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1 Introduction

The macroeconomic models used for forecasting and policy analysis are growing increasingly

larger and more sophisticated over time. Their size and, in particular, their number of

state variables mean that perturbation methods—most commonly first-order perturbation

methods—are usually used to solve these models. Where non-linear solutions are needed

or are of interest the standard toolbox relies upon piecewise linear approximation, splines,

and orthogonal polynomials, such as Chebyshev polynomials. But for models with even

moderately large spacial dimension, such tools are essentially infeasible due to the curse

of dimensionality. For a model with six state variables, placing just nine points along

each dimension leads to an approximating grid with over half a million points, presenting a

challenge even with modern computing hardware.

Problems associated with such tensor-product grids have lead to increasing awareness and

use of sparse grid methods, of which Smolyak’s method (Smolyak, 1963) is the leading candi-

date. Smolyak’s method was introduced into economics by Krueger and Kubler (2004), and

has subsequently been used for various economic applications by Gavilan-Gonzalez and Ro-

jas (2009), Winschel and Krätzig (2010), Malin, Krueger, and Kubler (2011), Gordon (2011),

Brumm and Scheidegger (2017), and Fernández-Villaverde, Gordon, Guerrón-Quintana, and

Rubio-Ramı́rez (2012). More recently, Gust, Herbst, López-Salido, and Smith (2017) used

Smolyak’s method to solve and estimate a large scale model incorporating the zero lower

bound on nominal interest rates and Hirose and Sunakawa (2019) used Smolyak’s method

to study the natural rate of interest in a non-linear model. An excellent presentation of

Smolyak’s method—clear to the point that the approximation method can be coded based

purely on the description provided—and its efficient implementation can be found in Judd,

Maliar, Maliar, and Valero (2014); see also Barthelmann, Novak, and Ritter (2000).

In this paper we present an alternative sparse-grid approximation method that is based

on the hyperbolic cross (see Dũng, Temlyakov, and Ullrich (2018) for a survey). Sparse grid

approximation using the hyperbolic cross has its foundations in multivariate Fourier analysis

(see Döhler, Kunis, and Potts (2010) and the references therein) and employs a nonequis-

paced fast Fourier transform, but we present it here in terms of orthogonal polynomials.

Aside from the advantage of having a larger set of tools at our disposal to solve non-linear

models, approximation based on the hyperbolic cross offers several advantages over Smolyak’s

method. One advantage is that unlike Smolyak’s method the hyperbolic cross does not re-

quire a nested grid structure, which broadens the types of approximating points that can be
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used. For example, although there are other options, such as the Kronrod-Patterson points,

applications of Smolyak’s method invariably use a grid formed using Chebyshev extrema

(also known as the Chebyshev-Gauss-Lobatto points). With hyperbolic cross approxima-

tion one can also use Chebyshev nodes or Legendre nodes, etc. Second, hyperbolic cross

approximation can be applied to state spaces with unbounded domain, allowing Hermite

nodes or Leguerre nodes to be used in such cases (Shen and Wang, 2010). Third, hyperbolic

cross approximation offers the possibility of a reduction in the size of the approximating

grid: a three-layer Smolyak approximation over six dimensions requires 389 points whereas

a hyperbolic cross approximation can be formed using just 97 points. Fourth, in the case

of bounded domain, both Smolyak’s method and the hyperbolic cross place approximating

points within a hypercube, but, relative to Smolyak’s method, the hyperbolic cross places

a greater concentration of points in the central region of the hypercube. For a stochastic

model, this is tantamount to placing a greater concentration of points in the model’s ergodic

region, potentially improving solution accuracy over the ergodic region.1

We describe several variants of the hyperbolic cross, beginning with a standard symmetric

variant, and show by example how the approximating grid can be constructed and the

approximating polynomial formed. Then we introduce a generalization on the standard

hyperbolic cross, one that encompasses the standard symmetric hyperbolic cross and a full

tensor-product grid. This generalization expands on the standard cross filling out the

hypercube until the full tensor-product grid is achieved. With this generalization, greater

control over the resulting approximation grid can be achieved. We illustrate the resulting

grid and contrast it to the Smolyak grid. Next we show how this generalized hyperbolic

cross can be extended further to allow varying numbers of approximating points along each

spacial dimension, producing, essentially, a hyperbolic cross anisotropic grid.

To assess the accuracy of the resulting hyperbolic cross approximation we apply the

approximation method to four macroeconomic models. The simplest of these four models

is the standard stochastic growth model that has two state variables, the largest is a six-

country international business cycle model that has twelve state variables. Between these

two extremes we consider two new Keynesian models, one of which has policy conducted

using a Taylor-type rule and has four state variables, the other of which is based on a labor-

search framework and has monetary policy conducted optimally under discretion. This latter

1Another way of better aligning the approximating grid with the model’s ergodic region is to use an
adaptive grid (Judd, et al (2014)). At the cost of having to solve the model twice, employing an adaptive
grid can potentially improve the accuracy of any projection method, including the hyperbolic cross.
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model, which has six state variables, is of particular interest because computing equilibrium

requires simultaneously approximating functions and the derivatives of functions. We solve

each of these four models using the hyperbolic cross method and the Smolyak method, each

with various layers of approximation, and, for the three smaller models, using Chebyshev

polynomials on a tensor-product grid. The accuracy of each solution is assessed in terms of

the average and largest Euler-equation error evaluated over the model’s ergodic region.

The results from these applications are encouraging. When the hyperbolic cross ap-

proximation grid and the Smolyak approximation grid are constructed to have the same

number of points along each dimension and the same number of total points, the results

suggest that the hyperbolic cross produces a more accurate solution, a result that is entirely

down to where in the hypercube the approximating points are placed. More generally, the

hyperbolic cross often produced a solution with acceptable accuracy using fewer approxi-

mating points. These results suggest that hyperbolic cross approximation is indeed a useful

additional method for solving models with higher-dimensional state spaces, expanding our

numerical toolbox and providing a viable sparse-grid alternative to Smolyak’s method.

The remainder of the paper is structured as follows. In section two, we provide a basic

motivation for the hyperbolic cross, illustrating that standard approximation schemes assign

approximating points to areas outside the ergodic region. In section three, we present the

standard hyperbolic cross approximation scheme; this presentation is done in terms of or-

thogonal polynomials rather than spectral methods. We also develop a generalization on

the standard hyperbolic cross that nests the standard cross and the tensor-product grid as

special cases, and we show how hyperbolic crosses supporting an anisotropic grid can be

constructed. Throughout this section, our presentation is based on a constructed example,

making the method easier to follow and implement. In section four we turn to applica-

tions. We solve to different levels of accuracy four macroeconomic models using Chebyshev

polynomials, Smolyak’s method, and our hyperbolic cross method. These models vary from

having as few as two state variables to having as many as twelve state variables. For each

model we present the solution accuracy in terms of Euler-equation errors and the solution

time. Section fives concludes.
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2 A first motivation

Suppose we have a function of the form:

y = f (x) ,

where f is “smooth” and x ∈ [a, b]. In many applications of interest to economists, f

could be a decision rule or a value function. Often we do not have an analytic expression

for the function, but we can use numerical methods to approximate it. Common ways to

approximate a function like f are to use splines, some form of polynomial or orthogonal

polynomial, radial basis functions, etc.

Depending on the application, we might be interested in computing the area under the

function over the domain of x. The compute the area under f requires integration, and

for the integral to be accurate the approximating function, f̃ , must be accurate—must be a

good approximation of f—over the entire domain of x.

Often however, the function, f , that we are approximating is a decision rule or a value

function, and some parts of x’s domain are more important that others. Consider Figure 1,

which displays a function y = f (x) over the domain x ∈ [0.85, 1.18], where x is a stochastic

variable. Also shown is the probability density for x. On the displayed function, 17

Chebyshev extrema are indicated. These Chebyshev extrema (or the closely related roots of

the Chebyshev polynomial) are commonly used as the sampling points in an approximation

scheme based on Chebyshev (orthogonal) polynomials.

From Figure 1 we can see that the probability density for x suggests that not all regions

of x’s domain are of equal interest—we care more about the ergodic region as this is the

region where the model spends most of its time. Further, while the Chebyshev extrema (or

Chebyshev nodes) may be suitable for an approximation over x’s entire domain, many of the

sampling points reside outside the ergodic region. An approximation that concentrated on

accuracy within the ergodic region might place fewer sampling points at the outer regions of

the domain.

3 The hyperbolic cross

This section culminates by presenting a sparse-grid approximation scheme based on the

hyperbolic cross that can be used to solve models with a moderate to large number of

state variables on a standard personal computer. To give the hyperbolic cross approxima-
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Figure 1: A function, y = f(x), and the ergodic region for the state variable, x.

tion scheme suitable context it is useful to first describe approximation schemes based on

Chebyshev polynomials. After presenting the hyperbolic cross method, we will compare and

contrast it to Smolyak’s method.

3.1 Chebyshev polynomials

We will be interested in Chebyshev polynomials that satisfy the following recurrence rela-

tion:2

Γ0 (x) = 1, (1)

Γ1 (x) = x, (2)

Γj (x) = 2xΓj−1 (x)− Γj−2 (x) , (3)

2Chebyshev polynomials that satisfy this three-term recursion are sometimes known as Chebyshev poly-
nomials of the first kind.
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where x ∈ [−1, 1]. An approximation based on N sampling (or approximating) points would

commonly have those points chosen as the zeros of the polynomial ΓN (x):3

xi = − cos

(
2i− 1

2N
π

)
, i = 1, ..., N, (4)

or as the extrema of the polynomial, ΓN (x):

xi = − cos

(
i− 1

N − 1
π

)
, i = 1, ..., N. (5)

However the approximating points are chosen, the approximation based on an n-order

Chebyshev polynomial takes the form:

f̃ (x) =
n∑
j=0

ωjΓj (x) , (6)

where the weights, ωj, j ∈ {0, 1, ..., n} can be efficiently computed by making use of the

relevant discrete orthogonality property.4

The approximation is typically generalized to the multivariate case—say d variables—by

forming the tensor product:

f̃ (x) =

n1∑
j1=0

...

nd∑
jd=0

ωj1...jdΓj1 (x1)× ....× Γjd (xd) , (7)

where x = (x1, ...xd) ∈ [−1, 1]d. A special case of equation (7) is where a complete polyno-

mial, as opposed to a tensor-product polynomial is used. For a complete polynomial the

approximating equation is:

f̃ (x) =
n∑

j1=0

...
n∑

jd=0

ωj1...jdΓj1 (x1)× ....× Γjd (xd) , (8)

with the additional restriction that:
d∑
p=1

jp ≤ n. (9)

A complete polynomial damps the rate at which the number of terms in the approximating

polynomial expands as the number of variables, d, increases.

3These zeros of the Chebyshev polynomial are often referred to as Chebyshev nodes.
4The relevant discrete orthogonality property needed to compute the weights depends of the placement

of the approximating points, so differs according to whether Chebyshev zeros (nodes) or Chebyshev extrema
are used.
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3.2 Hyperbolic cross

With approximation based on Chebyshev polynomials as a foundation, we are now in a

position to introduce the hyperbolic cross method. We will begin by presenting the stan-

dard hyperbolic cross and then show how we extend this standard to allow greater control

over the number of approximation points. Finally, we will compare the hyperbolic cross

approximating grid to Smolyak’s approximating grid and we will show how to implement

an ansiotropic hyperbolic cross. We will illustrate the hyperbolic cross method through

constructed examples, beginning with the standard cross.

For convenience, we introduce the notion of a multi-index:

i = (i1, ..., id) ∈ Zd,

where i, the multi-index, is essentially a tuple of integers, one for each dimension of the

state-space. The standard hyperbolic cross is governed by the set of multi-indices, Sd,k, that

satisfy:5

Sd,k =

{
i = (i1, ..., id) ∈ Zd :

d∏
j=1

(|ij|+ 1) ≤ k + 1

}
. (10)

Thus, if d = 2 and k = 2, then the set of multi-indices Sd,k is given by: S2,2 = {(0, 0), (−1, 0),

(1, 0), (−2, 0), (2, 0), (0,−1), (0, 1), (0,−2), (0, 2)}.
Once Sd,k has been constructed, the next step is to use the multi-indices in Sd,k to

generate the set of approximation points. As we will see below, the elements in a multi-

index, i, represent indexation-based “off-sets” relative to a central point. We will use Hd,k to

denote the set of approximating points and we will call this set of points the approximation

grid. The approximation grid contains points from the d-dimensional hypercube.6 In the

construction below we use Chebyshev polynomials as basis functions and employ Chebyshev

extrema to construct the approximation grid.7

Let the number of approximation points along each dimension be given by:

N = 2k + 1, (11)

5In practice, symmetry can be exploited and only multi-indices whose elements are all non-negative
integers need to be calculated and stored.

6As is well-known, through a simple normalization points in a d-dimensional hyper-rectangle can be
transformed into points in a d-dimenstional hypercube, giving the approach considerable generality.

7Unlike Smolyak’s method, however, the hyperbolic cross does not require a nested grid structure, allowing
alternatives, such as Chebyshev nodes, Vertesi nodes, or Legendre nodes to be used.
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which is always an odd number, and then compute these N points, xi, i = 1, ...N , using the

equation for Chebyshev extrema, equation (5). With k = 2, this leads to N = 5, and the

approximating points being given by
{
−1,−

√
0.5, 0,

√
0.5, 1

}
. As mentioned previously, the

elements in the multi-indices contained in Sd,k are “off-set” values relative to a central point

(which is 0). For the case where k = 2, this relationship can be illustrated through the

table:

Table 1: Relating indices to approximating points
Index value −2 −1 0 1 2

Approximating point −1 −
√

0.5 0
√

0.5 1

Therefore, with d = 2 and k = 2, the multi-index S2,2 generates the approximating grid,

H2,2 = {(0, 0),
(
−
√

0.5, 0
)
,
(√

0.5, 0
)
, (−1, 0), (1, 0),

(
0,−
√

0.5
)
,
(
0,
√

0.5
)
, (0,−1), (0, 1)}.

Figure 2 displays a series of hyperbolic crosses constructed for d = 2, but for various

values of k. The example presented above in which k = 2 is shown in panel C.

It is clear from Figure 2 that as k increases the total number of approximating points

and the number of approximating points along each axis rise. It terms of its structure, the

hyperbolic cross tends to place approximating points in the region close to the center of the

hypercube, and along the leading axes, while the diagonal regions remain empty.

A more general approach Here we describe a more general approach to constructing a

hyperbolic cross, an approach that encompasses the standard cross as a special case. This

more general approach dispenses with equation (11) and instead allows N to be set explicitly,

while requiring N to be odd. Let k be given by:

k =
N − 1

2
. (12)

So if N = 5, then k = 2. Our generalization allows k ≥ k and constructs the set of

multi-indices Sd,k,N according to:

Sd,k,N =

{
i = (i1, ..., id) ∈ Zd :

d∏
j=1

(|ij|+ 1) ≤ k + 1

}
, (13)

with the additional condition that:

|ij| ≤ k, j = 1, ...d. (14)

By way of example, let d = 2, N = 5, and k = 3. With N = 5, equation (12)

implies k = 2 and S2,3,5 = {(0, 0), (−1, 0), (1, 0), (−2, 0), (2, 0), (0,−1), (0, 1), (0,−2),
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Figure 2: Hyperbolic cross as k increases

(0, 2), (−1,−1), (1,−1), (−1, 1), (1, 1)}. For this case, relative to the standard hyperbolic

cross, we have the additional multi-indices: (−1,−1), (1,−1), (1,−1), (1, 1). Once the

set of multi-indices, Sd,k,N , is constructed the procedure for computing the approximating

grid, Hd,k,N , is essentially the same as that described above and gives rise to H2,2,5 = {(0, 0),(
−
√

0.5, 0
)
,
(√

0.5, 0
)
, (−1, 0), (1, 0),

(
0,−
√

0.5
)
,
(
0,
√

0.5
)
, (0,−1), (0, 1),

(
−
√

0.5,−
√

0.5
)
,(√

0.5,−
√

0.5
)
,
(
−
√

0.5,
√

0.5
)
,
(√

0.5,
√

0.5
)
}.

The key difference between the two approaches is that the general approach largely

uncouples N and k, giving greater flexibility over the shape of the resulting hyperbolic cross.

By choosing values for N and k that satisfy equation (11) the standard hyperbolic cross

can be replicated. Alternatively, by increasing k, for given N , the more general approach

produces a hyperbolic cross that converges to a tensor-product grid (With d = 2 and N = 5,

setting k = 8 produces a tensor-product grid).
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Figure 3 illustrates a series of hyperbolic crosses generated for various combinations of

N and k. Notice that panels A, D, and G, in Figure 3 correspond to panels C, F, and I in

Figure 2, illustrating the point that this second approach encompasses the first approach.

Figure 3: Hyperbolic cross as N and k increase.

As we move to the right along each row of Figure 3, k is being raised while N is being

held constant. Looking at the resulting hyperbolic crosses it is clear that this process

increases the size of the approximating grid by increasingly padding out the central region

of the hypercube, pushing approximating points out into the diagonal regions of the cube.

Constructing the grid this way gives considerable control over the resulting approximating

grid, and, as mentioned earlier, if one continues to increase k one eventually arrives at the

full tensor-product grid.
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3.2.1 Approximating polynomial

Let M denote the cardinality of the approximating grid (either Hd,k or Hd,k,N , depending on

which approach is used), then the approximating polynomial takes the form:

f̃ (x) =
M∑
i=1

ωiΨi (x) , (15)

where x ∈ [−1, 1]d, and Ψi (x) → R and ωi, i = 1, ...,M , are d-dimensional basis functions

and scalar weighting coefficients, respectively. What remains now is to show how the ωi

and Ψi (x), i = 1, ...,M , are constructed. The approach described here follows closely the

Lagrange interpolation scheme proposed by Judd, et al, (2014) in the context of Smolyak’s

method. The M elements of the approximating grid are determined as described above. At

each point in the approximating grid we evaluate the function, giving yi = f(xi), i = 1, ...,M .

Then the polynomial weights are computed by solving the linear system: y1
...
yM

 =

 Ψ1 (x1) · · · ΨM (x1)
...

. . .
...

Ψ1 (xM) · · · ΨM (xM)


 ω1

...
ωM

 . (16)

As mentioned earlier, we use Chebyshev polynomials as basis functions in the approxi-

mation. With N points in each dimension, the set of basis functions for the variable x1 is

{Γ0 (x1) ,...,ΓN−1 (x1)}. Similarly, the set of basis functions for x2 is {Γ0 (x2) , ...,ΓN−1 (x2)}.
As with the approximating grid itself, the basis functions that are included are determined by

the set of multi-indices, Sd,k (or Sd,k,N). To illustrate this process we consider the case where

d = 2 and k = 3 for which S2,3 = {(0, 0), (−1, 0), (1, 0), (−2, 0), (2, 0), (−3, 0), (3, 0), (0,−1),

(0, 1), (0,−2), (0, 2), (0,−3), (0, 3), (−1,−1) , (1,−1) , (−1, 1) , (1, 1)} and M = |H2,3| = 17.

A multi-index value of 0 corresponds to the 0’th-order polynomial, index values of −1 and 1

correspond to the 1’st- and 2’nd-order polynomials, etc, as the following table makes clear:8

Table 2: Relating indices to polynomial-orders
Index value −3 −2 −1 0 1 2 3
Polynomial order 5 3 1 0 2 4 6

Therefore, for this two-dimensional case the approximating polynomial is built up of the

8Notice that the symmetry of the cross means that we could equally assign index values of −1 and 1 to
2’nd and 1’st order polynomials, etc.
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polynomial terms:

Ψ1 (x)
Ψ2 (x)
Ψ3 (x)
Ψ4 (x)
Ψ5 (x)
Ψ6 (x)
Ψ7 (x)
Ψ8 (x)
Ψ9 (x)


=



Γ0 (x1) Γ0 (x2)
Γ1 (x1) Γ0 (x2)
Γ2 (x1) Γ0 (x2)
Γ3 (x1) Γ0 (x2)
Γ4 (x1) Γ0 (x2)
Γ5 (x1) Γ0 (x2)
Γ6 (x1) Γ0 (x2)
Γ0 (x1) Γ1 (x2)
Γ0 (x1) Γ2 (x2)


,



Ψ10 (x)
Ψ11 (x)
Ψ12 (x)
Ψ13 (x)
Ψ14 (x)
Ψ15 (x)
Ψ16 (x)
Ψ17 (x)


=



Γ0 (x1) Γ3 (x2)
Γ0 (x1) Γ4 (x2)
Γ0 (x1) Γ5 (x2)
Γ0 (x1) Γ6 (x2)
Γ1 (x1) Γ1 (x2)
Γ2 (x1) Γ1 (x2)
Γ1 (x1) Γ2 (x2)
Γ2 (x1) Γ2 (x2)


.

Implementing this process when the number of spacial dimensions is above two is straight-

forward.

3.3 How does the hyperbolic cross grid compare to the Smolyak
grid?

We will address this question by comparing the number of approximating points each method

uses and the location of these points. Table 2 reports the size of the approximating grid for

approximations using Chebyshev polynomials, Smolyak’s method and the hyperbolic cross

as the number of dimensions, d, changes. For Smolyak’s method and the hyperbolic cross

we also consider different “layers” of approximation. For the hyperbolic cross the size of

the approximating grid can depend on both k and N as well as d. What is reported in

Table 3 is the number of approximating points as k changes when the grid is constructed

using the standard approach (for which N is uniquely pinned down by k). In this sense the

numbers reported for the hyperbolic cross represent a lower bound on the number of points

that would be used by the more general approach.

Table 3: Approximating Grid Size, M
Chebyshev Smolyak Hyperbolic Cross

N µ k
d 7 1 2 3 4 1 2 4 8
2 49 5 13 29 65 5 9 17 57
4 2, 401 9 41 137 401 9 17 49 241
6 117, 649 13 85 389 1, 457 13 25 97 617
8 5, 764, 801 17 145 849 3, 937 17 33 161 1, 249
10 282, 475, 249 21 221 1, 581 8, 801 21 41 241 2, 201

If a tensor-product grid is used with N = 7, then over 100, 000 points are required when

there are 6 state variables and over 282 million points are required when there are 10 state
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variables. Depending on the problem and the number of processors available, even 100, 000

points could easily be prohibitive. By way of contrast, with d = 10 and the number of

layers, µ, equal to 4, Smolyak’s method requires less than 9, 000 grid points. With µ = 4

Smolyak’s method places 17 nodes along each axis; the hyperbolic cross does the same when

k = 8. Strikingly, then, when d = 10 and k = 8 the hyperbolic cross requires a minimum

of just 2, 201 grid points. Using the number of nodes along each axis as the normalizing

factor, k = 1, 2, 4, 8 correspond to µ = 1, 2, 3, 4, respectively. It follows that the minimum

number of approximating points required by the hyperbolic cross is never larger than the

number required by Smolyak’s method.

Next we consider where Smolyak’s method and the hyperbolic cross place the approx-

imating number within the hypercube. Consider the case where d = 2 and suppose that

the number of layers in the Smolyak approximation is four, µ = 4. Then the Smolyak

grid contains 65 points which are located in [−1, 1]d as shown Figure 4, panel B. By way

of comparison, Figure 4, panel A, displays the tensor-product grid (with N = 17), which

contains 289 points. The hyperbolic cross grid with N = 17 and k = 10 is shown in Figure

4, panel C; these values for N and k were chosen for this figure because they produce the

same number of points along each axis (17) and the same number of total grid points (65).

The Smolyak grid and the hyperbolic cross grid are clearly very different. Where

Smolyak’s method tends to place approximating points at the edges of the hypercube, the

hyperbolic cross tends to place them closer to the center of the hypercube. In Figure 4,

panel D, we display the probability density function for capital and technology associated

with the stochastic growth model (taken from example one in section 4). The ergodic region

for this model is naturally centered in the middle of the hypercube, suggesting that greater

numerical accuracy over the ergodic region may be obtained by using the hyperbolic cross

grid rather than the Smolyak grid.9

3.4 Isotropic and anisotropic grids

Smolyak’s method allows the number of nodes to be varied according to the dimension,

allowing more nodes to be placed along dimensions that exhibit greater curvature and less

nodes along dimensions with less curvature. Such grids are known as anisotropic grids.

9As mentioned, this figure has been developed in the context of the stochastic growth model that is
analyzed as example one in section four. For this model, the technology state variable is taken to be the
exponential of a normally distributed shock with zero-unconditional-mean. As a consequence the technology
state follows a log-normal distribution and has mean greater than one, as shown in the figure.
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Figure 4: Possible approximating grids for the stochastic growth model.

Hyperbolic cross approximation, when the grid is constructed according to the general ap-

proach, also allows for anisotropic grids. Let Nj be the number (odd) of nodes to be placed

along dimension j, j = 1, ..., d, and let kj be given by:

kj =
Nj − 1

2
, j = 1, ...d, (17)

then the set of multi-indices for an anisotropic hyperbolic cross is given by:

Sd,k =

{
i = (i1, ..., id) ∈ Zd :

d∏
j=1

(|ij|+ 1) ≤ k + 1

}
. (18)

where:

|ij| ≤ kj, j = 1, ...d. (19)

Once the multi-index has been constructed, the anisotropic grid for the hyperbolic cross

is generated as described above.
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4 Examples

In this section we solve a range of macroeconomic models and consider the accuracy of

approximations based on the hyperbolic cross method relative to tensor-product grids and

Smolyak grids. Because Smolyak’s methods requires nested grids we are constrained for

this comparison to use approximating points that produce this nesting: in this case we

use Chebyshev extrema. The models themselves include some that are commonly used

when comparing solution methods—the stochastic growth model (example one) and a multi-

country international business cycle model (example four)—and two from the new Keynesian

literature on monetary model. Of these new Keynesian models, one is relatively standard

with monetary policy conducted using a Taylor-type rule (example two) while the second

combines sticky prices with labor-search and has monetary policy conducted optimally under

discretion (example three). This third example is unique in so much as solving the model

requires approximating decision rules and the derivatives of decision rules.

We solve these four models for various approximating grids and evaluate the accuracy of

the resulting solution using Euler equation errors. The Euler-equation errors are evaluated

at points in the state-space obtained by simulating data from the solved model and then

sampling realizations for the state variables from the simulated data. In this way, we focus

the accuracy comparison on the ergodic region.10

4.1 Example one — The stochastic growth model

The stochastic growth model needs little introduction. A representative consumer/producer

has capital stock, kt, and makes decisions regarding consumption, ct, and future capital in

order to maximize expected discounted lifetime utility, which depends on the sequence of

goods consumed. We assume that period-utility is of the iso-elastic form. With goods

produced according to a Cobb-Douglas technology and with aggregate technology, at, obeying

a standard stationary AR(1) process, the key equations characterizing equilibrium are:

at+1 = ρat + εt+1, (20)

kt+1 = (1− δ) kt + eatkαt − ct, (21)

c−σt = βEt
[
c−σt+1

(
1− δ + αeat+1kα−1t+1

)]
. (22)

10All simulations were conducted using Julia v1.7-rc1 on an AMD Ryzen 5900 CPI with 32 GB RAM
and 24 threads. To accelerate the computations, we pre-computed the integrals required for quadrature,
according to the procedure described in Judd, Malia, Maliar, and Tsener (2017).
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Equation (21) is the law-of-motion for capital, which allows the capital stock to be aug-

mented by unconsumed production and to depreciate at rate δ ∈ (0, 1]. Equation (22) is the

standard consumption-Euler equation in which β ∈ (0, 1) is the discount factor, σ ∈ (0,∞)

is the inverse of the elasticity of intertemporal substitution, and Et is the mathematical ex-

pectations operator. When solving the model we set β = 0.99, σ = 2.0, α = 0.3, δ = 0.015

and ρ = 0.95. The standard deviation of the technology innovation, εt, is set to 0.01.

We evaluate accuracy by computing the Euler-equation errors based on equation (22):

E =
(βg̃ (kt+1, at+1))

− 1
σ

c̃ (kt, at)
− 1, (23)

where:

g (kt, at) = c−σt
(
1− δ + αeatkα−1t

)
, (24)

and report for each approximation the average (log10) absolute error and the largest (log10)

absolute error.

4.1.1 Numerics

There are two state variables (d = 2), technology and capital, which have steady state

values of 1.0 and and 34.609, respectively. The domain of approximation is given by

at ∈ [log (0.85) , log (1.18)] and kt ∈ [25.0, 45.0], a region found by stochastic simulation

(2, 000, 000 observations) to contain the ergodic distribution. From these 2, 000, 000 simu-

lated observations we sample 200, 000 points and evaluate the Euler-equation error at each

point. Table 4 provides details of the solution details for Chebyshev approximation, Smolyak

approximation, and hyperbolic cross approximation, and reports the total number of points

in the approximating grid, the largest absolute Euler error, the average absolute Euler-error

and the solution time, in seconds. For approximation using Chebyshev polynomials we

report results for a tensor product grid (n = (8, 8)) and for a complete polynomial (n = 8).
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Table 4: Accuracy results for the stochastic growth model
d = 2 M max(log10 |E|) mean(log10 |E|) Time (sec.)

Chebyshev
N = 17, n = (8, 8) 289 −7.710 −8.049 0.74
N = 17, n = 8 289 −7.233 −7.488 0.78

Smolyak
µ = 1 5 −1.808 −3.086 0.03
µ = 2 13 −3.209 −4.305 0.14
µ = 3 29 −4.741 −5.614 0.55
µ = 4 65 −6.774 −7.435 1.74

Hyperbolic cross
N = 3, k = 1 5 −1.809 −3.085 0.03
N = 5, k = 2 9 −1.958 −3.289 0.09
N = 5, k = 3 13 −3.575 −4.497 0.14
N = 9, k = 4 21 −3.251 −5.423 0.37
N = 9, k = 5 29 −4.807 −6.901 0.60
N = 17, k = 8 57 −5.947 −8.902 1.94
N = 17, k = 9 65 −6.175 −8.963 2.36

To provide an accurate benchmark, we first solve the model using Chebyshev polynomials

on a tensor-product grid with 17 points (Chebyshev extrema) in each dimension, leading to

an approximation grid with 289 approximation points. We set the order of the polynomial to

8 in each dimension. This benchmark takes around 0.7 seconds to solve and returns a largest

absolute Euler-equation error of about −7.7 and an average absolute Euler-equation error of

about −8.0. Shifting to a complete polynomial leads to a slightly slower solution time (the

advantages of complete polynomials are more apparent when the number of dimensions, d,

is larger) and to a modest decline in accuracy, although the Euler-equation errors all remain

less than −7.2.

Turning now to Smolyak’s method, we consider an isotropic grid and allow the number

of layers, µ, to vary. An approximation with three layers (µ = 3) requires an approximation

grid with just 29 points, solves in just over half a second, and produces an average Euler-

equation error of about −5.6. If four layers are used (µ = 4), then 65 approximating points

are required, the solution time rises to about 1.8 seconds, and the average Euler-equation

error falls to around −7.4. Consider now approximation based on a hyperbolic cross, with

N = 9 and k = 6 the resulting hyperbolic cross uses the same number of approximating

points in each dimension as Smolyak (9) and has the same total number of approximation

points, (29), as Smolyak’s method with µ = 3. Relative to this Smolyak solution, the

approximation using the hyperbolic cross is slightly slower (around 0.6 seconds), but is
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more accurate with an average Euler-error of about −6.9. Increasing N to 17 and k to

10 gives a hyperbolic cross that is closely comparable to Smolyak’s method with µ = 4 (17

approximating points along each dimension and a total of 65 points in the approximation

grid). The resulting approximation produces greater average accuracy (around −9.0), but

is slightly slower to compute. An intermediate hyperbolic cross that uses N = 17 and k = 9,

generates an approximation grid with just 57 points, solves in a time that is comparable to

a four-layer Smolyak approximation, but is more accurate in terms of average error.

Results for the stochastic growth model suggest that hyperbolic cross approximation can

match or exceed the accuracy of Smolyak’s method when the two methods use grids with the

same size, but that approximation using the hyperbolic cross takes slightly longer to solve.

Before moving on to example two, we quickly consider alternatives to Chebyshev extrema,

which we used above to meet the requirements of Smolyak’s method. In place of Chebyshev

extrema we consider Chebyshev nodes (see equation 4), Chebyshev extended nodes and

Vertesi nodes (Ibrahimoglu, 2016), and Legendre nodes. We perform this exercise for the

stochastic growth model because it is the simplest of the four models and solves most rapidly.

The accuracy results for N = 17 and k = 9 are presented in Table 5.

Table 5: Accuracy using alternative nodes (N = 17, k = 9)
Node type max(log10 |E|) mean(log10 |E|) Time (sec.)
Chebyshev extrema −6.175 −8.960 2.36
Chebyshev nodes −5.583 −8.733 2.39
Chebyshev extended −5.593 −8.746 2.40
Vertesi nodes −5.595 −8.748 2.41
Legendre nodes −5.748 −9.016 2.38

The main takeaway from Table 5 is that using Chebyshev exterma is a pretty good choice,

better even in this case than the more commonly used (in Economics) Chebyshev nodes.

4.2 Example two — A new Keynesian model

The second example is a new Keynesian model in which the goods market is monopolistically

competitive, prices are sticky as per Rotemberg (1982), and monetary policy is conducted

according to a Taylor-type rule. This particular model allows for capital accumulation

and accommodates a discount factor shock, an aggregate technology shock, and a monetary

policy shock, leading to a total of four state variables (d = 4) one of which is endogenous

(capital). This model is a special case of the one analyzed in Dennis (2019), where the

model’s full derivation can be found.
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The model’s key equations can be summarized as:

λt = Et

[
βt+1λt+1

(
1 +Rt

1 + πt+1

)]
, (25)

λt = Et

[
βt+1λt+1

(
1− δ +

α

1− α
1− θ
θ

ht+1

kt+1

ct+1

1− ht+1

)]
, (26)

πt (1 + πt) =
1− ε
ψ

+
ε

ψ

α

1− α
1− θ
θ

(
ht
kt

)α
ct

1− ht

+ Et

[
βt+1λt+1e

at+1kαt+1h
1−α
t+1 πt+1 (1 + πt+1)

λteatkαt h
1−α
t

]
, (27)

λt = c
(θ−1−σθ)
t (1− ht)(1−θ)(1−σ) , (28)

kt+1 = (1− δ) kt + it, (29)

ct + it =

(
1− ψ

2
π2
t

)
eatkαt h

1−α
t , (30)

1 +Rt =
1

β
(1 + πt)

φπ

(
eatkαt h

1−α
t

y

)φy
emt , (31)

where the processes for the three shocks are:

at+1 = ρaat + σaεt+1, (32)

log (βt+1) = (1− ρβ) log (β) + ρβ log (βt) + σβνt+1, (33)

mt+1 = ρmmt + σmηt+1. (34)

To solve the model we set β = 0.99, δ = 0.015, α = 0.36, φ = 80.0, ε = 11.0, θ = 0.39,

σ = 1.0, φπ = 2.5, φy = 0.25, π = 0.005, y = 1.339, ρa = 0.90, σa = 0.008, ρβ = 0.80,

σβ = 0.004, ρm = 0.80, and σm = 0.01. Finally, we assess accuracy using the Euler-equation

error associated with equation (26), with the error expressed as a proportion of equilibrium

consumption, i.e.:

E =

 g̃(kt+1, at+1, βt+1,mt+1)(
1.0− h̃(kt, at, βt,mt)

)(1−σ)(1−θ)


1
θ−1−σθ

1

c̃(kt, at, βt,mt)
− 1, (35)

where:

g (kt, at, βt,mt) = βtλt

(
1− δ +

α

1− α
1− θ
θ

ht
kt

ct
1− ht

)
. (36)
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4.2.1 Numerics

This new Keynesian model has four state variables. The state-space domain used for the

approximation is given by kt ∈ [14.0, 21.0], at ∈ [log(0.9), log(1.1)], βt ∈ [log(0.95), log(1.05)]

and mt ∈ [log(0.9), log(1.1)], chosen based on a stochastic simulation of 2, 000, 000 obser-

vations. The Euler-equation errors are computed using equation(35 evaluated at 200, 000

randomly chosen points in the state space. The results are reported in Table 6.

Table 6: Accuracy results for the new Keynesian model
d = 4 M max(log10 |E|) mean(log10 |E|) time (sec.)

Chebyshev
N = 17, n = (6, 6, 6, 6) 83521 −6.346 −6.435 2172.17
N = 17, n = 6 83521 −6.234 −6.454 1434.57

Smolyak
µ = 1 9 −1.743 −2.797 0.72
µ = 2 41 −3.516 −4.539 12.18
µ = 3 137 −5.215 −6.270 91.90
µ = 4 401 −6.309 −6.449 501.65

Hyperbolic cross
N = 3, k = 1 9 −1.743 −2.798 0.47
N = 5, k = 2 17 −1.772 −2.899 2.32
N = 5, k = 3 41 −3.818 −4.795 11.65
N = 9, k = 4 57 −3.801 −5.446 23.76
N = 9, k = 5 105 −4.052 −5.552 69.55
N = 9, k = 7 185 −5.816 −6.408 175.64
N = 17, k = 8 241 −5.725 −6.405 297.20
N = 17, k = 9 289 −5.725 −6.405 418.03
N = 17, k = 11 481 −5.992 −6.407 981.56

As with the stochastic growth model previously, we use as a benchmark a solution based

on Chebyshev polynomials. This benchmark uses a tensor product grid with 17 points

(Chebyshev extrema) in each spacial dimension, leading to an approximation grid with a total

of 83521 points. A 6’th order tensor-product polynomial solves this model in 2172 seconds—

just over 36 minutes—producing an average absolute Euler-equation error of around −6.4.

Using a 6’th order complete polynomial rather than a tensor-product polynomial leads to

very similar accuracy, but reduced the solution time to 1434 seconds (about 24 minutes).

By way of contrast, a level of accuracy similar to that achieved using Chebyshev polyno-

mials can be achieved from a Smolyak approximation with three layers (µ = 3) requiring a

grid of only 137 points and taking only 92 seconds to solve.

20



Looking at the results for the hyperbolic cross approximation now, finding values for N

and k that replicate the size of the grid used for Smolyak is not always possible. When N = 3

and k = 1 the hyperbolic cross grid contains 9 points, the same as a Smolyak approximation

with one layer. Similarly, when N = 5 and k = 3 the hyperbolic cross grid employs 41

points, the same as the Smolyak approximation with two layers. In both of these cases

the hyperbolic cross approximation has the same or superior accuracy, and slightly shorter

solution times. While the exact size of the Smolyak grids for layers 3 and 4 do not have

direct analogues in the hyperbolic cross, the accuracy achieved from a four-layer Smolyak

approximation employing 401 grid points is essentially achieved using a hyperbolic cross

where N = 17 and k = 8, which requires just 241 grid points. More generally, where the

hyperbolic cross leads to a reduction in accuracy, this loss of accuracy is generally modest

and compensated for in terms of fewer grid points and shorter solution times.

4.3 Example three — A labor search model

Although our third example is also a sticky price new Keynesian model, it poses quite

different challenges to the second example above. In particular, example three uses a

labor-search model and has monetary policy conducted optimally under discretion, and it is

solved in the absence of a production subsidy so that the under-production of goods caused

by monopolistic competition remains. As is now well-known, equilibrium is characterized

by a discretionary inflation bias (as well as a stabilization bias) and the model’s equilibrium

requires solving a system that contains “generalized Euler equations”. In other words, due

to time-inconsistency, to solve for the discretionary equilibrium one must simultaneously

compute decision rules and their derivatives with respect to the endogenous state variables—

here lagged employment.

We do not present the model in its entirely here, but simply summarize it, leaving a more

thorough presentation to the appendix. The model is summarized and its key equations are

given in Appendix A; its full description and complete derivation can be found in Dennis

and Kirsanova (2021) to which interested readers are directed. The key agents in the

model are households, firms, and a central bank. Households consist of members that

are either employed or unemployed; the former receive an hourly wage the later receive

an unemployment benefit financed by lump-sum taxation. There is complete insurance

within the household. On the production side, goods are produced using a technology that

depends on aggregate technology, hours-worked per-employee, and the level of employment.
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Goods are sold in a monopolistically competitive market at a price that is subject to a

Rotemberg (1982) adjustment cost. Job-separations occur exogenously at the end of every

period and firms face a cost to posting vacancies in order to hire new employees. The

central bank conducts monetary policy optimally under discretion. This model contains

five autoregressive shocks: technology shocks (at), matching shocks (mt), bargaining shocks

(ςt), mark-up shocks (εt), and consumption-preference shocks (ζt), which together with lagged

employment (nt−1) lead to a total of six state variables (d = 6).

4.3.1 Numerics

The approximation domain for each of the five shocks was set to be plus/minus four uncon-

ditional standard deviations while the domain for lagged employment was nt−1 ∈ [0.85, 1.0].

Numerical accuracy was assessed based on the model’s job-creation equation sampled at

200, 000 points chosen randomly from a stochastic simulation spanning 2, 000, 000 periods.

The accuracy results are presented in Table 7.

Table 7: Accuracy results for the labor-search model
d = 6 M max(log10 |E|) mean(log10 |E|) time (sec.)

Chebyshev
N = 5, n = (4, 4, 4, 4, 4, 4) 15625 −2.711 −3.341 450.71
N = 5, n = 4 15625 −2.405 −3.395 120.13
N = 9, n = 4 531441 −2.516 −3.357 3963.27
N = 9, n = 6 531441 −2.621 −4.176 16715.24

Smolyak
µ = 1 13 −0.032 −1.821 0.67
µ = 2 85 −1.288 −2.633 13.61
µ = 3 389 −2.330 −3.741 163.18
µ = 4 1457 −2.392 −5.043 1805.07

Hyperbolic cross
N = 3, k = 1 13 −0.050 −1.831 0.70
N = 5, k = 2 25 −0.222 −2.067 1.68
N = 5, k = 3 85 −1.811 −3.142 14.22
N = 9, k = 4 109 −1.681 −3.313 20.77
N = 9, k = 5 229 −1.769 −3.532 77.06
N = 9, k = 7 509 −2.522 −4.426 300.32
N = 17, k = 8 617 −2.214 −4.458 487.16
N = 17, k = 9 737 −2.446 −4.481 720.51
N = 17, k = 11 1457 −3.040 −5.124 2339.25

Solving the model using low-order Chebyshev polynomials such as a 4’th order tensor-

product polynomial with 5 points along each dimension takes about 450 seconds and requires
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15625 approximating points to produce an average absolute Euler-equation accuracy of −3.3.

Using a 4’th order complete polynomial reduces the solution time to 120 seconds while

delivering equivalent accuracy. Increasing the number of points to 9 along each spacial

dimension and using a 6’th order complete polynomial delivers an average absolute Euler-

error of −4.2, but requires an approximating grid of 531, 441 points and it takes 4.6 hours

for the model to solve.

In contrast to Chebyshev polynomials, a Smolyak polynomial with three layers requires

just 389 approximating points and gives an Euler-equation error of−3.7 in about 163 seconds.

Increasing the number of layers to four, lowers the Euler-equation error to about −5.0, but

increases the size of the approximating grid to 1457 points and the solution time to about

30 minutes. This four-layer Smolyak approximation produces superior accuracy than a 6’th

order complete Chebyshev polynomial while using just a fraction of the total number of grid

points.

Turning now to the hyperbolic cross, with N = 3 and k = 1 the hyperbolic cross approx-

imation is comparable to a one-layer Smolyak approximation, and delivers almost identical

accuracy. With N = 5 and k = 3, the hyperbolic cross is comparable to a two-layer Smolyak

approximation, but delivers improved accuracy at the cost of a slightly slower solution time.

There is no hyperbolic cross that is directly comparable to a three-layer Smolyak approx-

imation, but with N = 9 and k = 5 the hyperbolic cross is only slightly worse in terms

of accuracy (−3.5 versus −3.7), but uses only 229 approximating points (Smolyak employs

389 points) and takes only 77 seconds to solve (versus 163 seconds for Smolyak). Finally,

setting N = 17 and k = 11, the hyperbolic cross is comparable to a four-layer Smolyak

approximation, but produces slightly better accuracy while taking longer to solve the model.

For this model, which requires solving functions along with their derivatives, the hyper-

bolic cross approximation tends to give equal or slightly superior numerical accuracy than a

comparable Smolyak approximation, but tends to take longer to converge.

4.4 Example four — A six-country international business cycle
model

The final example is a six-country international business cycle model with complete markets.

Briefly, preferences for country s = 1, ...6, can be summarized in the form:

Us = E0

[
∞∑
t=0

βt

(
c1−σs,t − 1

1− σ

)]
, (37)
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where cs,t is period-t consumption for country s, and each country produces according to the

technology:

ys,t = Aeas,tkαs,t, s = 1, ..., 6, (38)

where ys,t and ks,t are period-t production and period-t capital for country s, and as,t is

country s’s aggregate technology. The parameter A serves to normalize each country’s

steady state level of capital to 1.0. We will determine competitive equilibrium in this model

through the use of a benevolent planner that weighs equally each country’s preferences. The

decision problem for the planner is to choose {cs,t, ks,t+1}∞t=0, s = 1, ...6, to maximize:

E0

[
6∑
s=1

∞∑
t=0

βt

(
c1−σs,t − 1

1− σ

)]
, (39)

subject to:
6∑
s=1

ks,t+1 = (1− δ)
6∑
s=1

ks,t +
6∑
s=1

(
Aeas,tkαs,t − cs,t

)
. (40)

The first order conditions that hold for all t are:

c−σs,t = λt, s = 1, ...6, (41)

λt = βEt
[
λt+1

(
1− δ + αAeas,tkα−1s,t

)]
, s = 1, ...6, (42)

6∑
s=1

ks,t+1 = (1− δ)
6∑
s=1

ks,t +
6∑
s=1

(
eas,tkαs,t − cs,t

)
. (43)

We assume that the technology shocks evolve of time according to the process:

as,t+1 = ρas,t + σεεs,t+1. (44)

Equations (41)—(43) describe equilibrium in a model with twelve state variables (d = 12),

six technology shocks and six capital stocks. We parameterize the model by setting β = 0.99,

σ = 1.0, α = 0.36, δ = 0.025, ρ = 0.95, A = 0.0975, and σε = 0.01, and evaluate accuracy

using the error in equation (42) expressed as a proportion of consumption.

A multi-country model essentially the same as the one above was also used to study

accuracy in Judd, et al, (2017) and Cai, et al, (2017).

4.4.1 Numerics

To solve the model use use as the approximation domain ks,t ∈ [0.7, 1.3] and as,t ∈ [log (0.8) , log (1.2)],

s = 1, ..., 6, which we found through stochastic simulation of 2, 000, 000 periods to encom-

passes the ergodic region. From these simulated outcomes, a random sample of 200, 000
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were drawn and used to compute Euler-equation errors. The results are given in Table 8,

with solution times reported in minutes.

Table 8: Accuracy results for the six-country model
d = 12 M max(log10 |E|) mean(log10 |E|) time (min.)

Smolyak
µ = 1 25 −2.470 −3.721 0.32
µ = 2 313 −3.643 −5.352 21.77
µ = 3 2649 −4.871 −6.884 1031.45

Hyperbolic cross
N = 3, k = 1 25 −2.471 −3.720 0.32
N = 3, k = 3 289 −3.555 −4.304 24.66
N = 3, k = 7 2049 −3.588 −4.387 574.39
N = 5, k = 2 49 −2.456 −3.773 0.62
N = 5, k = 3 313 −3.690 −5.420 21.85
N = 5, k = 5 841 −3.736 −5.449 164.88
N = 9, k = 4 361 −3.731 −5.462 32.31
N = 9, k = 5 889 −3.744 −5.471 170.33
N = 9, k = 7 3177 −5.076 −7.135 1160.36
N = 13, k = 6 937 −3.744 −5.471 194.64
N = 17, k = 8 3537 −5.103 −7.155 2478.85

With twelve state variables the state space for this model is sufficiently large that solu-

tion using Chebyshev polynomials is essentially infeasible. Table 6, therefore, only reports

results for Smolyak approximation and hyperbolic cross approximation. For Smolyak ap-

proximation with layers one and two, formulations based on hyperbolic cross approximation

with a comparable number of approximating points are available. Comparing a one-layer

Smolyak approximation with a hyperbolic cross with N = 3 and k = 1 (both using a grid

of 25 points) we see that the two solutions share the same accuracy and overall solution

time. A hyperbolic cross with N = 5 and k = 3 produces a grid with 313 points, which

is comparable to a two-layer Smolyak approximation. Here the hyperbolic cross is slightly

more accurate, with the improvement due entirely to the place of the approximation points

with the d-dimensional hypercube. Looking at the three-layer Smolyak approximation, for

which the average absolute Euler-equation error is about −6.9, there is no directly compara-

ble hyperbolic cross with the same sized approximation grid (2649 points). However, with

some loss of accuracy a hyperbolic cross with N = 9 and k = 5 gives an error of −5.5 and

uses just 889 approximating points.
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5 Conclusions

This paper has shown how non-linear macroeconomic models can be solved using a sparse-

grid method based on the hyperbolic cross. The hyperbolic cross method is known to be

optimal for certain classes of smooth functions and offers the possibility of greater accuracy

than other sparse-grid methods because it concentrates the approximating points in a model’s

ergodic region. The hyperbolic cross method is related to Smolyak’s method, but assigns

the approximating points differently and generally facilitates a solution using fewer approxi-

mating points. We illustrated the standard hyperbolic cross, presented a generalization, and

then showed how a hyperbolic cross with an ansiotropic grid could be constructed. After

illustrating the hyperbolic cross method we compared it to alternatives, such as Chebyshev

polynomials and Smolyak’s method.

We assess the performance and numerical accuracy by applying the hyperbolic cross ap-

proximation method to four macroeconomic models. One of these models is the stochastic

growth model, another is a six-country international business cycle model, and the remaining

two models are of the new Keynesian variety. These models offer variation in the number of

state variables, the stochastic growth model has two while the international business cycle

model has twelve, in the composition of the state variables between endogenous and exoge-

nous, and one of the new Keynesian models requires simultaneously solving for functions

and the derivatives of functions to arrive at the solution. For all four of these models we

also presents solutions based on Smolyak’s method, and for three of the models (those with

fewer state variables) we present solutions based on Chebyshev polynomials.

The paper offers a variety of contributions and results. One contribution is to introduce

the hyperbolic cross approximation method and show how it can be employed to solve

non-linear macroeconomic models. A further contribution is to generalize the standard

hyperbolic cross, to develop a framework that links the standard cross at one end to a

tensor-product grid at the other. A third contribution is to show how a hyperbolic cross

with an ansiotropic grid can be constructed, giving the hyperbolic cross approximation the

same flexibility over the number of points to be used in each spacial dimension as Smolyak’s

method. From applying the approximation method to the four models, the main findings

are as follows. First, the hyperbolic cross method allows models to be solved using fewer

approximating points than even Smolyak’s method, often considerably fewer. Second, in

much the same way that Smolyak’s method permits models to be solved using fewer points

than a tensor-product grid, but at some loss in accuracy, so the hyperbolic cross permits
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using fewer points than Smolyak’s method, but at some loss in accuracy. Third, in cases

where the hyperbolic cross is constructed to have the same number of approximating points as

Smolyak’s method, the hyperbolic cross tends to produce a modest improvement in accuracy,

sometimes at the cost of slightly slower solution times. This improvement in accuracy is

due to the hyperbolic cross focusing the approximating points on the ergodic region.

Smolyak’s method is the most common method used to solve macroeconomic models when

approximation using Chebyshev polynomials is infeasible. The hyperbolic cross method de-

veloped and illustrated in this paper provides an alternative, one that allows further economy

over the number of approximating points. As the number of state variables increases, the

hyperbolic cross offers obvious improvement over Chebyshev polynomials and, depending on

the model, may also offer improvement over Smolyak’s method, either in terms of improved

accuracy or in terms of a using fewer approximating points. It is worth noting, how-

ever, that there are strong connections between the hyperbolic cross method and Smolyak’s

method, connections that should made it possible to merge the two approaches and produce

an approximating grid that both well-covers the ergodic region and the outer regions of the

state-space. We leave this extension and an assessment of its performance to future work.

Appendix A: The labor-search model—more detail

In this appendix we provide details on the labor-search model that was analyzed as example

three, listing the model’s equations and the parameter values used. Complete details can

be found in Dennis and Kirsanova (2021).

A household consists of employed and unemployed members (complete insurance within

the household) and the decision problem for the representative household is to choose

{ct, Bt+1}∞t=0, taking the processes {Pt, wt, Rt, Dt, τt, nt, ht}∞t=0 as given and the initial

condition, B0, as known, to maximize:

E0

[
∞∑
t=0

βt

(
ζt
c1−σt − 1

1− σ
+ χnt

(1− ht)1−ν − 1

1− ν

)]
, (45)

subject to the (flow) budget constraint:

ct +
Bt+1

Pt
+ τt = wthtnt + b (1− nt) + (1 +Rt−1)

Bt

Pt
+ dt, (46)

where aggregate nominal bonds, Bt, are in zero-net supply.
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On the production side, Taking {Pt, wt, yt, ht (i)}∞t=0 as given and with p−1 (i) known, the

decision confronting the i’th firm is to choose {pt (i) , nt (i) , vt (i)}∞t=0 to maximize:

max
{pt(i),nt(i),vt(i)}∞t=0

E0

 ∞∑
t=0

βt
λt
λ0

 pt(i)
Pt
yt (i)− wtht (i)nt (i)− κvt (i)

−ψ
2

(
pt(i)
pt−1(i)

− 1
)2
yt

 , (47)

where ψ > 0 governs the cost to changing prices, κ > 0 is the vacancy-posting cost, and

λt = ζtc
−σ
t is the marginal utility of consumption in period t, subject to the production

technology:

yt (i) = ztht (i)nt (i) , (48)

the demand curve:

yt (i) =

(
pt (i)

Pt

)−εt
yt, (49)

and the law-of-motion for employment:

nt (i) = (1− δ)nt−1 (i) + vt (i) q (θt) . (50)

The first-order conditions from these two decision problems, when aggregated over all house-

holds and firms, produces the following:

ψπt (1 + πt) ζtc
−σ
t eathtnt = (1− εt) ζtc−σt eathtnt + εtχ (1− ht)−ν htnt

+βψEt
[
ζt+1c

−σ
t+1e

at+1ht+1nt+1πt+1 (1 + πt+1)
]
, (51)

κζtc
−σ
t

(1− ςt)mtθ
−ξ
t

= χ
(1− νht) (1− ht)−ν − 1

1− ν
− ζtc−σt b

+ β (1− δ)Et

[
κζt+1c

−σ
t+1

1− ςt+1mt+1θ
1−ξ
t+1

(1− ςt+1)mt+1θ
−ξ
t+1

]
, (52)

eathtnt = ct + κ (1− (1− δ)nt−1) θt +
ψ

2
π2
t e
athtnt, (53)

nt = (1− δ)nt−1 +mt (1− (1− δ)nt−1) θ1−ξt , (54)

With regard to monetary policy, the central bank is assumed to conduct monetary policy

optimally under discretion; thus the equilibrium policy will be time-consistent. Introducing

the following two auxiliary functions:

F (nt, st+1) = Et
[
ζt+1c

−σ
t+1zt+1ht+1nt+1πt+1 (1 + πt+1)

]
, (55)

G (nt, st+1) = Et

[
κζt+1c

−σ
t+1

1− ςt+1mt+1θ
1−ξ
t+1

(1− ςt+1)mt+1θ
−ξ
t+1

]
, (56)
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the Lagrangian for the the central bank’s decision problem is:The Lagrangian for the optimal

discretionary policy is:11

L = E0


∞∑
t=0

βt



ζt
c1−σt −1
1−σ + χnt

(1−ht)1−ν−1
1−ν

+φ1t

(
(1− εt) ζtc−σt zthtnt + εtχ (1− ht)−ν htnt

+βψF (nt, st+1)− ψπt (1 + πt) ζtc
−σ
t zthtnt

)
+φ2t

(
χ (1−νht)(1−ht)−ν−1

1−ν − ζtc−σt b

+β (1− δ)G (nt, st+1)− κζtc
−σ
t

(1−ςt)mtθ−ξt

)
+φ3t

(
ct + κ (1− (1− δ)nt−1) θt + ψ

2
π2
t zthtnt − zthtnt

)
+φ4t

(
(1− δ)nt−1 +mt (1− (1− δ)nt−1) θ1−ξt − nt

)




, (57)

and the first-order conditions are:

∂L
∂πt

: πtφ3t − (1 + 2πt) ζtc
−σ
t φ1t = 0, (58)

∂L
∂ct

: ct + σ ((εt − 1) zthtnt + ψπt (1 + πt) zthtnt)φ1t

: +

(
σb+

σκ

(1− ςt)mtθ
−ξ
t

)
φ2t +

cσ+1
t

ζt
φ3t = 0, (59)

∂L
∂ht

: −χnt (1− ht)−ν + νχht (1− ht)−ν−1 φ2t +

(
ψ

2
π2
t − 1

)
ztntφ3t

: +
(
(1− εt − ψπt (1 + πt)) ζtc

−σ
t zt + εtχ (1− (1− ν)ht) (1− ht)−ν−1

)
ntφ1t = 0, (60)

∂L
∂nt

:
(
(1− εt − ψπt (1 + πt)) ζtc

−σ
t htzt + εtχ (1− ht)−ν ht + βψEtF1 (nt, st+1)

)
φ1t

: +β (1− δ)EtG1 (nt, st+1)φ2t +

(
ψ

2
π2
t − 1

)
zthtφ3t − φ4t + χ

(1− ht)1−ν − 1

1− ν

: +β (1− δ)Et
[(

1−mt+1θ
1−ξ
t+1

)
φ4t+1 − κθt+1φ3t+1

]
= 0, (61)

∂L
∂θt

: −κζtc
−σ
t ξθξ−1t

(1− ςt)mt

φ2t + κ (1− (1− δ)nt−1)φ3t + (1− ξ)mtθ
−ξ
t (1− (1− δ)nt−1)φ4t = 0.(62)

We compute equilibrium in this model, by solving equations (51)—(56) and (58)—(62),

with the parameters set as follows:

11An alternative equivalent approach is to formulate the decision problem in terms of a Bellman equation
and then exploit the Benveniste-Scheinkman condition.
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Table A1: Model Parameters
Intertemporal elasticity σ 1.00 Matching efficiency m 0.66
Discount factor β 0.99 Vacancy elast. of matches ξ 0.72
Elasticity of substitution ε 11.0 Unemployment benefit b 0.07
Price adj. cost ψ 80.0 Cost of posting vacancy κ 0.06
Separation rate δ 0.12 Disutility of labor χ 0.20
Workers bargaining power ς 0.72 Elasticity of labor supply ν 5.00

Shock Processes
Shock Persistence Volatility
Technology ρa 0.95 σa 0.008
Matching efficiency ρm 0.80 σm 0.032
Bargaining power ρζ 0.80 σζ 0.028
Consumption preference ρξ 0.70 σa 0.006
Elasticity of substitution ρε 0.85 σε 0.120
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