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1 Introduction

This paper studies a mechanism whereby increased macroeconomic volatility, sustained per-
sistence, and economic scarring are generated endogenously. The mechanism operates
through beliefs, driven by learning behavior whereby people’s beliefs about future outcomes
are determined through an interaction between their knowledge of the economy and the
economic outcomes they have observed and experienced. When peoples’ knowledge of the
economy’s structure is incomplete and their information sets reflect the shocks they happen
to have experienced, then beliefs can depart importantly from those implied by rational
expectations. The mechanism we describe is a form of learning that involves probability
densities being updated following the arrival of new information, and can be applied to both
linear and non-linear modeling environments.

The 1930s saw a generation of people experience the poverty and hardship caused by
the great depression. This experience is widely understood to have had lasting effects
on behavior. For example, Malmendier and Nagel (2009) show that people’s investment
decisions and attitudes to risk are affected for decades by their exposure to stock returns
and inflation earlier in life. Similarly, Malmendier and Nagel (2016) establish that people’s
inflation expectations are affected by their inflation experiences. Further, Giuliano and
Spilimbergo (2010) find that people that experienced recessions when younger are more
likely to see success as the outcome of luck rather than hard work and to favor government
redistribution. More recently, the global financial crisis, the European debt crisis, and
the lockdowns associated with the Covid-19 pandemic represent massive macroeconomic
shocks that have affected much of the world. The mechanism described in this paper allows
these experiences to become embedded for sustained periods within people’s information
sets giving rise to beliefs that can put non-negligible probability on such events reoccurring.
Through this mechanism, extreme events—both positive and negative—can have enduring
consequences for people’s behavior, consequences over-and-above those coming from the
event’s direct impact on a household’s income and wealth.

Drawing on the idea that beliefs are shaped by experiences, we describe three forms of
experienced-based-expectations and show how they can be applied to general equilibrium
models. These three forms all involve decisionmakers using newly obtained information
to revise probability density functions, but differ in the nature of the information obtained
and on the assumed knowledge about the underlying model. We term these three expec-

tations processes type-I, type-1I, and type-III experienced-based-expectations. With type-I



experienced-based-expectations decisionmakers know the economy’s structure, but not the
processes for the shocks. They observe a finite sequence of shocks, and form expectations
by using these observed shocks to infer their probability density function. Under type-II
experienced-based-expectations decisionmakers do not know the processes for the shocks and
they also don’t fully know the economy’s structure, but they do know which variables are
state variables and which are not. They are endowed with a finite sequence of realized
outcomes, which they use to infer conditional probability density functions. Finally, with
type-III experienced-based-expectations decisionmakers do not know the economy’s struc-
ture, the shock process, and nor do they know which variables are state variables. Endowed
with a finite sequence of realized outcomes, decisionmakers infer unconditional probability
density functions and use these to form expectations. For each of these three processes,
expectations are formed using probability density functions that are shaped by events that
have actually occurred, when those events may be extremely improbable under rational
expectations.

We study these three forms of experienced-based-expectations in a simple non-linear New
Keynesian business cycle model, contrasting the results to rational expectations. The model
is one in which firms are monopolistically competitive and firm’s pricing decisions are subject
to Rotemberg-style (Rotemberg, 1982) adjustment costs while households make consumption
and leisure decisions and have external consumption habits (Abel, 1990). Monetary policy
to conducted according to a non-linear Taylor-type rule. The model allows for aggregate
technology shocks and monetary policy shocks and has an endogenous state variable in the
form of last period’s aggregate consumption. With this model providing a framework for
analysis, we consider three counter-factual experiments. The first experiment examines the
behavior of the model and the speed at which learning occurs following an unanticipated
permanent increase in the central bank’s inflation target. The second experiment supposes
that people have experienced a sustained period during which policy shocks have kept mon-
etary policy loose. The final experiment, supposes that the economy has been subject to a
sustained period of large adverse aggregate technology shocks.

Our main results are as follows. The set of experiences used for form expectations has an
important impact on economic outcomes. However, as the set of experiences gets larger and
tends to an infinite history, type-I and type-II experienced-based-expectations converge on
rational expectations. The same cannot be said for type-III experienced-based-expectations,

for which the lack of a model to guide the expectation-formation process hinders tremen-



dously people’s ability to learn.  Following an exogenous unanticipated increase in the
inflation target, inflation outcomes naturally increase, but there is a large and sustained gap
between rational expectations and experienced-based-expectations. This gap in inflation
outcomes is reflected also in the setting for the nominal interest rate. In this experiment,
monetary policy remains loose relative to rational expectations for a sustained period.

A temporary easing of monetary policy generated through policy shocks that keep pol-
icy loose leads to a period of sustained higher inflation. With type-1 experienced-based-
expectations, which forms expectations using observed shocks, the outcome is an ongoing
period of higher inflation and tighter monetary policy relative to rational expectations. This
effect is naturally magnified by type-11I experienced-based-expectations, but does not arise
for type-II experienced-based-expectations because the underlying equilibrium relationship
between inflation as the state variables is unchanged. Lastly, when the economy is impacted
by a sequence of adverse technology shocks, such that the economy experiences a sustained
decline in output, it is type-I and type-III (in particular) experienced-based-expectations
for which the consequences are most evident. While the effects are relatively small, out-
comes for inflation and the nominal interest rate are low relative to rational expectations,
and remain low for an extended period. As earlier, for this experiment type-II experienced-
based-expectations behave similarly to rational expectations because the model’s underlying
relationships are unchanged.

The approaches to expectation formation studied in this paper depart from rational ex-
pectations by allowing recently observed outcomes to drive the expectations that people
form. Related departures from rational expectations can be found elsewhere in the litera-
ture. Notably, Veldkamp and Venkateswaran (2019) study a model that generates persistent
stagnation when expectations are formed using what are termed here as type-I experienced-
based-expectations.  More generally, the literatures on ambiguity aversion (Gilboa and
Schmeidler, 1989), risk-sensitive preferences (Hansen and Sargent, 1995), diagnostic expec-
tations (Bordalo, Gennaioli, and Shleifer, 2018), and rare disasters (Rietz, 1988) all represent
departures from rational expectations that modify the perceived distribution of the shocks in
ways that are similar to type-I experienced-based-expectations. These literatures often use
the risk/uncertainty generated by the expectation formation process to study asset-market
phenomena. In addition, the literature on real-time learning (Evans and Honkapohja, 2001)
is related to our work, having close similarity to type-1I experienced-based-expectations.

The remainder of this paper is organized as follows. In the next section we describe the



general non-linear framework within which the experienced-based-expectations mechanism
can operate. In section 3 we present and illustrate the three forms of experienced-based-
expectations, and use a simple model to compare them to rational expectations. Section
4 develops a simple non-linear new Keynesian model that we use as a laboratory to study
the effects of experienced-based-expectations. Section 5 presents benchmark simulation
results, considers three counter-factual experiments, and compares the results to rational
expectations.  Section 6 discusses some related mechanisms that similarly depart from
rational expectations. Section 7 concludes. Appendices describe the non-parametric tools
we use for density approximation, present the non-linear new Keynesian model in greater
detail, show how the model is solved under the different expectations processes, and dig

deeper into the effect of habit formation.

2 A general non-linear framework

Many non-linear dynamic stochastic general equilibrium models can be expressed in the
form:

By [f (Xt, ¥t Xe1, Yer1, €041)] = 0, (1)
where f is a vector of (smooth) functions, x; is an n, x 1 vector of state variables, y; is an
n, % 1 vector of non-predetermined (jump) variables, &, is an s x 1 vector of i.i.d. [0, €]
innovations, and F; is the mathematical expectations operator conditional upon knowing
the model and information up to and including period ¢ (i.e. rational expectations).

As is well-known, the solution to equation (1) can be expressed in the form of two

functions:

Xt+1 = g(Xt,€t+1)7 (2)

y: = h(Xt>7 (3)

the first describing the equilibrium law-of-motion for the state variables and the second
representing the decision rules for the jump variables. Recognizing that the state variables
can be partitioned into endogenous predetermined variables, z;, and (exogenous) shocks, u,,

equations (2)—(3) can be re-expressed as:

U1 = Bu (ut7 5t+1) ) (4)
Ziy1 = 8 (Zm Ut) ) (5)
Yt = h (Zta ut) . (6)
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Equation (4) describes the stochastic processes for the shocks, which often takes the form of
a stationary VAR(1) process. Equation (5) summarizes the equilibrium law-of-motion for
z; while equation (6) contains equilibrium decision rules.

Now, let’s consider the process by which expectations are formed in this model. Take

the representative j’th decision (or jump) variable, j € {1,...,n,}, i.e.,
?Jg =h (¢, uy) . (7)

Forming the expectation Fyy] 41 requires evaluating the integral:

Etyz-i-l :/"'/hj (8- (ze, 1) , Wp1) p (Wpyr |uy) duy iy - dug gy, (8)

where p (u;41|u,) is the conditional probability density function that governs the shocks. In
order to evaluate equation (8) agents must know the equilibrium law-of-motion, the equi-
librium decision rule, and the probability density function for the shocks. Under rational
expectations these information requirements are not a problem because these objects are all

assumed to be known.

3 Experienced-based-expectations

In this section we describe a sequence of increasingly more pronounced departures from
rational expectations. We characterize these departures as experienced-based-expectations
because the processes all involve agents forming expectations based on the particular history
of observations they have experienced. Underlying experienced-based-expectations is the
idea that agents are endowed with a history of observations, {y;, z, ut}thl, and that they
form their expectations of future outcomes based, to a greater or lesser extent, on this history.
We will call the set of observations used to form expectations the experience set.

In what follows, we consider three forms of experienced-based-expectations which we
term experienced-based-expectations of types I, II, and III. We close the section with a
simple illustration of how these expectations are formed and how they compare to rational

expectations.

3.1 Type-1

With type-1 experienced-based-expectations we relax the assumption that agents know the

conditional probability density function, p (u;1|u;). Instead, agents use their history of



observations, in particular the history of the shocks, {ut}tT:l, to construct an approximate
conditional density, p(u;1|u;). Based on their approximate conditional density, agents

solve the model to arrive at the associated functions characterizing equilibrium:

Ziy1 = 8- (Zt, w), (9)
yYe = h (Zt7 ut) . (10)
In this equilibrium, expectations of future non-predetermined variables are formed according

to:
E{ytﬂ —/ /hj gz Zt;ut ut+1)ﬁ(ut+1|ut) du1,t+1 ce dus,t—i—lu (11)

Jj € {l,...,ny}. Equation (11) assumes that agents know the model-—up to the shock
processes—and that they form expectations using the equilibrium law-of-motion for the en-
dogenous state variables and the equilibrium decision rules for the jump variables, where
these equilibrium relationships are consistent with the agents’ (experienced-based) approxi-

mate conditional probability density function.

3.2 Type-II

For an arbitrary non-predetermined variable, say yi , 7 €{1,...,n,}, the rational expectation

of ¥/, given z, and uy, can be expressed as:

zwmz/%w@mm%wﬁb (12)

where p (y{ 12, ut) is the probability density for yg +1, conditional upon the state variables,
z; and u;. With rational expectations this conditional probability distribution function is
known to agents, because agents know the model, its parameters, and the probability density
function for the shocks.

With type-1I experienced-based-expectations we relax the assumption that agents know
P (yi 12, ut). Instead, we assume that they approximate this conditional probability dis-
tribution function based on the outcomes {y;, z;, ut}thl that they observe, or have observed
earlier in life. Accordingly, expectations are formed by evaluating the integral in equation
(12) but where p (y{ 1124, 1;) is approximated from a finite sample of observed outcomes.

This approximation yields p (yi 124, ut), from which the expectation is:
B = [ b (il w) i (13)
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Note that equation (13) represents a much stronger departure from rational expectations
than equation (12). With equation (12) agents are assumed to not know the conditional
density for the shocks. In contrast, with equation (13) agents are assumed to not know the
equilibrium law-of-motion for the states, the equilibrium decision rules, and the conditional

density for the shocks. These three objects are all subsumed within the approximated

density, p (yg-&-l |24, ut)-

3.3 Type-1II

The third form of experienced-based-expectations that we examine assumes that decision-
makers do not use any conditioning information from the model when forming expectations.

Expectations are therefore based on the integral:
Byl = / YD (Yis1) dyisa, (14)

Jj€A{l,..,n,}, where p (yi +1) is an approximation to the unconditional density for yl,,. This

unconditional density is approximated based on the outcomes that decisionmakers have ex-
T

perienced, {yi }t:r

We term this mechanism type-I1I experienced-based-expectations, but
note that it is based on a deep ignorance regarding the underlying economic model and rep-
resents an extreme departure from rational expectations. In particular, the implied learning
does not deliver the conditional densities useful for accurate forecasting, leading to system-
atic and sustained forecast errors. Moreover, unlike type-I and type-II experienced-based-

expectations, type-III experienced-based-expectations do not approach rational expectations
as T 1 oo.

3.4 An illustration

To provide a simple illustration, suppose that data on u; are generated by the process:

Upp1 = Pyt + Meg1, (15)

2
n

the case under rational expectations, then decisionmakers can exploit the known conditional

where 7, ~ i.2.d. N [0,0 } and p, € (0,1). If this process is known, as is assumed to be



and unconditional density functions, which are given by:

plunlu) = ——exp [—1 (u)] (16)

V2ro, 2 o
V1=p° 1—p? <Ut+1)2
u = 4+—exp|— | — ) 17
P(ugs1) g P [ 5 o (17)
respectively. Rational expectations are based on equation (16). In contrast, with experienced-
based-expectations decisionmakers are endowed with a finite sample of T" observations,
{u,},_,, that they use to approximate cither p (uy41|u) or p (ur41). In the former case, this
approximation will condition upon the state variable, u;, but otherwise employ no knowledge
of equation (15). For this simple illustration, where we are focusing only upon a shock pro-
cess and there is no decision variable(s), type-I and type-II experienced-based-expectations

are equivalent.
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Figure 1: Probability densities under rational expectations and experienced-based-
expectations.

Figure 1 illustrates the densities under consideration. All four panels are based on an

experience set consisting of a sample of 120 observations simulated from equation (15) with
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p = 0.6 and 0, = 0.05. Panels A and B show unconditional and conditional densities,
respectively, for rational expectations and experienced-based-expectations. The densities
for experienced-based-expectations are computed using a kernel density estimator (normal
kernel); results for other density estimators are shown in Appendix A. The conditional den-
sities assume u; = —0.1. By way of contrast, panels C and D are based on the same sample,
but where the final 40 observations have been subjected to a negative shock, capturing the
idea that the sample has been subject to a sequence of adverse shocks. Where the densities
for rational expectations are unaffected by the adverse sequence, the densities for all three
types of experienced-based-expectations are affected, with the unconditional (type-III) and
conditional densities (type-1/II) assigning more probability mass to negative outcomes.

If we look just at the conditional mean, then for these parameter values, and with u; =
—0.1, the rational conditional expectation of w41 is Eyfusi1|ug] = 0.6 x —0.1 = —0.06 and the
rational unconditional expectation is Eju;y = 0.0. In contrast, the type-I/I1 experienced-
based expectation, given u; = —0.1, equals —0.0541 and the type-III experienced-based ex-
pectation equals —0.0054. For the sample containing the sequence of adverse shocks these
experienced-based-expectations equal —0.0700 and —0.0387, respectively.  Experienced-
based-expectations lead to forecasted values for u;,; that are lower, both conditionally and
unconditionally, than rational expectations when the sequence of adverse outcomes is expe-

rienced.

4 A non-linear new Keynesian model

We present a model that is populated by three types of agents: a unit-continuum of house-
holds, a unit-continuum of firms, and a central bank. Households value consumption and
leisure, and have preferences that reflect external consumption habits. Production is char-
acterized by monopolistic competition and Rotemberg (1982) sticky prices. The central

bank conducts monetary policy according to a simple Taylor-type rule.

4.1 Households

The representative household buys consumption goods, ¢;, supplies their labor, h;, to firms
in a perfectly competitive market, and saves by holding risk-free one-period nominal bonds,

b;, that are in zero-net supply. With C} denoting period-t aggregate consumption, the



household’s decision problem is to choose {c;, hy, by 152, to maximize:
p ts 1 Ot+1 54=0

iﬁt (. =7Cin) ™ B
l—0o 'ul—i-x

t=0

Ut:Et

: (18)

where 0 >0, x >0, u>0,0< 8 <1, and 0 < v < 1, subject to the flow budget constraint:

b b
tl = wtht + —t + Dt, (19)

¢+ Qt?t P,

in which P, is the aggregate price level, w; is the real wage, ), is the nominal price of a

bond, and D; is the aggregate dividend households receive from owning equity in firms.

4.2 Firms

Production for the ¢'th firm, i € [0, 1], is given by the linear technology:
yi(i) = e hy(i), (20)
where z; is an aggregate technology shock that follows the process:

Ztr1 = P22+ €111, (21)

where 0 < p, < 1 and &, ~ i.i.d. N[0, 02].
With all firms employing labor from a perfectly competitive market at real wage w;, their

real marginal costs, w;, when producing efficiently are given by:

Wy
Let p(i) denote the i’th firm’s price relative to the aggregate price, m; denote aggregate
inflation, and \; denote the marginal utility of consumption. Then the decision problem for

the i’th firm is to choose {p:(7)}32, to maximize:

n =5 | (ﬁj— <<pt<z'> —ayuli) - § (2EEER ) Y)) @
subject to the demand curve:
Ye(1) = pe(i) Y3, (24)

where € > 1 is the price elasticity of demand and ¢ > 0 governs the cost of changing prices.

10



As is typical in this literature, the goods produced by the unit-continuum of firms are

aggregated costlessly through the constant elasticity of substitution technology (Dixit and

Stiglitz, 1977):
1 o =5
vie | [ wi el (25)
0

Finally, we assume that the cost that firms pay to change prices is received by workers

in addition to their wages (the payment is subsumed within D;). A consequence of this
assumption is that the resource constraint for this economy equates aggregate consumption

and aggregate output: C; =Y.

4.3 Central bank

The gross nominal interest rate is related to the price of a bond according to:

1
t

where R, is the net nominal interest rate. The central bank’s policy instrument is the net
nominal interest rate, and we assume that it sets its policy instrument such that the gross

nominal interest rate satisfies the Taylor-type rule:

1+7 (1+7\" / v, \*
1+ R, = my 27
+ t 6 <1+77') (Y;tl> € 9 ( )

where 7 denotes the inflation target, ¢ > 1 and ¢, > 0 are policy feedback coefficients, and

my represents a monetary policy shock. The monetary policy shock is assumed to follow
the process:

M1 = PNt + Ny, (28)

where 0 < p,, < 1 and 7, ~ i.i.d. N[0, 07].

11



4.4 Key equations

Solving the optimization problems described above and aggregating across households and

firms, the key equations that emerge are the following (see Appendix B):

(Y =7Yim) " = BE, [(Ytﬂ o f)ml()l : Rt)} |

}/;5 = GZth, (30)

1—¢ € (Vi —9Y) " Yimen (14 mp)
m(l+m) = + —w; + PE , 31
((+m) 6 o Bt{ (Vi = 1Y) 7Y 3y
HX
Wy = ! —, (32)
e* (Y, —vYi1)
1+7 (1+7\" /v, \¥
1+R = m 33
+Ro= 2 (Hﬁ) (Y em, (33)

with the shock processes given by equations (21) and (28).

Equation (29) is the consumption-Euler equation for the case of external consumption
habits. Equation (30) is the aggregate production function. Equation (31) is the forward-
looking new Keynesian Phillips curve. The equilibrium expression for real marginal costs
is given in equation (32). Lastly, equation (33) is the monetary policy rule. It is straight-
forward to use equations (30) and (32) to substitute Y; and w; from the model, leaving a
system of three non-linear equations. This model has three state variables, one endogenous

state variable, Y;_;, and two exogenous state variables, z; and m;.

5 Results

In this section we study the behavior of the non-linear new Keynesian model with experienced-
based-expectations, contrasting its behavior to rational expectations. We first use stochastic
simulation to establish a benchmark. The benchmark simulation allows us to compute the
volatility associated with the different expectation-formation processes. Subsequently, we
consider three counter-factual experiments. In the first experiment we change the inflation
target that enters the policy rule and examine how long it takes for realized inflation out-
comes to closely reflect the new target value. The second experiment explores the situation
in which monetary policy has been historically loose due to a sequence of monetary policy
shocks that have pulled down the policy rate. The final experiment considers the case where

the economy has been subject to a sequence of adverse aggregate technology shocks. To

12



better separate the signal from the noise, for each of these counter-factual experiments we

perform multiple simulation runs and present results that average across the runs.

5.1 Parameterization

Our first step to analyzing this non-linear model is to parameterize it. We do not estimate the
model, as the model is non-linear and methods for estimating such models are prohibitively
slow. Moreover, how to estimate such a model with experienced-based-expectations is an
open question. Instead, because our goal is to illustrate the role of experienced-based-
expectations as a mechanism for generating volatility and persistence, we parameterize the

model using conventional values from the literature, as summarized in Table 1.

Table 1: Model Parameters

Name Symbol | Value | Name Symbol | Value
Discount factor Ié] 0.99 | Inflation target T 0.005
Utility curvature o 2.0 Policy response to inflation | 6, 1.5
Habits 0 0.8 Policy response to growth | 6, 0.25
Labor supply elasticity X 5.0 Technology persistence P2 0.95
Price elasticity of demand | € 11.0 | Policy shock persistence Pm 0.8
Price rigidity 0] 80.0 | Technology innovation s.d. | o. 0.007
Policy innovation s.d. o 0.0035

We set the discount factor, 8, to 0.99, implying an annualized real interest rate of just
over 4% p.a. The curvature of the utility function with respect to consumption, o, is set
to 2.0, consistent with the estimate in Levin, Onatski, Williams, and Williams (2005), while
slightly higher than the estimate from Smets and Wouters (2007). In line with the estimates
in Dennis (2009), we set the habit formation parameter, v, to 0.8. The Frisch labor-supply
elasticity, y, is set to 5.0, based on the estimates from Christiano, Trabandt, and Walentin
(2011). Drawing on Basu and Fernald (1997) and Ireland (2001), we set the price elasticity
of demand, €, to 11.0, implying an average mark-up of 10 percent, and the price-rigidity, ¢,
to 80.0. This value for ¢ is a bit lower than the estimate of around 100 found by Gust,
Herbst, Lépez-Salido, and Smith (2017), but higher than the 59.11 value assumed in Gavin,
Keen, Richter, and Throckmorton (2015).

In the monetary policy rule, we assume that the inflation target is 2.0 at an annualized
rate and, accordingly, set 7 to 0.005. For the remaining coefficients in the monetary policy

rule, we set 0, to 1.5, so that the Taylor principle holds, and 6y to 0.25, which implies that

13



the nominal interest rate is raised by one percentage point in response to a one percent
increase in annualized output growth. The coefficient values in the two shocks are largely
standard. For the aggregate technology shock, we follow convention (see Faia (2008) and the
references therein) and set the persistence parameter, p,, to 0.95 and the standard deviation
for the technology innovation, o,, to 0.007. For the monetary policy shock we set p,, to 0.8

and o, to 0.0035, drawing on the estimates in Rabanal and Rubio-Ramirez (2005).

5.2 Comparison to rational expectations

In this section we compare the outcomes generated from the three forms of experienced-
based-expectations to those from rational expectations. To this end we perform a stochastic
simulation, generating model-data for 1000 periods (after excluding a burn-in period of 100
observations) using the same shock-sequences for all four expectations-processes. For the
nominal interest rate and inflation, the data are annualized and expressed in percentage
points. For each of the experienced-based-expectations, people are assumed to use the most
recent 120 observations (equivalent to a span of 30 years) to form expectations. The final
300 periods of data simulated from each expectations-process are plotted in Figure 2.

Two points regarding Figure 2 deserve emphasis. First, with an experience set of 120
observations, the departures from rational expectations are often quite large and occur for
sustained periods. These departures are noticeable for all variables, but can perhaps be seen
most clearly in inflation and the nominal interest rate. Second, type-1II experienced-based-
expectations generate behavior that is very different to the other expectation-mechanisms,

which are relatively similar by comparison.

Table 2: Standard Deviations

Variable R.E. EBE-I | EBE-II | EBE-III
Output 0.0309 | 0.0313 | 0.0338 | 0.0176
labor 0.0127 | 0.0129 | 0.0090 | 0.0290
Inflation 4.3986 | 4.1986 | 4.9464 | 6.3939
Nominal rate | 5.2655 | 5.1759 | 5.3467 | 9.3709

In Table 2 we summarize the volatility for each of the model’s main variables, for each of
the four expectations-processes, in terms of unconditional standard deviations. While there
are exceptions, such as the decline in labor volatility associated with type-II experienced-
based-expectations and the decline in output volatility associated with type-III experienced-

based-expectations, the main finding is that experienced-based-expectations leads to greater
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Figure 2: Simulation using an experience set of 120 observations.

volatility than rational expectations. As noted earlier, type-I experienced-based-expectations
are most closely related to rational expectations in the sense that both assume that the
model’s structure is known. This similarity is reflected in Table 2 where the volatilities
produced are generally similar. For this model, Table 2 shows that type-1I experienced-
based-expectations lead to noticeably greater volatility for both inflation and the nominal
interest rate. This greater volatility reflects the de-anchoring that occurs when people form
expectations with an incomplete understanding of the underlying economic model. Related
increases in volatility are shown to occur for type-I1I experienced-based-expectations.
Before leaving this section we consider an additional simulation that increases the length
of the experience set from 120 observations to 5000 periods. With a sample of 5000 obser-
vations used to form expectations we expect experienced-based-expectations to be similar
to rational expectations. Looking at Figure 3 we can see that this is indeed the case—at
least for type-I and type-II experienced-based-expectations. In contrast, people’s ignorance
about the model embedded in type-III experienced-based-expectations means that expecta-

tions formed this way do not converge to rational expectations as the size of the experience set
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Figure 3: Simulation using an experience set of 5000 observations.

increases. We continue to examine type-III experienced-based-expectations in what follows,
but recognize that it is not a mechanism that allows a model’s dynamics to be learned and is

fundamentally different in that respect to type-I and type-1I experienced-based-expectations.

5.3 Permanent change to the inflation target

Here we suppose that the central bank makes an unannounced, exogenous, change to the
inflation target, raising it from 2% p.a. to 4% p.a. As previously, we assume that people
form expectations using the most recent 120 observations, and we compare the results for
experienced-based-expectations to those for rational expectations. From an initial sample
comprising observations for 120 periods, we simulate data for an additional 160 periods, with
the change in the inflation target occurring 20 periods into the simulation. We repeat this
exercise 115 times and present average simulation paths in Figure 4.

Panels A and B display the paths for output and labor, respectively. Although there is
variation in these variables according to how expectations are formed this variation is rela-

tively muted, a consequence of the fact that the classical dichotomy is close to holding and
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Figure 4: An unanticipated permanent change in the inflation target.

there is relatively little interaction between the real and nominal sides of the model. Panels
C and D illustrate the paths for inflation and the nominal interest rate. Under rational
expectations, although the change in the inflation target is unanticipated, once the change
occurs actual inflation and the nominal interest rate respond quickly and proportionately to
the change in the target. With expectations formed according to type-I experienced-based-
expectations, the model’s behavior is very similar to that with rational expectations, a conse-
quence of the fact that other than the shocks processes, the structure of the model is known
under type-I experienced-based-expectations. Much greater differences are observed when
expectations are formed using either type-II or type-1II experienced-based-expectations. For
both of these expectation-formation processes, the change in the inflation target generates
ongoing gradual changes to observed inflation and observed nominal interest rates as de-
cisionmakers only gradually learn that the inflation target has changed. Convergence to
the new higher inflation consistent with the increased target takes considerable time as the
change is clouded by uncertainty regarding the conditional densities for output and inflation

(unconditional densities in the case of type-III experienced-based-expectations), although
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learning occurs more rapidly for type-1I experienced-based-expectations than for type-III

experienced-based-expectations.

5.4 Temporarily loose monetary policy

In our second experiment we consider the effects of a temporary period of sustained loose
monetary policy, modeled as a sequence of low realizations for the monetary policy shock.
Specifically, for each expectation-process we endow agents with an experience set containing
120 periods of observed outcomes, where the final 40 outcomes for the policy shock have
been artificially lowered by 50 basis points so that the average monetary policy shock during
this period is —2 percent at an annualized rate. We then simulate learning outcomes for an

additional 140 periods, repeat the entire exercise 115 times, and report average outcomes in

Figure 5.
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Figure 5: Temporarily loose monetary policy.

Panel F in Figure 5 shows the average path for the monetary policy shock, clearly illus-
trating the period during which the monetary policy shocks were systematically low. The

effect of this period of loose monetary policy can be seen most prominently in the behavior of
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inflation (panel C) and the nominal interest rate (panel D), which are buoyed by the shock.
It may seem counter-intuitive that the shock causes the nominal interest rate to rise, but
the policy rule directs interest rates to rise following an increase in inflation and although
the nominal interest rate rises the real interest rate does not. Instead, the real interest rate
remains largely unchanged, which is why the shock does not lead to higher output (panel
A).

Looking now at how the period of loose monetary policy shocks affects the economy
across the various expectations processes, it is immediately clear that type-II experienced-
based-expectations behaves similarly to rational expectations. The reason for this similarity
is that the realizations for the shocks do not alter how the decision variables relate to the
state variables in equilibrium, which is the key relationship being learned under type-II
experienced-based-expectations. Turning to the model’s behavior under type-I experienced-
based-expectations, although output (panel A) and labor (panel B) behave similarly to
rational expectations, the same cannot be said for inflation (panel C) and the nominal in-
terest rate (panel D), which are slow to return to normal following the period of temporary
stimulus. Although a return to noral does eventually occur, it takes considerable time and
produces sustained departures from rational expectations that are akin to economic scarring.
In this case, the period of loose monetary policy shocks gets built into people’s experience,
causing them to build loose monetary policy shocks into their expectation-formation pro-
cess, which produces persistently high inflation and interest rates. Even greater and more
persistent departures from rational expectations are produced by type-III experienced-based-
expectations, where the absence of a model in the expectations process leads to large and

sustained departures from rational expectations.

5.5 Temporarily adverse technology

Our final experiment relates to the process for technology. In this experiment we consider
the effects of a period of sustained low outcomes for aggregate technology, modeled as a
sequence of low realizations for the aggregate technology shock. Much like the experiment
above for monetary policy shocks, for each of the expectations processes we endow people
with 120 periods of observed outcomes, of which the final 40 periods for the technology
shock have been artificially lowered by 3 percent. We then simulate learning outcomes for
an additional 140 periods, repeat the entire exercise 115 times, and report average outcomes

in Figure 6.
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Figure 6: Temporarily adverse aggregate technology.

Several features of Figure 6 are worth noting. First, the period of temporarily adverse
technology shocks (panel E) leads to a notable decline in output (penal A) while at the same
time causing spikes in the behavior of labor (panel B), inflation (panel C), and the nominal
interest rate (panel D). These spikes are a consequence of the habit formation interacting
with the (adverse) technology process. More specifically, habit formation implies that
it is the quasi-difference of output that matters for labor supply and firms’ pricing, and
the adverse technology process generates spikes in the quasi-difference of output when the
adverse technology shock begins and ends. Through the monetary policy rule, the behavior
of inflation gets reflected in the nominal interest rate (panel D). In appendix D we show
that these spikes in labor, inflation, and the nominal interest rate are not present when the
habit formation parameter is set to zero (v = 0.0).

Looking at the model’s behavior under the different expectations processes, much like
subsection 5.4, type-II experienced-based-expectations behaves very similarly to rational
expectations. However, sustained departures from rational expectations are present under

type-I experienced-based-expectations, where the sequence of adverse technology shocks gets
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built into people’s expectation-formation process, causing them to place higher probability on
adverse technology outcomes. As for the monetary policy shock, the departures from rational
expectations are sufficienctly long-lived that they appear muck like economic scarring. Type-
I1I experienced-based-expectations behave very differently to the other processes because the
absence of a model the expectation formation process leads to weak anchoring and very slow

convergence back to baseline.

5.6 The effects of experience on learning

In this subsection we consider the effect on learning of agents being endowed with a smaller
experience set. Specifically, we shorten the length of the experience set to just 60 observa-
tions. With this smaller experience set we repeat the exercises in subsections 5.4 and 5.5

and report the results in Figures 7 and 8, respectively, below.
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Figure 7: Temporarily loose monetary policy with an experience set of 60 observations.

Qualitatively, the results in Figure 7 are similar to those in Figure 5, but underlying the

"'We have extended the length of the simulation to determine that, indeed, type-III experienced-based-
expectations do eventually return to baseline.
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similarity are some important differences. First, with the experience set dominated by the
history of loose monetary policy shocks, the initial differences between type-I (and type-11I)
experienced-based-expectations and rational expectations are magnified. At the same time,
with decision-makers employing a shorter experience set the history of loose policy shocks
recedes from memory more rapidly. As a consequence, the gap between type-I experienced-
based-expectations and rational expectations narrows more quickly as time passes. These
effects can be seen most clearly in the behavior of inflation (panel C) and the nominal interest

rate (panel D).
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Figure 8: Temporarily adverse technology with an experience set of 60 observations.

The results in Figure 8 reinforce those from Figure 7. Focusing on the behavior of
type-I and type-II experienced-based-expectations, we see that with a shorter experience
set the initial effect on the economy of the adverse technology shocks is increased while the
gap between experienced-based-expectations and rational expectations closes more rapidly
over time. Further, because the underlying relationships linking economic outcomes to the
state variables have not changed, type-II experienced-based-expectations behave similarly

to rational expectations while type-I experienced-based-expectations, which are driven by
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the realized shocks, generate meaningful differences. Finally, type-1I1 experienced-based-
expectations exhibit large and sustained departures from rational expectations, especially

for inflation and the nominal interest rate (panels C and D, respectively).

6 Related departures from rational expectations

In this section we briefly discuss a few departures from rational expectations that are related
to experienced-based-expectations to a greater or lesser extent. There are others, but here we
focus on diagnostic expectations, ambiguity aversion, rare disasters, and real-time learning.
The first three share similarities with type-I experienced-based-expectations while the fourth
has similarities with type-1I experienced-based-expectations.

For illustrative purposes, we will present the various departures in the context of a shock

process that has the following autoregressive form:
Tp1 = PTp + Vpy, (34)

where 0 < p < 1 and v; ~ i.i.d. N[0,02]. Denote the conditional density for x;;; given x;
by p(x441]z:) where, under the assumptions above, this conditional density is the density for

a normal distribution.

6.1 Diagnostic expectations

Diagnostic expectations are motivated on Kahneman and Tversky’s (1972) representativeness
heuristic. The heuristic suggests that people will assign excess probability or mass to events
whose likelihood has increased in light of current news. So if current economic growth
is high, then people will tend to over-estimate the probability that next period’s economic
growth will be high.

One implementation of the representativeness heuristic has beliefs formed according to

the distorted probability density:

P (Tey1]2e) )0 1 (35)

Po (.Tt+1|l't> =P ($t+1|xt) (m Y,

where 6 > 0 is the diagnostic parameter, py (z,41|2z;) is the diagnostic density, and X is a
scale factor that ensures that the diagnostic density integrates to one. Clearly, equation

(35) simplifies to rational expectations in the case that § = 0. When 6 > 0, equation (35)
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assigns higher probability to outcomes that are more representative or diagnostic given the
observed outcome.

Bordalo, Gennaioli, and Shleifer (2018) show for an AR(1) process with normally dis-
tributed shocks (i.e., equation 34) that diagnostic expectations cause decisionmakers to be-

have as if the underlying shock process were actually:
Tip1 = pTy + pOUy + Uy, (36)

i.e., an ARMA(1,1) process.

Equation (36) implies that the effect of diagnostic expectations for the standard case of
an AR(1) shock is to raise the unconditional variance of the shock, and to impart transitory
persistence, or momentum, through the MA(1) term. Because diagnostic expectations alters
the probability density function for the shock process, it operates through a mechanism

similar to type-I experienced-based-expectations.

6.2 Ambiguity aversion

To illustrate the connection to ambiguity aversion (Gilboa and Shmeidler, 1989), consider
the following situation. Suppose an agent gets utility from z; and that their expected

discounted lifetime utility satisfies the recursion:
Vi) = ule) + 5 [ Viplarla)drien (37)

where u(z;) is a smooth and concave period-utility function that satisfies the Inada (1965)
conditions and V' (x;) is a value function (that is also smooth and concave).

Suppose, further, that the agent is concerned that the conditional density for z;,; may
instead be some other density, q(z;11|z;), a worst-case density, whose distance from p(z41|z¢)
is constrained by the entropy condition:

I(p, qlz) = /ZOQ (q(xt+1|mt)) q(xtﬂ|xt)p<$t+1’$t)d$t+1- (38)
p(zesl|ze) ) p(@er|)

To combine this entropy condition with an infinite-horizon discounted Bellman equation,

Hansen and Sargent (1995, 2007) place a constraint on expected discounted entropy:

Ey Zﬁsl(p, q,xtﬂ)] < w. (39)
s=0
It is convenient to define: ( 2
q\Tt41|Tt
m pr— —, 40
o p(l’t+1|37t) ( )
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then the worst-case conditional density that the agent needs to be concerned about is the

solution to the decision problem:

V(xe) = ming,,, [u(xt) + 5/ (M1 V(2e41) + amypilog(myp)) p(@ga|z)dog |, (41)

with the additional constraint:

/mt+1p(xt+1’xt)dxt+l =1 (42)

The solution to equations (41)—(42) gives the worst-case density:

_V(@41)
@

q(ze|re) = p(Erale) ——5 5 (43)

)
€ o p(It+1 |$t)d%+1

where a > 0 is the Lagrange multiplier on the entropy constraint, which approaches rational
expectations in the limit as o 1 0.

This worst-case density slants or distorts the conditional density used to form expec-
tations by assigning lower mass to outcomes that deliver high value and higher mass to
outcomes that deliver low value. For this reason ambiguity-averse decisionmakers are some-
times described as being pessimistic. Like diagnostic expectations, ambiguity aversion alters
the conditional density for the shock process and in this regard it shares similarities with
type-I experienced-based-expectations. However, where ambiguity aversion causes the deci-
sionmaker to put greater probability on shocks that it fears will happen, type-I experienced-
based-expectations causes the decisionmaker to put greater probability on shocks that have

actually happened.

6.3 Rare disasters

The connections between experienced-based-expectations and the rare disasters literature
(Reitz, 1988, Barro, 2006; 2009, Barro and Ursua 2012) are reasonably clear. In the rare
disasters literature the shocks that enter the model come from a mixed distribution. For a
typical shock process (often that for technology) the shock, u;, would be composed of two
terms:

U = T¢ + 24, (44)

where the process for x; is given by equation (34). For a standard implementation of rare

disasters applied to technology, such as Barro (2006), the process for z; is taken to be:

- 0, with probability p (45)
o= log (1 —b), with probability 1 — p,
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where b is the contraction proportion. An alternative is to have b be the realization from a
power law.

Equation (45) shows that the rare disasters literature operates by altering the distribu-
tion of the shock processes used to form expectations. Unlike ambiguity-aversion, which
slants the shock-distribution toward adverse outcomes, the rare disasters literature achieves
something similar using a two-part distribution, where the second part skews the distribution
toward disastrous events. Rare disasters share similarities with type-1 experienced-based-
expectations insomuch as expectations are being formed using a modified shock-process.
However, type-1 experienced-based-expectations reflects disastrous events only to the extent
that they have been observed and, contrary to the rare disasters literature, they allow periods

of unusually good outcomes as well and periods of unusually bad outcomes.

6.4 Real-time learning

There are close connections between experienced-based-expectations and the real-time learn-
ing literature pioneered and popularized by Evans and Honkapohja, and summarized in their
book, Evans and Honkapohja (2001). Real-time learning starts with a perceived law-of-
motion (PLM) that relates endogenous variables to the state variables, estimates the coeffi-
cients in this PLM using regression, or some form of filtering (such as the Kalman filter), and
uses the estimated PLM to form expectations. These expectations are combined with the
model to arrive at the actual law-of-motion (ALM), which is used to generate next-period’s
observation.

Real-time learning is based on estimation using observed outcomes for endogenous vari-
ables and, in this sense, it is most closely related to experienced-based-expectations of type-
II. The difference between experienced-based-expectations and real-time learning is that
the real-time learning focuses almost exclusively on linear models and on modeling the con-
ditional mean whereas experienced-based-expectations can be applied equally to linear and
non-linear models and approximates the entire conditional density, not just the conditional

mearl.

7 Conclusions

This paper has shown how to integrate experienced-based-expectations, which allow the out-

comes people experience to guide their expectations, into dynamic, stochastic, general equi-
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librium models. Three types of experienced-based-expectations are described and analyzed,
with each type differing according to the experience set drawn upon to form expectations
and according to people’s knowledge of the model’s underlying structure. In the context of a
non-linear new Keynesian business cycle model, the paper considered three experiments and
analyzed how the model behaves under the three types of experienced-based-expectations
relative to rational expectations.

In response to an exogenous unanticipated increase in the inflation target, we showed that
type-I experienced-based-expectations behaved very similarly to rational expectations while
type-1I (and type-III) experienced-based-expectations produced substantial departures from
rational expectations, an ongoing period during which inflation and the nominal interest rate
were low. The differences between type-I and type-II experienced-based-expectations were
due to their differing assumptions in regard to people’s understanding of the model. Our
second two experiments involved people experiencing periods of unusually loose monetary
policy shocks and unusually adverse technology shocks, respectively. For each of these
experiments we found that type-I experienced-based-expectations produced substantial and
sustained deviations from rational expectations, not unlike scarring. These same departures
did not occur with type-II experienced-based-expectations because the adverse shocks do not
change the model’s underlying structure. We further showed that when expectations are
formed using a shorter experience set that the departures from rational expectations are

initially larger, but dissipate more quickly as time passes.
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Appendix A: Density estimation

This appendix describes methods that can be used to estimate densities and conditional
densities from a sample. Our intention is to simply document these methods and show
how they can be used, not to derive them or establish by proof their theoretical foundation.
We illustrate these methods using data simulated from a simple univariate AR(1) process,

extending the results presented in Section 2.

Kernel density estimation

A standard method for approximating a density is to use kernel density estimation (Rosen-
blatt (1956) and Parzan (1962)), which involves building up a density by assigning a little
bit of mass around each observation in a sample. The amount of mass that is assigned is
governed by the kernel, which is itself a density, and the region around an observation that
receives mass is governed by the bandwidth. For a given kernel, the probability estimate is

given by:
1 n
p(y) = - 'E—1 Ku(y —vi), (A1)

where K, (y — y;) is the kernel and h is the bandwidth or smoothing parameter. A very

common kernel, the one we use in this paper, is the Gaussian kernel:

Ky —yo) = ﬂl_ﬂh<> (A2)

To approximate the conditional density we use linear regression to estimate the condi-

tional mean and then overlay this conditional mean with the kernel-based density constructed
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from the residuals. We determine the bandwidth, A, according to the plug-in formula from
Silverman (1986). The consistency of equation (A2), which ensures that the kernel esti-
mated density converges to rational expectations as the experience set gets longer, is proven
in Parzan (1962).

An alternative to estimate the conditional density is to use the Nadaraya-Watson (Nadaraya
(1964) and Watson (1964)) kernel regression estimator:

pylz) = Dict Kh;;(y — i) K, (x — 951‘).
> izt K, (0 — ;)

However, we found this estimator to be quite sensitive to individual observations and to the
choice of bandwidths, h, and h,. In the figure below we use the Sheather and Jones (1991)
method to determine these bandwidths.

(A3)

Fourier series approximation

An alternative to kernel density estimation is to use Fourier series methods, as described in
Kronmal and Tarter (1968), which use cosine approximation. With this cosine approxima-

tion the probability approximated using a m’th order polynomial is given by:

C " —a
pm(y) = 50 + ;ékcos (lm‘z ) , (A4)

—a

where y € [a, b], and the coefficients are determined according to:

_ 2 - Yi —a
Ck = (b—a)n;COS (kwb_a>. (A5)

Just as for kernel density estimation, we can approximate the conditional density by

using linear regression to capture the conditional mean and then overlay that mean with
the cosine-approximated density produced from the residuals. The consistency of equation
(A4), which ensures that the density estimated using Fourier series converges to rational
expectations as the experience set gets longer, is proven in Kronmal and Tarter (1968).

We found the kernel density methods and the Fourier series methods to give very similar
densities, but preferred to use the kernel methods because they are guaranteed to produce
non-negative probabilities and we found them numerically faster.

Figure 9 below repeats the exercise undertaken in Section 2, but adds the Fourier series
approximation to the panel on unconditional density approximation and the Fourier series
approximation and the Nadaraya-Watson estimator to the panel on conditional density ap-

proximation.
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Figure 9: Densities under rational expectations and experienced-based-expectations

Appendix B: The model

This appendix presents the decision problems for households and firms and derives the
model’s aggregated first-order conditions that are presented in the main text. The notation

follows the main text.

Household’s problem

The decision problem for the representative household is to choose {ct, hy, b1 }52, to maxi-

iﬁt (. =7Cra) ™7 " h ™
— 1l—0o 1+ x

where 0 >0, x >0, 0> 0,0< 8 <1, and 0 < v < 1, subject to the flow budget constraint:

mize:

Ut:Et

9

b b
Ct‘*‘@t%tl :wtht_'_é + D,.
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The Lagrangian for the problem is:

- —C) 7 RX b b
Zﬁt<(6t 1) 1 L+ N <wtht+_t+Dt_ct_Qtt_+l)>
t=0

L;=FE -
b l—o 14y P, P,

Y

where )\; is a Lagrange multiplier, and the first-order conditions are:

oL Y
8_05 (ct =7Ci1) " = A =0,
oL
a—hz /Lhi( — wt)\t == O,
8£t Qt |:>\t+1:|
. ——=M+[E =0.
3bt+1 Pt ! 5 ‘ Pt+1

After substituting out the Lagrange multiplier, we obtain:

Mhif = Wy (Ct - VCt—l)iaa

e (Ct+1 - 7015)_0}
¢ — 70— = t .
(€ =7C) = [ Qr (1 + 7ey1)

Firm’s problem

With all firms hiring labor from a perfectly competitive market at real wage w;, the cost

minimization problem for the i’th firm, ¢ € [0, 1], is given by the Lagrangian:
E(Z) = U}tht(’l) + wt(z) (yt(l> — eztht(i)) .

The first order conditions are:

DL, (i

~—

wy — €*w(1) =0,

Ohy(7)
L4 (i) | |
—e*h(i) =0
8wt(i) yt(z) € t(z> )
which imply that real marginal costs for the ¢’th firm, w; (i), in equilibrium satisfy:
N
wy(i) = e

and are the same for all firms.
To determine the firm’s optimal price, the decision problem for the i’th firm is to choose

{p:(7)}22, to maximize its equity-value:

> N N X0 A
Z <6 )\—0 <(pt(l) — wy) pe(7) Yi—g (W_l) Y%))
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Differentiating with respect to p;(i), the first-order condition is:

OTO) 1 ()it conpu(i) -0+ — 6 <pt(z')“ (YM _ 1) ( 1+ ”f) Yt)

Opq(i) pi-1(4) pe—1(2)
A ) (1 ) (1
: +oE t+1pt+1(i)1_EYt+1 (ptH(Z)( -+ Tuat) 1) (ptH(Z)( t Wﬁl))} -0
A pe(9) pe(9)
which simplifies to:
At41
(1 — E) Y;g + GWtY; — ¢Wt (1 -+ 7Tt) Y;f -+ ¢Et \ Y;+17Tt+1 (1 -+ 7Tt+1) = O,
t
once we recognize that in a symmetric equilibrium p,(i) = 1, V ¢, i.
Aggregation across households and firms
From the household’s problem we obtain the aggregate expressions:
/JJHtX = Wt (Ct — ’}/thl)_a s (B].)
— C — ’}/Ct)_a
Cr—~Cy ) = pE, | , B2
(€= 2Ca) = i, (g 2 (B2
C, =Y, (B3)
and from the firm’s problem we obtain, after aggregation:
Y, = e**Hy, (B4)
Wy
_ -t B
Wt eZt? ( 5)
1—¢e € (Crp1 —vCy) 7 Yipampgr (1 + mesq)
m(1+m) = + —w; + BFE — (B6)
Y e T T (Ci—1Ci 1) Y,

Equation (B4) corresponds to equation (30) in the text. Substituting equation (B3) into
equation (B2) and noting the relationship between the nominal bond price and its yield,
equation (26), gives equation (28) in the text. Substituting equations (B1) and (B3) into
equation (B5) gives equation (32) in the text. Finally, substituting equation (B3) into (B6)
gives equation (31) in the text.

Appendix C: Model solution

Here we briefly summarize how the model is solved under each of the expectations processes.

34



Rational expectations

Our method for solving the model under rational expectations is very standard. The model
has three state variables. Decisions rules are approximated using Chebyshev polynomials
(5’th order in all three variables) and the integrals associated with conditional expectations
are approximated using Gauss-Hermite quadrature (9 quadrature points). The domain for
each of the shocks is taken to be plus/minus three unconditional standard deviations while
that for output is its nonstochastic steady state £ 0.2 (which allows the same domain to be
used for all experiments).

For convenience, we define:

o _ (G —9Cy) "
s (14 mp)

T = (Copr —7C) 7 Yimepn (14 my1) (C2)

(C1)

Type-1

With type-I experienced-based-expectations the solution method parallels that for rational
expectations above. Decision rules are approximated using Chebyshev polynomials and
quadrature is used to approximate expectations. However, while the Gauss-Hermite nodes
are employed for this quadrature (again, 9 quadrature points) the weights associated with
each quadrature point are determined using a (normal) kernel density estimator, as described
in Appendix A. The order for the Chebyshev polynomials and the domain for the state

variables are the same as those documented earlier for rational expectations.

Type-I1

Determining outcomes with type-II experienced-based-expectations involves the straight-
forward application of a non-linear equation solver. Given the observed state and the sample
of outcomes available, expectations in the consumption-Euler equation (E}’ [ ;"H}) and the
Phillips curve (E/! [r},,]) are formed by applying the (normal) kernel density estimator
described in Appendix A to the variables in equations (C1) and (C2). Then the following
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non-linear system is solved:

MHtX = Wy (Ct - WCt—l)ia:

IT [
(Cy —~7Ci1) ™7 = BM

Qr
Ct - }/;fa
}/;f == eZtHh
Wy
Wt = ——,
e~t
l—e ¢ B! 7]
m(14+m) = + —w + 0 -,
o o T(C—1C) Y

Type-II1

Much like type-II experienced-based-expectations, outcomes with type-III experienced-based-
expectations are determined using a non-linear equation solver. Given the observed state
and the sample of outcomes available, simple averages are taken of the variables in equations
(C1) and (C2) to form the expectations in the consumption-Euler equation (E['' [Cy,,])

and the Phillips curve (E/*" [},,]). Then current-period outcomes are obtained by solving

the non-linear system:

pHY = wy (Cp —yCy1) ™7,

111 *
(€= ACa) ™ = g (Gl (Cia

Qr
Ct = }/;57
}/t = GZtHb
Wy
Wy = —/—,
e~t
1—€ € B [Wjﬂ}
m(l4+m)=——+—-w+0 -
¢ ¢ (Cy —vCi1) Y,

Appendix D: Expectations and habit formation

In the Appendix we demonstrate that the spikes observed in labor, inflation, and the nominal
interest rate in Figure 6 are due to habit formation, consistent with the explanation given in
the text. We demonstrate this by resolving the model and recreating the dynamics following

sequences of loose monetary policy shocks and adverse technology shocks, but with v, the
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habit formation parameter, set to zero. The results from these simulations are shown below

in Figures 10 and 11.
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Figure 10: Temporarily adverse aggregate policy shocks with v = 0.0.

Comparing Figure 10 to Figure 6 it is apparent that habit formation has relatively little
impact on how experienced-based-expectations affect the model following a sequence of loose
monetary policy shocks. The same cannot be said for the case where there is an adverse
sequence of technology shocks. Relative to Figure 7, Figure 11 does not display the spikes
to labor, inflation, and the nominal interest rate seen in Figure 7, demonstrating the those

observed spikes are due to the quasi-differencing introduced by habit formation.
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Figure 11: Temporarily adverse aggregate technology shocks with v = 0.0.
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