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1. Introduction 

The 2020 COVID-19 driven recession saw a sharp drop in carbon dioxide emissions as 

transportation and some other energy uses were curtailed. This was an unusual recession as it 

was driven by a pandemic. We were curious about whether carbon emissions behaved 

differently in this recession than in past recessions. Previous research showed that the 

elasticity of carbon emissions with respect to GDP is greater when GDP declines than when it 

increases (Sheldon, 2017). In this paper, we examine the behavior of carbon emissions in 

each individual US recession since 1973 using monthly GDP (Brave et al., 2019) and carbon 

emissions data. We find that carbon emissions respond asymmetrically to changes in GDP in 

the 1973-5, 1980, 1990, and 2020 recessions but not in the 1981-2, 2001, or 2008-9 

recessions. The 1973-5, 1980, 1990 recessions are associated with negative oil supply shocks. 

The 2020 recession is associated with a negative oil demand shock. In both cases, oil 

consumption fell sharply. By contrast, in the 1981-2, 2001, and 2008-9 recessions carbon 

emissions fell by the amount that would be expected given the decline in GDP. 

York (2012) reported that the carbon emissions-income elasticity is higher during individual 

years of economic expansion than during individual years of economic contraction. He 

argued that this elasticity is likely to be lower during contractions, as reductions in the use of 

durable assets accumulated in booms might be relatively small in contractions. But, using 

data on 189 countries between 1961-2010, Burke et al. (2015) concluded that there was no 

strong evidence that emissions reacted differently during years with economic growth 

compared to years with falling GDP. However, they found that significant evidence of 

asymmetry emerges when effects over longer periods were considered. Economic growth 

tends to increase emissions not only in the same year, but also in subsequent years. Delayed 

effects – especially in the road transport sector – mean that emissions tend to grow more 

quickly after booms and more slowly after recessions. However, Doda (2013) noted 

significant heterogeneity in asymmetry across countries. 

Shahiduzzaman and Layton (2015) point out that carbon emissions fell faster in all US 

recessions than in all US expansions since 1973. Inspecting their Table 5, we also see that the 

ratio of percentage change per annum in CO2 emissions to percentage change in GDP was 

greater in all contractions than in any expansion. However, we could explain this if changes 

in CO2 emissions are explained by a time effect and a growth effect: 
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∆𝐥𝐧𝑪𝒕 = 𝜷𝟎 + 𝜷𝟏∆𝐥𝐧𝑮𝑫𝑷𝒕 (𝟏) 

where ∆𝑙𝑛𝐶𝑡 and ∆𝑙𝑛𝐺𝑡 denote the first differences of the logs of carbon emissions and GDP. 

Then if 𝛼 < 0, CO2 emissions will fall faster in recessions than they rise in expansions for a 

given absolute percentage change in GDP even if 𝛽1 is the same in both contractions and 

expansions. 

Sheldon (2017) estimated an econometric model using quarterly US data. She found that the 

carbon emissions-income elasticity was greater in quarters with declining GDP than in 

quarters with rising GDP. Specifically, she found that a one percent increase in GDP results 

in a 0.2% increase in emissions, while a one percent decrease in GDP results in a 1.8% fall in 

emissions. Klarl (2020) finds similar results using monthly US data and a rolling regression 

method. Eng and Wong (2017) use a nonlinear autoregressive distributed lag model estimated 

with monthly US industrial production and CO2 emissions data. They find that CO2 

emissions decline more rapidly in response to a given absolute percentage change in 

industrial production during recessions than they increase during expansions over the long 

run. However, they found that in the short run the response to changes in industrial 

production is symmetric.1 

Carbon emissions fell sharply globally at the onset of the 2020 recession (Le Quéré et al., 

2020) as did other pollutants (Forster et al., 2020). Researchers estimated emissions in near 

real time and tracked a very rapid rebound (Liu et al., 2020). Chang et al. (2020) predicted 

that at least in Taiwan the bounceback would again be asymmetric. 

The causes of recessions remains a controversial topic (Kilian and Vigfusson, 2017). Most 

US recessions since 1973 have been associated with increases in the price of oil. But 

Bernanke et al. (1997) argued that the US Federal Reserve’s response to oil price shocks 

caused US recessions rather than the shocks themselves. Kilian and Lewis (2011) counter that 

this really was only the case of the 1979 oil price shock, and it is unclear whether the Federal 

Reserve would have raised interest rates even in the absence of the oil price shock. Kilian 

(2009) and Kilian and Lewis (2011) argue that the effect of increases in the price of oil on the 

economy depends on the causes of those increases. Some oil price increases are primarily due 

 
1We replicated Sheldon (2017) with industrial production data instead of GDP data and found that the response 

was symmetric. GDP and industrial production data have different short-run effects on carbon emissions. 
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to increasing demand – such as the increase from 2003 to 2008 – and some by reduced 

supply, such as in 1979 (Baumeister and Hamilton, 2019). Supply shocks lead to a reduction 

in global economic activity, while shocks to oil demand do not (Baumeister and Hamilton, 

2019). 

We follow a similar approach to Sheldon (2007) but use US monthly data from January 1973 

to December 2020. In addition to testing for asymmetry regarding recessions and expansions 

in general, we also test whether the response of CO2 emissions to changes in GDP is different 

in each individual recession. We find that the response is greater in recessions that have been 

closely linked to either negative oil supply shocks or to the negative oil demand shock 

induced by the COVID-19 pandemic. We conclude that the asymmetry is mostly due to the to 

the reduction in petroleum consumption.  

The paper proceeds as follows. The following section provides a brief history of oil price 

shocks and US recessions. Section 3 presents our methods and Section 4 our data. Section 5 

documents the results. Section 6 summarizes our findings and provides key conclusions. 

2. Oil Price Shocks and Recessions 

Figure 1 presents the history of oil prices in the US since 1973. There are normally 

considered to be three main negative oil supply crises in US history since 1973 (Hamilton, 

2009). The first oil shock erupted in October 1973 when the Organization of Arab Petroleum 

Exporting Countries (OAPEC) decided to place an embargo on some western countries, 

including the US, perceived as supporting Israel during the Yom Kippur War. The embargo 

lasted from October 1973 to March 1974. A recession followed in the US from December 

1973 to March 1975 (Table 1). 
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Figure 1 Monthly US Oil Prices 

 

Notes: Nominal price is the refiner acquisition cost of crude oil, composite (US EIA July 2021 Monthly Energy 

Review, Table 9.1). Real price is deflated by the US consumer price index (Bureau of Labor Statistics). Average 

annual nominal price shown for 1973. 

Table 1. US Recessions (1973-2020) 

 Recession First Month Last Month  

1 1973-5 recession  December 1973 March 1975  

2 1980 recession  February 1980 July 1980  

3 1981-2 recession  August 1981 November 1982  

4 1990-1 recession  August 1990 March 1991  

5 2001 recession  April 2001 November 2001  

6 2008-9 recession January 2008 June 2009  

7 2020 recession  March 2020  April 2020  

Notes: Recessions defined by the National Bureau of Economic Research (NBER). The first month of the 

recession is the month following the “peak month” given by the NBER.  

The second shock started in early1979 following the Iranian Revolution in January and 

worsened following Iraq’s invasion of Iran in September1980. A recession followed from 

February to July 1980. There was a third spike in oil prices from August 1990 after Iraq 



 6 

invaded Kuwait, two of the world’s largest suppliers of crude oil, resulting in a shortfall of 

almost 9% of world oil production (Hamilton 2003). A US recession started in August 1990 

and lasted till March the next year after a coalition of forces led by the US defeated the Iraqi 

army and liberated Kuwait. 

The 1981–82 recession was primarily triggered by tight monetary policy under Federal 

Reserve chair Paul Volcker in response to continuously high inflation (Kilian and Lewis, 

2011). The federal funds rate was raised to more than 19% in June 1981 from around 9% 

when Volcker took office in August 1979 (Figure 2). 

In 2001, a recession bracketed the September 11 terrorist attack. Stock markets, and 

particularly the NASDAQ market began to fall in early 2000 in the so-called dot.com bust. 

These are usually seen as the causes of this recession (Bernanke 2010). The Federal Reserve 

raised interest rates from the beginning of 1999 to the end of 2000. The price of oil did rise 

from the Asian Financial Crisis in 1997-8 till late 2000 as demand bounced back. But the 

price of oil began to fall from September 2000. The price of oil fell particularly strongly 

following the attack. 

Figure 2 Effective Federal Funds Rate 

 

Notes: Recessions marked with blue shading. Source: https://fred.stlouisfed.org/series/FEDFUNDS 
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The price of oil rose following this recession and peaked in July 2008 at its all-time high. 

This increase is understood to have been driven by rising demand fueled by the rise of China 

and India in particular (Kilian, 2009; Hamilton, 2009). Hamilton (2009) argued that the rise 

in the price of oil was also partly due to stagnation of world oil production. The Great 

Recession in 2008 and 2009 is usually considered to have been caused by the financial crisis 

that started in the US housing and mortgage market. Hamilton (2009), however, argued that 

the 2008-9 recession was also partly due to the spike in the oil price.  

The COVID-19 global recession is unprecedented as it was the result of the breakout of the 

Coronavirus pandemic. The global depression, and particularly restrictions on transport, led 

to decreasing demand for oil, triggering a sharp fall in the price of oil. The demand shock was 

exacerbated by the eruption of a price war between Saudi Arabia and Russia. West Texas 

Intermediate Crude Futures even became negative in May 2020, falling as low as -$40.32 

(Mulder 2020). 

In conclusion, we argue that four US recessions appear to be primarily associated with 

negative (reduced supply or reduced demand) shocks in the oil market: 1973-5, 1980, 1990-1, 

and 2020. 

3. Methods 

3.1. Basic specification 

The simplest model of the response of carbon dioxide emission changes to GDP growth can 

be generated by adding a random error term, 𝜖𝑡, and weather variables to (1): 

∆ln𝐶𝑡 = 𝛽0 + 𝛽1∆ln𝐺𝑡 + 𝛽𝐻∆𝐻𝑡 + 𝛽𝐾∆𝐾𝑡 + 𝜖𝑡 (2) 

where 𝐻𝑡 is heating degree days and 𝐾𝑡 cooling degree days. The constant term 𝛽0 is, 

therefore, the mean of ∆𝑙𝑛𝐶𝑡 when there is no economic growth (Stern et al., 2017). In 

contrast to Sheldon (2017), GDP is not lagged in this baseline model. Sheldon lagged GDP 

because she was concerned about reverse causality. However, in this paper we are only 

interested in the association between growth and emissions rather than measuring a causal 
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relationship.2 On the other hand, Csereklyei and Stern (2015) argue that the causal effect of 

GDP on energy use is only a little smaller than the reduced form estimate. This argument 

should extend to the causal effect of GDP on carbon emissions. We also estimate models with 

a distributed lag specification, as described below, to test for a lagged relationship between 

carbon emissions and GDP. 

3.2.  Asymmetric specifications 

We specify: 

∆ln𝐶𝑡 = 𝛽0 + 𝛽1∆ln𝐺𝑡 + 𝛽2𝐷𝑡
−∆ln𝐺𝑡 + 𝛽𝐻∆𝐻𝑡 + 𝛽𝐾∆𝐾𝑡 + 𝜖𝑡 (3) 

𝐷−denotes the negative growth dummy that equals one when GDP growth is less than zero, 

and zero otherwise. The coefficient 𝛽2 measures the difference in the elasticity of carbon 

emissions with respect to GDP between recession and expansion periods and so a t-test for 

whether this coefficient is zero is a direct test for asymmetry. 𝛽1 is then the elasticity during 

expansions and 𝛽1 + 𝛽2 is the elasticity during recessions. Essentially, we are allowing for a 

piecewise linear response of emissions to GDP with a kink at zero GDP growth. 

Monthly data can be somewhat noisy – it is possible to have some positive months of growth 

within a recession. Therefore, we also estimate (3) using a dummy variable for NBER 

recessions, 𝐷𝑅: 

∆ln𝐶𝑡 = 𝛽0 + 𝛽1∆ln𝐺𝑡 + 𝛽3𝐷𝑡
𝑅∆ln𝐺𝑡 + 𝛽𝐻∆𝐻𝑡 + 𝛽𝐾∆𝐾𝑡 + 𝜖𝑡 (4) 

3.3.  Recession comparison 

Next, we investigate whether the 2020 pandemic recession is different from past recessions in 

terms of the carbon emissions-GDP elasticity: 

∆𝑙n𝐶𝑡 = 𝛽0 + 𝛽1∆𝑙𝑛𝐺𝑡 + 𝛽4𝐷𝑡
𝑝𝑎𝑠𝑡∆ln𝐺𝑡 + 𝛽11𝐷𝑡

2020∆ln𝐺𝑡 + 𝛽𝐻∆𝐻𝑡 + 𝛽𝐾∆𝐾𝑡 + 𝜖𝑡 (5) 

𝐷𝑝𝑎𝑠𝑡  denotes the past recession dummy, equal to one when a month is within a past 

recession (before the year 2020) and zero otherwise. 𝐷2020 is the 2020-year dummy, equal to 

one when a month is during the 2020 recession and zero otherwise. 

 
2 Using our monthly data, if we specify (2) with one lag of ∆𝑙𝑛𝐺 instead, its coefficient is statistically 

insignificantly different to zero. 
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Since past recessions may differ in their characteristics it is worth investigating each 

recession individually: 

∆𝑙𝑛𝐶𝑡 = 𝛽0 + 𝛽1∆𝑙𝑛𝐺𝑡 + ∑ 𝛽4+𝑖𝐷𝑡
𝑅𝑖 ∆𝑙𝑛𝐺𝑡

7

𝑖=1

+ 𝛽𝐻∆𝐻𝑡 + 𝛽𝐾∆𝐾𝑡 + 𝜖𝑡 (6) 

There are seven 𝐷𝑡
𝑅𝑖  dummy variables, each represents a recession since 1973. 𝐷𝑡

𝑅1 =

𝐷𝑡
1973−5 equals one for months during the 1973-5 recession and zero otherwise. Similarly, 

𝐷𝑡
𝑅2 = 𝐷𝑡

1980  equals one when or months during the 1980 recession and zero otherwise and 

so forth for the remaining dummies. The detailed months when recessions start and end are 

listed in Table 1. 

3.4. Excess oil consumption and other energy use 

As we argued in Section 2, four US recessions are associated with important negative shocks 

in the oil market. Could large falls in oil consumption associated with these shocks cause the 

response of emissions to changes in GDP appear to be larger in recessions than expansions? 

However, oil and energy use more generally typically falls in all recessions as economic 

activity declines. Furthermore, simply including oil consumption in the regression will 

explain much of the variation in carbon emissions, not just the asymmetric behavior of 

emissions. Therefore, we want to filter out the part of oil use that is correlated with changes 

in GDP. To do this, we regress changes in the log of petroleum consumption, P, on changes 

in log GDP: 

∆ln𝑃𝑡 = 𝛾0 + 𝛾1∆𝑙𝑛𝐺𝑡 + 𝜖𝑡
𝑝 (7) 

We also regress changes in log natural gas, 𝐹1, and coal, 𝐹2, on GDP: 

∆ln𝐹𝑖𝑡 = 𝛿𝑖0 + 𝛿𝑖1∆𝑙𝑛𝐺𝑡 + 𝜖𝑡
𝑓𝑖 (8) 

We then add each of the estimated residual series, 𝜖𝑡̂
𝑝

, 𝜖𝑡̂
𝑓𝑖, to the foregoing regressions for 

∆𝑙𝑛𝐶𝑡 to see whether the asymmetric effect of recessions disappears or not. If adding 𝜖𝑡̂
𝑝
 

removes the asymmetry but adding 𝜖𝑡̂
𝑓𝑖  does not, then we argue that the asymmetry is 

explained by the part of the decline in oil use that is greater than would be expected due to 

the decline in GDP alone. 
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3.5. Sectoral emissions and asymmetric impacts 

Is asymmetry particularly pronounced in some sectors of the economy? If asymmetry is 

greater in sectors that predominantly use oil, in particular the transport sector, this will 

provide further support to the idea that asymmetry is due to changes in oil use. We apply (4) 

to emissions from the residential, commercial, industrial, transportation, and electric power 

sectors and economy-wide economic growth. We check the sectoral emissions-income 

asymmetry between recessions and other periods to see which sectors contribute to the 

overall asymmetry. We also test the effect of adding oil and other fossil fuel residuals to these 

regressions. 

3.6. Distributed-lag model 

Our primary interest is the contemporaneous correlation between carbon emissions and 

economic changes because it shows whether emissions fall faster relative to the fall in GDP 

in recessions than they rise in expansions. However, there are undoubtedly lagged effects of 

changes in GDP on emissions, for example due to investment in energy-using durable goods. 

To provide more information on how CO2 emissions respond to changes in GDP over time, 

we use a distributed-lag model to compare the cumulative response of carbon dioxide 

emissions to changes in GDP during recessions and expansions: 

∆ln𝐶𝑡 = 𝛽0 + ∑ 𝛽1,𝑗∆ln𝐺𝑡−𝑗 +

𝑚

𝑗=0

∑ 𝛽3,𝑗𝐷𝑡−𝑗
𝑅 ∆ln𝐺𝑡−𝑗

𝑚

𝑗=0

+ 𝛽𝐻∆𝐻𝑡 + 𝛽𝐾∆𝐾𝑡 + 𝜖𝑡 (9) 

The 𝛽3,𝑗 coefficients measure the difference in the elasticity of carbon emissions with respect 

to GDP between recession and expansion periods in period t-j; the coefficients 𝛽1,𝑗 are the 

elasticities during booms in period t-j. Then the long-run emissions-income elasticity during 

expansions is ∑ 𝛽1,𝑗
𝑚
𝑗=0  and the difference in the long-term emissions-income elasticity 

between recessions and expansions is ∑ 𝛽3,𝑗
𝑚
𝑗=0 . the long-run elasticity of carbon emissions 

with respect to GDP during recessions is: ∑ (𝛽1,𝑗 + 𝛽3,𝑗)𝑚
𝑗=0 . 

To specify the distributed-lag model, we use the Akaike Information Criterion (AIC) to find 

the optimal lag length. We use a maximum lag length of 12 months in addition to the 

contemporaneous terms.  
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4. Results 

4.1.  Asymmetry of the emissions-income relationship 

The Appendix presents the sources of the data. The data start in January 1973 and end in 

December 2020. We seasonally adjust the carbon dioxide emissions and energy consumption 

data using the X-13ARIMA-SEATS program (Census Bureau U.S. 2017). Degree days data 

are seasonally adjusted with the X-11-additive decomposition method. GDP is already 

seasonally adjusted. According to the augmented Dickey–Fuller test, the first differences of 

the logarithms of carbon dioxide emissions and GDP are stationary. 

In March and April 2020, GDP fell by 3.98% and 5.91%, respectively. These extreme 

outliers potentially greatly affect the relationship between changes in carbon emissions and 

GDP. Figure 3 demonstrates the relationship between these two variables before and after 

2020. Panel (A) includes all data from January 1973 to December 2020; Panel (B) includes 

data from January 1973 to December 2019. The slope is positive in both samples but is not as 

large when 2020 is excluded. 

Figure 3 Monthly Carbon Dioxide Emissions and GDP Growth Rates. A 1973-2020, B 1973-

2019 

A 
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B 

 

Columns 1-2 in Table 2 show the emissions-income elasticities using (2) for 1973-2020 and 

for 1973-2019, respectively. This evaluates the impact of the COVID-19 recession on the 

emissions-income elasticities. Column 1 shows that the emissions-income elasticity is nearly 

1.2 for the full sample, while it is only 0.8 before the year 2020. The time effect is negative 

and significant at the 1% level in the full sample but is less statistically significantly in the 

other regressions in the table. 

Columns 3-4 check for asymmetric effects of economic growth on carbon emissions using 

(3). The response is asymmetric for the full sample. The emissions-income elasticity is 

greater than unity and highly statistically significant when GDP growth is negative and less 

than one when growth is positive. Though the specifics differ, these results are broadly in line 

with the previous literature. However, the difference between the effects when GDP is 

contracting and growing is not statistically significant when the 2020 data is excluded. 

In Columns 5–6 we compare recessions and expansions to identify whether the response of 

CO2 emissions to growth is different during different periods using (4). The results are 

similar to those in Columns (3) and (4). 
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Table 2. Elasticities and Asymmetric Effects 

Dependent variable: ∆ln𝐶𝑡 

 (1) (2) (3) (4) (5) (6) 

Specification Elasticity 

1973-

2020 

Elasticity 

1973-2019 

Negative 

changes  

1973-2020 

Negative 

changes  

1973-2019 

Recessions 

1973-2020 

Recessions 

1973-2019 

∆ln𝐺𝑡 1.199*** 0.775*** 0.715*** 0.542** 0.592*** 0.681*** 

 (0.191) (0.161) (0.170) (0.236) (0.145) (0.208) 

𝐷𝑡
_∆ln𝐺𝑡   0.879*** 0.708   

   (0.222) (0.526)   

𝐷𝑡
𝑅∆ln𝐺𝑡     1.238*** 0.338 

     (0.268) (0.498) 

Constant -0.003*** -0.002*** -0.001* -0.001 -0.001 -0.001* 

 (0.001) (0.000) (0.001) (0.001) (0.001) (0.001) 

Observations 575 563 575 563 575 563 

R-squared 0.554 0.554 0.559 0.555 0.567 0.554 

Notes: Variable names as in text. Newey–West standard errors with 12 lags in parentheses. First differences of 

heating degree days and cooling degree days also included in all regressions. *** significant at 1% , ** 5%, and 

* 10% significance levels. 

Table 3. Asymmetric Effects for Individual Recessions 

Dependent variable: ∆ln𝐶𝑡 

 (1) (2) 

Specification Past recessions Individual recessions 

∆ln𝐺𝑡 
0.626*** 

(0.147) 

0.608*** 

(0.147) 

𝐷𝑡
𝑝𝑎𝑠𝑡∆ln𝐺𝑡 

0.437 

(0.448) 
 

𝐷𝑡
2020∆ln𝐺𝑡 

1.347*** 

(0.184) 
 

𝐷𝑡
1973−75∆ln𝐺𝑡  

1.663** 

(0.824) 

𝐷𝑡
1980∆ln𝐺𝑡   

1.016*** 

(0.328) 

𝐷𝑡
1981−82∆ln𝐺𝑡   

-0.614** 

(0.294) 

𝐷𝑡
1990−91∆ln𝐺𝑡  

1.944*** 

(0.400) 

𝐷𝑡
2001∆ln𝐺𝑡  

-1.287 

(0.951) 

𝐷𝑡
2008−09∆ln𝐺𝑡  

0.079 

(0.438) 

𝐷𝑡
2020∆ln𝐺𝑡  

1.367*** 

(0.184) 

Constant -0.001* -0.001 

 (0.001) (0.001) 

Observations 575 575 

R-squared 0.569 0.572 

Notes: Variable names as in text. Newey–West standard errors with 12 lags in parentheses. First differences of 

heating degree days and cooling degree days also included in all regressions. *** significant at 1%, ** 5%, and 

* 10% significance levels. 
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Column 1 in Table 3 compares the difference in the elasticity in the 2020 recession compared 

to expansions and the difference between expansions and all other past recessions using (5). 

The COVID-19 recession has a pronounced asymmetric response of carbon emissions. The 

previous six recessions overall do not show a statistically significant asymmetric response. 

Two possibilities could cause this aggregate result. The first possibility is there is no 

asymmetric response of carbon emissions during recessions and booms. Alternatively, CO2 

emissions respond asymmetrically during some recessions while symmetrically for the rest, 

the effects offsetting each other. 

To investigate which is the case, Column 2 identifies individual recessions and compares the 

response of carbon emissions in expansions to that in each of the seven individual recessions 

from 1973 to 2020. The results show that along with the 2020-recession, in the 1973-5 

recession, 1980 recession, and 1990 recession, the responses of carbon emissions in 

recessions are significantly larger than in expansions. The difference is statistically 

significant at the 5% level for the 1973-5 recession and significant for the following 

recessions at the 1% level. This is interesting because these past recessions are associated 

with negative oil supply shocks. while the 2020 recession is associated with a negative oil 

demand shock because of the sudden outbreak of the pandemic. The emissions-income 

elasticity in the other three recessions is not significantly greater to the elasticity in general 

and the sign of the estimated coefficient is even negative in two of the recessions.  

4.2.  Impacts of oil crises 

The results in Table 3 suggest that the asymmetric effect of growth on carbon emissions in 

some recessions compared to booms is likely associated with negative oil market shocks. In 

Table 4, we examine whether changes in oil use that are not explained by GDP explain this 

asymmetry by including the estimated residuals from (7) in the models we have estimated up 

to this point. As use of other energy also declines during recessions, to investigate whether 

this is responsible for the asymmetry, we also add the estimated residuals for coal and natural 

gas use from (8).  

Column 1 in Table 4 is our baseline model that compares carbon emissions during recessions 

and booms. Columns 2-5 demonstrate how residual oil and other fossil fuel use variables 

(coal and natural gas) affect this relationship. 
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When we add 𝜖𝑡̂
𝑝
 in Column 2, the coefficient for recessions becomes negative but 

statistically insignificant, showing that petroleum consumption changes have a significant 

role in creating this asymmetry. However, the results in Columns 3-5 show that the difference 

between recessions and booms is still highly significant when we add the other fossil fuel 

series. These results show that this asymmetry is not mainly due to a drop in other fossil fuels 

during recessions. 

Table 4. Adding Fossil Fuel Residuals to the Asymmetric Model 

Dependent variable: ∆ln𝐶𝑡 

 (1) (2) (3) (4) (5) 

∆ln𝐺𝑡 0.592*** 1.234*** 0.382*** 0.545*** 0.380*** 

 (0.145) (0.131) (0.119) (0.135) (0.103) 

𝐷𝑡
𝑅∆ln𝐺𝑡 1.238*** -0.187 1.530*** 1.133*** 1.384*** 

 (0.268) (0.163) (0.238) (0.277) (0.247) 

Oil residual  0.488***    

  (0.027)    

Coal residual   0.297***  0.241*** 

   (0.032)  (0.024) 

Natural gas 

residual 
   0.297*** 0.259*** 

    (0.018) (0.016) 

Constant -0.001 -0.003*** -0.000 -0.001 -0.000 

 (0.001) (0.000) (0.000) (0.000) (0.000) 

R-squared 0.567 0.727 0.684 0.729 0.804 

Observations 575 575 575 575 575 

Notes: Variable names as in text. Newey–West standard errors with 12 lags in parentheses. First differences of 

heating degree days and cooling degree days also included in all regressions. *** significant at 1%, ** 5%, and 

* 10% significance levels. 

Columns 2-5 in Table 5 show the effect of including 𝜖𝑡̂
𝑝
 and 𝜖𝑡̂

𝑓𝑖  on the coefficients of 

individual recessions. When we include the oil consumption residual, the asymmetric 

response of carbon emissions is removed or weakened for the four recessions that show 

asymmetry in Column 1. This shows that asymmetric changes in petroleum consumption 

explains these asymmetries. The coal residual does not remove any of the asymmetries 

(Column 3). The natural gas residual does not remove the asymmetry of carbon emissions in 

the 1990-1 and the 2020 recessions though the asymmetry is no longer statistically significant 

for the 1973-5 and 1980 recessions (Column 4).  

Figure 4 attempts to explain why this is. We used the Hodrick-Prescott filter to remove the 

long-run trends in the variables in order to focus on the business cycle scale fluctuations. Oil 

use fell sharply in December 1973 and January 1974. However, the use gas moved in tandem. 

In 1974 and 1975 gas use tracked the use of oil relatively closely. Throughout this period the 



 16 

price of natural gas rose fairly smoothly, and gas use fell. Coal use was much more stable. 

However, the big move down in gas use does seem to be initiated by the oil crisis as it 

happens at exactly the same time. In 1980, we see that oil use tracks GDP quite well, though 

moving more than GDP on both the up and downside. In fact, oil use was falling since early 

1979 as the price of oil ramped up. Gas use spiked higher in February and March 1980. The 

reversal of that spike in the following months means that gas use followed the path of oil to 

some degree over subsequent months, but overall gas use simply fluctuates over this period. 

Therefore, we argue that these asymmetries are associated with large falls in oil use, which in 

1973-5 was also mirrored by the change in gas use and in 1980 was accidentally mirrored in 

gas use for a short period. 

Table 5. Adding Fossil Fuel Residuals to the Individual Recessions Regression 

Dependent variable: ∆ln𝐶𝑡 

 (1) (2) (3) (4) (5) 

∆ln𝐺𝑡 0.608*** 1.224*** 0.409*** 0.579*** 0.421*** 

 (0.147) (0.135) (0.119) (0.136) (0.101) 

𝐷𝑡
1973−75∆ln𝐺𝑡 1.663** 0.345 1.513** 0.694 0.693 

 (0.824) (0.532) (0.699) (0.694) (0.572) 

𝐷𝑡
1980∆ln𝐺𝑡  1.016*** 0.365 0.903*** 0.313 0.309 

 (0.328) (0.287) (0.249) (0.328) (0.261) 

𝐷𝑡
1981−82∆ln𝐺𝑡  -0.614** -1.109*** -0.148 -0.659** -0.274 

 (0.294) (0.325) (0.238) (0.277) (0.233) 

𝐷𝑡
1990−91∆ln𝐺𝑡 1.944*** 0.076 2.237*** 1.011*** 1.366*** 

 (0.400) (0.708) (0.263) (0.312) (0.350) 

𝐷𝑡
2001∆ln𝐺𝑡 -1.287 -1.341 -0.854 0.806 0.896 

 (0.951) (0.875) (0.825) (0.726) (0.603) 

𝐷𝑡
2008−09∆ln𝐺𝑡 0.079 -0.265 0.027 0.339 0.264 

 (0.438) (0.281) (0.443) (0.396) (0.407) 

𝐷𝑡
2020∆ln𝐺𝑡 1.367*** -0.162 1.688*** 1.266*** 1.540*** 

 (0.184) (0.158) (0.172) (0.194) (0.177) 

Oil residual  0.486***    

  (0.028)    

Coal residual   0.298***  0.242*** 

   (0.032)  (0.025) 

Natural gas residual    0.297*** 0.260*** 

    (0.018) (0.016) 

Constant -0.001 -0.003*** -0.000 -0.001* -0.000 

 (0.001) (0.000) (0.000) (0.001) (0.000) 

R-squared 0.572 0.729 0.689 0.733 0.808 

Observations 575 575 575 575 575 

Notes: Variable names as in text. Newey–West standard errors with 12 lags in parentheses. First differences of 

heating degree days and cooling degree days also included in all regressions. *** significant at 1%, ** 5%, and 

* 10% significance levels. 
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Figure 4. Detrended Logs of GDP, Oil, and Natural Gas Consumption 1973-80 

4.3.  Sectoral responses and the effect of controlling for excess petroleum 

consumption 

To determine whether the asymmetric effects vary across sectors and to further understand 

the mechanism behind asymmetry, we apply (5) to sectoral emissions and total GDP. The 

results are shown in Table 6. The transportation and industrial sectors have statistically 

significantly different emissions changes during recessions compared to expansions, with 

estimates of the coefficient of 𝐷𝑡
𝑅∆ln𝐺𝑡 of 1.1 and 2.8, respectively, both of which are 

significant at the 1% level. There is no significant asymmetry in other sectors. Therefore, 

aggregate asymmetry of carbon emissions to GDP primarily comes from the transportation 

and industrial sectors. 

The transportation and industrial sectors are the two largest end-use sectors for oil 

consumption, accounting for approximately 94% of total petroleum consumption (66% from 

the transportation sector and 28% from the industrial sector) in 2020 (Energy Information 

Administration 2021). As only these two sectors show significant asymmetries, this further 

confirms that the asymmetric response of carbon emissions during recessions and booms is 

primarily explained by oil. 
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During the COVID-19 recession, transportation was very strongly affected. This explains 

why including or excluding the 2020 COVID-19 recession from the sample in Tables 2 and 3 

changes the results. Global road transport decreased by approximately 50% compared to the 

2019 mean level by the end of March 2020 (IEA, 2020). 

Table 6. Sectoral Emissions-Income Asymmetry 

Dependent variable: ∆ln𝐶𝑡 (sectoral) 

 (1) (2) (3) (4) (5) (6) 

 Residential Commercial Industrial Transportation Electric Power Total 

∆ln𝐺𝑡 -0.127 0.144 0.664*** 0.556*** 0.739** 0.592*** 

 (0.692) (0.429) (0.256) (0.161) (0.326) (0.145) 

𝐷𝑡
𝑅∆ln𝐺𝑡 -1.106 0.244 1.073*** 2.798*** 0.336 1.238*** 

 (0.674) (0.526) (0.367) (0.475) (0.382) (0.268) 

Constant -0.001 -0.000 -0.001 0.000 -0.001 -0.001 

 (0.002) (0.001) (0.001) (0.001) (0.001) (0.001) 

R-squared 0.455 0.394 0.083 0.470 0.525 0.567 

Obs. 575 575 575 575 575 575 

Notes: Carbon emissions are sectoral data, GDP is at the national level. Variable names as in text. Newey–West 

standard errors with 12 lags in parentheses. First differences of heating degree days and cooling degree days 

also included in all regressions. *** significant at 1%, ** 5%, and * 10% significance levels. 

Table 7 shows how adding the oil consumption residual to the sectoral emissions regressions 

affects the results. Column 4 shows that the asymmetric response of carbon emissions from 

transportation sector is removed when we add the oil residual. For the industrial sector, the 

asymmetry also declines when we add the oil residual. Petroleum use is the second largest 

energy source for the industrial sector, accounting for 42.52% in total fossil fuels used, 

slightly less than the share of natural gas (52.81%) (Energy Information Administration, 

2021). However, the asymmetry is not totally removed. Maybe there are also other 

mechanisms at play in the industrial sector along the lines of those suggested by Sheldon 

(2017), such as scrapping of energy intensive capital during downturns. This requires further 

research beyond the scope of this paper. 
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Table 7. Adding Oil Consumption Residuals to Sectoral Emissions Regressions 

Dependent variable: ∆ln𝐶𝑡 (sectoral) 

 (1) (2) (3) (4) (5) 

 Residential Commercial Industrial Transportation Electric 

∆ln𝐺𝑡 -0.326 0.140 0.794*** 1.983*** 0.730** 

 (0.286) (0.204) (0.264) (0.016) (0.315) 

𝐷𝑡
𝑅∆ln𝐺𝑡 -1.232*** -0.028 0.786* -0.133*** 0.239 

 (0.407) (0.298) (0.406) (0.023) (0.360) 

Oil residual 0.416*** 0.328*** 0.945*** 0.998*** 0.050*** 

 (0.033) (0.022) (0.126) (0.010) (0.009) 

Constant -0.001 -0.001 -0.002* -0.004*** -0.001 

 (0.001) (0.001) (0.001) (0.000) (0.001) 

R-squared 0.667 0.647 0.312 0.997 0.576 

Obs. 575 575 575 575 575 

Notes: Carbon emissions and oil residual are sectoral data, GDP is national level. Variable names as in text. 

Newey–West standard errors with 12 lags in parentheses. First differences of heating degree days and cooling 

degree days also included in all regressions. *** significant at 1%, ** 5%, and * 10% significance levels. 

In Table 8, we add the sectoral residual other fossil fuels consumption variable to the sectoral 

regressions. This has almost no effect on the coefficients of the industrial and transportation 

regressions reported in Table 6. Therefore, the difference in sectoral response of carbon 

emissions between recessions and expansions is explained by changes in oil use rather than 

by changes in the use of other fossil fuels. 

Table 8. Adding Other Fossil Fuels Residuals to Sectoral Emissions Regressions 

Dependent variable: ∆ln𝐶𝑡 (sectoral) 

 (1) (2) (3) (4) (5) 

 Residential Commercial Industrial Transportation Electric 

∆ln𝐺𝑡 -1.067** -0.206 0.599*** 0.547*** 0.633* 

 (0.476) (0.327) (0.210) (0.160) (0.336) 

𝐷𝑡
𝑅∆ln𝐺𝑡 -0.152 0.233 1.077*** 2.799*** 0.190 

 (0.563) (0.356) (0.356) (0.470) (0.345) 

Other fossil 

fuels residual 

0.719*** 0.685*** 0.620*** 0.031** 0.841*** 

 (0.037) (0.023) (0.050) (0.013) (0.047) 

Constant 0.001 0.000 -0.001* 0.000 -0.001 

 (0.001) (0.001) (0.001) (0.001) (0.001) 

R-squared 0.788 0.789 0.454 0.475 0.824 

Observations 575 575 575 575 575 

Notes: Carbon emissions and other fossil fuels residual are sectoral data, GDP is national level. Variable names 

as in text. Newey–West standard errors with 12 lags in parentheses. First differences of heating degree days and 

cooling degree days also included in all regressions. *** significant at 1% , ** 5%, and * 10% significance 

levels. 

 

4.4. Distributed-Lag Specifications 

Table 9 reports the lag length selection criteria for the symmetric and asymmetric distributed 

lag models. Columns 1-2 report the lag selection criteria with the symmetric model, i.e., a 
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restricted version of Equation (9) omitting the second summation. Columns 3-4 report the lag 

selection criteria for the asymmetric model between recessions and contraction in Equation 

(9). Since the lag selection process starts with a maximum lag length of twelve, we use 563 

observations for all models to make sure that the information criteria for models with 

different numbers of lags are comparable. 

We select the optimal lag length by choosing the model with the lowest AIC (Akaike 

Information Criterion). For the symmetric model, both the AIC and BIC (Bayesian 

Information Criterion) select a lag length of two. For the asymmetric model, the AIC chooses 

a lag length of four while BIC prefers zero lags. In Table 10, we report results with 

distributed-lag specifications of both two and four lags. 

Table 9. Lag Selection 

 (1) (2) (3) (4) 

Maximum lag AIC BIC AIC BIC 

 Symmetric model Asymmetric model 

Lag length=0 -3055.719  -3038.385  -3072.204  -3050.538Ψ 

Lag length =1 -3063.469  -3041.803  -3074.841  -3044.508  

Lag length =2 -3071.370Ψ -3045.371Ψ -3078.025  -3039.025  

Lag length =3 -3069.560  -3039.227  -3079.618  -3031.952  

Lag length =4 -3068.889  -3034.222  -3081.099Ψ -3024.766  

Lag length =5 -3067.087  -3028.088  -3077.198  -3012.199  

Lag length =6 -3065.215  -3021.882  -3074.117  -3000.451  

Lag length =7 -3063.215  -3015.549  -3070.161  -2987.829  

Lag length =8 -3061.222  -3009.222  -3066.380  -2975.381  

Lag length =9 -3059.360  -3003.028  -3063.580  -2963.915  

Lag length =10 -3057.484  -2996.818  -3059.743  -2951.411  

Lag length =11 -3055.490  -2990.491  -3055.817  -2938.819  

Lag length =12 -3054.263  -2984.930  -3056.644  -2930.979  

Note: Ψ means this lag is selected with smallest value for AIC or BIC. Symmetric model and asymmetric in this 

table are referring to Equation (9). 

Columns 1 and 4 in Table 10 show the short-run emissions-income elasticity for the 

symmetric and asymmetric models. Columns 2–3 in Table 10 shows the estimates of the 

long-term emissions elasticity of income for the symmetric model and Columns 4-6 for the 

asymmetric model. 

Columns 2-3 in Table 10 show that the estimate of the long-run emissions elasticity of 

income using 2 lags is 1.4 and using 4 is 1.5. However, the long-run elasticity is not 
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significantly different to the short-run coefficient in Column (1).3 

Column 5 shows the cumulative response of carbon emissions during expansions is unity 

while the long-term emissions-income elasticity during recessions is 1.7 using a lag length of 

two. With four lags the long-run elasticity still equals unity under expansions and becomes 

1.4 during recessions. With two lags the difference between the elasticity during recessions 

and expansions is 0.7 (p-value for the null hypothesis that there is no difference between 

estimates for booms and recessions is 0.005). But with four lags the difference is only 0.4 and 

is not statistically significant (p-value for the null hypothesis that there is no difference 

between estimates for booms and recessions is 0.136). Still, the asymmetry is most 

pronounced in the very short run and becomes smaller in the longer run.  

 
3 The p-values for testing the null hypothesis that the sum of GDP terms equals short-run coefficient (1.2) are 

0.227 and 0.166 for two and four lags, respectively. 
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Table 10. Distributed Lag Results 

Dependent variable: ∆ln𝐶𝑡 

 (1) (2) (3) (4) (5) (6) 

∆lnGt 1.199*** 2.251*** 2.273*** 0.592*** 1.612*** 1.724*** 

 (0.191) (0.260) (0.272) (0.145) (0.541) (0.598) 

∆lnGt−1  -1.662*** -1.859***  -1.485** -2.616*** 

  (0.329) (0.522)  (0.729) (0.848) 

∆lnGt−2  0.837*** 1.322**  0.838* 2.906*** 

  (0.219) (0.634)  (0.435) (1.057) 

∆lnGt−3   -0.559   -1.792* 

   (0.499)   (0.963) 

∆lnGt−4   0.313   0.810 

   (0.245)   (0.494) 

Dt
R∆lnGt    1.238*** 0.734* 0.707* 

    (0.268) (0.386) (0.413) 

Dt−1
R ∆lnGt−1     0.454 0.948** 

     (0.322) (0.437) 

Dt−2
R ∆lnGt−2     -0.494* -1.171** 

     (0.260) (0.575) 

Dt−3
R ∆lnGt−3      0.172 

      (0.239) 

Dt−4
R ∆lnGt−4      -0.264 

      (0.233) 

Long-run emissions-

income elasticity  

1.199*** 

(0.191) 

1.425*** 

(0.186) 

1.490*** 

(0.209) 
   

Long-run emissions-

income elasticity 

(expansions) 

   
0.592*** 

(0.145) 

0.966*** 

(0.232) 

1.031*** 

(0.237) 

Long-run emissions-

income elasticity 

(recessions) 

   
1.829*** 

(0.195) 

1.660*** 

(0.192) 

1.424** 

(0.240) 

Difference in emissions-

income elasticity between 

recessions and expansions 

   
1.238*** 

(0.268) 

0.694*** 

(0.247) 

0.393 

(0.263) 

Constant -0.003*** -0.003*** -0.003*** -0.001 -0.002*** -0.002*** 

 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

R-squared 0.554 0.568 0.574 0.567 0.577 0.588 

Observations 575 573 571 575 575 571 

Notes: Variable names and definitions of long-run elasticities as in text. Newey–West standard errors with 12 

lags in parentheses. First differences of heating degree days and cooling degree days also included in all 

regressions. *** significant at 1%, ** 5%, and * 10% significance levels. 

5.  Conclusions 

We have provided new evidence on the asymmetric response of CO2 emissions to changes in 

GDP during recessions and economic expansions. On average, carbon emissions change 

faster relative to GDP in recessions compared to in expansions. This is especially the case 

when we include data from 2020. 
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Comparing individual US recessions since 1973, during the 1973-5, 1980, 1990, and 2020 

recessions, the response of carbon emissions to GDP is significantly different from that in 

expansions. We do not find a statistically significant asymmetric response for other 

recessions. The previous three recessions with asymmetric impacts (1973-5, 1980, and 1990 

recessions) are associated with three negative oil supply shocks, while the 2020 recession is 

associated with a negative oil demand shock. Controlling for changes in oil use that are not 

correlated with GDP removes this asymmetric response. Controlling similarly for coal and 

does not. Controlling for natural gas use removes the asymmetry in 1973-5 and 1980. In 

1973-5, gas use tracks oil use very closely. They both fall sharply when the oil crisis hits. In 

1980, the recession was much shorter and we argue that gas and oil appear to track each other 

during these few months accidentally. 

The response of sectoral emissions to changes in GDP vary. The transportation and industrial 

sectors show significantly asymmetric carbon emissions changes during economic 

contractions compared to expansions while the other sectors do not. These two sectors are 

also key oil consumers compared to other sectors, accounting for approximately 94% of total 

petroleum consumption in 2020. These findings strongly suggest that it is negative oil market 

shocks rather than recessions per se that result in higher emissions-income elasticities in 

some recessions. 

There are some caveats. The asymmetry in industrial sector emissions does not appear to 

entirely be explained by changes in oil use that are not correlated with GDP. Further research 

is needed to find the mechanism responsible. However, transportation sector emissions 

explain the main effect. The asymmetry in the 1973-5 and 1980 recessions can also be 

explained by asymmetric changes in natural gas. 

We also estimated a distributed lag specification. Using the optimal lag length, the difference 

between the elasticity in recessions and expansions is smaller but is still statistically 

significant. Adding further lags eliminates the asymmetry. Therefore, asymmetry is most 

pronounced in the short run. 

Because the asymmetric response of emissions appears to be mostly due to negative oil 

market shocks, we should not expect all recessions to have outsize effects on emissions. 

Therefore, counter to Sheldon (2017), we should expect a small role for asymmetry in the 

future path of carbon emissions. Similarly, it might be hard to extrapolate our results to other 
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countries. However, we would predict that asymmetry would be less important in countries 

where oil use and transport play a smaller role in the economy. 

Appendix A. Data Sources and Variable Definitions 

Carbon dioxide (CO2) emissions: Carbon dioxide emissions from primary fuels including 

coal, natural gas, and petroleum (Aviation gasoline, distillate fuel oil, petroleum coke, motor 

gasoline etc.). Unit: Million metric tons. Source: Table 11.1 in EIA Monthly Energy Review 

(Energy Information Administration, 2020). Monthly data on energy and carbon dioxide 

emissions data are available at: https://www.eia.gov/totalenergy/data/monthly/index.php 

Gross domestic product (GDP): Monthly GDP data are derived from the Brave-Butters-

Kelley Indexes (BBKI), Federal Reserve Bank of Chicago (Brave et.al 2019). The source 

provides the monthly growth rate at an annualized rate, we divide the annualized growth rate 

by twelve to convert it to the real monthly rate. 

Petroleum consumption: Monthly petroleum consumption data are provided by EIA. They are 

given as sectoral petroleum consumption (Table 3.7a Residential and commercial sectors, 

3.7b Industrial sector, 3.7c Transportation and electric power sectors). Unit: Quadrillion 

BTU. 

Primary energy consumption: Monthly primary energy data are from Table 1.1 in EIA 

Monthly Energy Review. Unit: Quadrillion BTU. 

Primary energy consumption by sector: Primary energy use in residential, commercial, 

industrial, transportation, and electric power sectors. Unit: Trillion BTU. Source: Tables 2.1-

2.6 in EIA Monthly Energy Review. 

Sectoral CO2 emissions: Sectoral carbon emissions by major source, including residential, 

commercial, industrial, transportation, electric power sectors. Unit: Million metric tons of 

carbon dioxide. Source: Tables 11.2-11.6 in EIA Monthly Energy Review . 

Sectoral energy use: Sectoral energy use include coal, oil, and natural gas. The end-use of 

each fuel from residential, commercial, industrial, transportation, electric power sectors are 

used. Unit: Quadrillion BTU. Source: Tables 2.2-2.6 in EIA Monthly Energy Review. 

Heating degree days: A day’s heating degree days is measured by the number of degrees the 

daily average temperature is below 65 degrees Fahrenheit (°F). The monthly population-

https://www.eia.gov/totalenergy/data/monthly/index.php
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weighted heating degree days data are provided by EIA (Table 1.9 Heating degree-days by 

Census division).  

Cooling degree days: A day’s cooling degree days is measured by the number of degrees the 

daily average temperature is above 65 degrees Fahrenheit (°F). The monthly population-

weighted cooling degree days data are provided by EIA (Table 1.10 Cooling degree-days by 

Census division).  

𝐷𝑡
−: A dummy that identifies whether GDP grows or falls in each month compared to the 

prior month. It equals one when economic growth is positive and equals zero when GDP 

falls. 

𝐷𝑡
𝑅: A dummy that identifies whether a month is in recession or expansion period. It equals 

one when it is within an NBER recession and zero otherwise. 

𝐷𝑡
𝑝𝑎𝑠𝑡

: A dummy that identifies whether a month is in a recession prior to 2020. It equals one 

if the month is in recession before 2020 (1973-5, 1980, 1981, 1990, 2001, 2008-9 recessions) 

and equals zero otherwise. 𝐷𝑡
2020 equals one if a month is in the 2020 recession and equals 

zero otherwise. 

𝐷𝑅𝑖: This represents dummies for individual recessions. Seven dummies are set to denote 

each of the seven recessions for the period 1973-2020. 𝐷𝑡
1973−5 equals one when a month is  

in the 1973-5 recession and zero otherwise; 𝐷𝑡
1980 equals one when it is in the 1980 recession 

and zero otherwise. Similarly, 𝐷𝑡
1981−2, 𝐷𝑡

1990−1, 𝐷𝑡
2001, 𝐷𝑡

2008−9, 𝐷𝑡
2020 identify whether a 

month is during the 1981-2, 1990-1, 2008-9, and 2020 recessions or not. They equal one 

when a month is within individual recession and zero otherwise. 
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