−1,

= φ̂ t−1 + γtR−1
t xt

(
yt−x′t φ̂ t−1

)
,

establishing the correspondence between the penalized WLS solution of (5) and the RLS of (2).

A.2 Absolute and relative weights

Letting W n
t stand for the sum of weights starting from weight n up to weight t, from the defini-

tion of the absolute weights, (6), this sum of weights can be expanded according to

W 0
t =

t

∑
i=0

ωt,i,

=
t

∏
j=1

(
1− γ j

)
+

t−1

∑
i=1

γi

t

∏
j=i+1

(
1− γ j

)
+ γt . (24)

Expanding the first term of (24) we have that

ωt,0 = (1− γ1)(1− γ2) . . .(1− γt−1)(1− γt) ,

= (1− γ2) . . .(1− γt−1)(1− γt)− γ1

t

∏
j=2

(
1− γ j

)
,

= 1− γt−
t−1

∑
i=1

γi

t

∏
j=i+1

(
1− γ j

)
. (25)

Returning to (24) we then have

W 0
t = 1− γt−

t−1

∑
i=1

γi

t

∏
j=i+1

(
1− γ j

)
+

t−1

∑
i=1

γi

t

∏
j=i+1

(
1− γ j

)
+ γt ,

= 1.

A.3 Equivalent time-varying gains under diffuse initials

The sequence of gains, γ̃t , that generates equivalent weightings as a constant-gain under diffuse
initials needs to solve

ϖt,l = ϖ
dcg
t,l ,

=
γ̄ (1− γ̄)l

1− (1− γ̄)t (26)
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for all t and l. From equation (7), starting with l = 0 we simply have that

γ̃t = γ̄/
(
1− (1− γ̄)t) . (27)

It only remains to validate if equation (27) also solves equation (26) for l > 0. Substituting
equation (27) into equation (7) for 0 < l < t,

ϖt,l =
γ̄

1− (1− γ̄)t−l

l−1

∏
j=0

(
1− γ̄

1− (1− γ̄)t− j

)
,

=
γ̄ (1− γ̄)l

1− (1− γ̄)t−l

l−1

∏
j=0

(
1− (1− γ̄)t− j−1

1− (1− γ̄)t− j

)
,

=
γ̄ (1− γ̄)l

1− (1− γ̄)t−l

(
1− (1− γ̄)t−l

1− (1− γ̄)t

)
,

=
γ̄ (1− γ̄)l

1− (1− γ̄)t ,

which solves equation (26) for l > 0. Finally, notice that under diffuse initials the weight given
to the learning initials is null, i.e., ϖ

dcg
t,t = 0. This is equivalent to using a γ1 = 1, which is again

satisfied by equation (27).
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B Supplementary Results

Figure 10: Estimates of simulated Phillips curve model with constant-gain learning – using
diffuse WLS pre-sample initials.

(a) Individual estimates.
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(b) Joint estimates.
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Notes: Same as figures 3 and 4 except that using diffuse WLS pre-sample estimates for R0.
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Figure 11: Estimates of simulated Phillips curve model with constant-gain learning – using
OLS pre-sample initials.

(a) Individual estimates.
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(b) Joint estimates.
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Notes: Same as figures 3 and 4 except that using OLS pre-sample estimates for R0.
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Figure 12: Estimates of simulated Phillips curve model with constant-gain learning – using
OLS plus diffuse WLS pre-sample initials.

(a) Individual estimates.
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(b) Joint estimates.
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Notes: Same as figures 3 and 4 except that using OLS plus diffuse WLS pre-sample estimates
for R0.
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Figure 13: Estimates of simulated Phillips curve model with constant-gain learning – using
OLS plus WLS pre-sample initials.

(a) Individual estimates.
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(b) Joint estimates.
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Notes: Same as figures 3 and 4 except that using OLS plus WLS pre-sample estimates for R0.
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Figure 14: Estimates of simulated Phillips curve model with constant-gain learning – with
jointly estimated learning gains.

(a) Individual estimates (each jointly with γ).
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(b) Joint estimates.
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Notes: Same as figures 3 and 4 except that jointly estimating the learning gains as in figure 6.

Figure 15: Estimates of individual learning gains from survey forecasts – using OLS pre-sample
initials.
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Notes: See notes to Figure 9.
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