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1 Introduction

Since the publication of the first edition of this Handbook, Bayesian estimation of DSGE models
has become a more integral part of the toolkit of macroeconomists. In Guerrén-Quintana and
Nason (2013), we noted that Bayesian methods afford researchers the chance to estimate and
evaluate a wide variety of macro models that frequentist econometrics often find challenging.
One area is economic forecasting. Beginning with Doan, Litterman, and Sims (1984) and more
recently Karlsson (2013), the many forms of Bayesian vector autoregressions (BVARs) have been
found to be useful forecasting toolsE] More recent work develops Bayesian methods capable of
estimating time-varying parameter (TVP) VARs with stochastic volatility (SV), associated with
Cogley and Sargent (2005) and Primiceri (2005), and Markov-switching (MS) VARs initiated by
Sims and Zha (2006) and carried on, for example, by Canova and Pérez Forero (2015), Bitto
and Frithwirth-Schnatter (2019), and Kole and van Dijk (202 3)E] The complexity of TVP-SV- and
MS-VARSs, especially as shown in the work of the last three sets of authors, underline the efforts
macroeconomists have put into developing useful Bayesian time series toolsfﬂ

Guerron-Quintana and Nason (2013) also pointed to the appeal of Bayesian times series
methods for macroeconomists studying dynamic stochastic general equilibrium (DSGE) models.
It remains the case that, although DSGE models can be estimated using classical and simulation
optimization methods, macroeconomists often prefer to use Bayesian tools for these tasks.
Advances in Bayesian theory provide an expanding array of tools that researchers have available
to estimate and evaluate DSGE models, as we will discuss.

The popularity of Bayesian econometric methods is also explained by the increasing com-
putational power available on desktop computers to estimate and evaluate DSGE models us-
ing Markov chain Monte Carlo (MCMC) samplers. However, greater computing power is not a
panacea. It cannot overcome the identification problems that DSGE models pose for frequentist
estimators. Since these problems exist in population, no amount of data can aid in the identi-
fication of a DSGE model. Identification is not an issue in Bayesian econometrics, but there is
an analogous problem in Bayesian econometrics that we describe below.

We also cannot stress enough that DSGE models only approximate actual economies. The
response of a frequentist might be to say that DSGE models are misspecified versions of the
true model. However, this is not consistent with the beliefs macroeconomists often espouse
for DSGE models. These beliefs are animated by the well known mantra that “all models are
false.” Since Bayesians do claim true models exist, adopting Bayesian methods to study DSGE
models dovetails with the views held by many macroeconomists.

This chapter holds to the notion that DSGE models are useful abstractions while updating
and extending Guerréon-Quintana and Nason (2013) from the first edition of this Handbook. One
might think that the many surveys of Bayesian estimation of DSGE models, especially of the
last few years, forestalls the need for us to revise our chapter. Nonetheless, we believe this
survey complements existing onesE] Our contribution is to bring the reader to the point where

IR. Giacomini and B. Rossi report on forecasting in this Handbook. Its chapter on structural VARSs is by L. Kilian.

2This Handbook has a survey of MS models by J. Gonzalo and J-Y. Pitarakis.

3L.. Bauwens and D. Korobilis provide a chapter on Bayesian time series methods in this Handbook.

4These surveys are Fernandez-Villaverde, Guerron-Quintana, and Rubio-Ramirez (2013), Schorfheide (2013),
Fernandez-Villaverde, Rubio-Ramirez, and Schorfheide (2016), Lindé, Smets, and Wouters (2016), Yagishashi
(2020), Fernandez-Villaverde and Guerr6on-Quintana (2021), and Dave and Sorge (2024). Textbook treatments
are Canova (2007), DeJong and Dave (2011), and Herbst and Schorfheide (2015).



her priors and DSGE model can, subsequent to linearization, meet the data to be estimated and
evaluated using Bayesian methods. By developing these skills, the reader will be able to move
onto the current state of the art that applies nonlinear solution and machine learning methods
that need sequential Monte Carlo (SMC) algorithms to estimate DSGE models ]|

We also aim in this chapter is to help the reader gain an understanding of the interaction
between the need to connect macro theory to current data and the development of tools to
achieve that task. We discuss procedures for estimating a linearized medium-scale New Key-
nesian (NK)DSGE model in this chapter. The NKDSGE model is a descendant of ones analyzed
by Smets and Wouters (2003, 2007) and Christiano, Eichenbaum and Evans (2005). As those
authors do, we estimate a linearized approximation of the NKDSGE. Since the growth rate of
the technology shock in the model is stationary, linearization of the model is grounded in its
stochastically detrended optimality and equilibrium conditions. The linearized optimality and
equilibrium conditions yield a solution that is cast in state space form, which is the starting
point for the Kalman filter. Since the Kalman filter generates predictions and updates of the
state vector of the linearized NKDSGE model, we have a platform for computing its predictive
likelihood. This likelihood is used by Bayesian MCMC samplers to produce posterior distribu-
tions of NKDSGE model parameters conditional on actual data and prior beliefs about these
parameters. Posterior distributions represent confidence in an NKDSGE model conditional on
the evidence provided by its likelihood.

An outline of the chapter follows. Its next section has a brief history of DSGE model
estimation along with a sketch of state of the art of methods for estimating DSGE models that
revolve around nonlinear solution and SMC procedures. Section 3 outlines the DSGE model
we study. The NKDSGE model is prepared for estimation in section 4. Section 5 that reviews
Bayesian methods to estimate the linear approximate solution of the NKDSGE model described
in section 4. Results appear in section 6. Section 7 concludes.

2 DSGE Model Estimation: A Review

Efforts to estimate and evaluate DSGE models using Bayesian methods began in ernest in the
late 1990s. Previously, macroeconomists used classical optimization methods to estimate DSGE
models. This section gives a brief and incomplete review of these frequentist approaches to
estimate DSGE models, covers the transition from frequentist to Bayesian methods, describes
several issues that confronts anyone engaging in Bayesian estimation of DSGE models, and
finishes with a short sketch of the current frontier of Bayesian estimation of DSGE models.

2.1 A Brief History of Frequentist DSGE Model Estimation

Frequentists have used maximum likelihood (ML), generalized method of moments (GMM), and
indirect inference (II) to estimate DSGE models. These estimators rely on classical optimization

>We relegate a discussion of heterogeneous agent New Keynesian (HANK) models to the future. At the moment,
the literature lacks a consensus about HANK models, as shown by results in Kaplan, Moll, and Violante (2018)
and Broer, Hansen, Krusell, and Oberg (2020). This frontier of DSGE modeling is reviewed by Violante (2021).
Liu and Plagborg-Maller (2023) solve a HANK model and use Bayesian methods to estimate it. Sargent (2023)
traces the evolution in the literature from traditional Keynesian models with heterogeneous agents to HANK
models, reviews the relevant empirical evidence, and describes the policy implications of HANK models.



either of a log likelihood function or of a GMM criterionf_;] Two assumptions are key for ML and
GMM estimators. First, the parameters of interest are part of a model that is not misspecified.
Second, the parameters are fixed and not random variables as is true for Bayesians.

Early examples of frequentist ML estimation of DSGE models are Altug (1989) and Ben-
civenga (1992). They apply classical optimization routines to the log likelihood of the restricted
finite-order vector autoregressive-moving average (VARMA) implied by the linear approximate
solutions of their real business cycle (RBC) models. The restrictions arise because the VARMA
lag polynomials are nonlinear functions of the DSGE model parameters.

A restricted VARMA engages ML estimation in ways that differ from Sargent (1989). He
maps the linear solution of permanent income (PI) models with a serially correlated endow-
ment shock into likelihoods that are built on Kalman filter predictions of the states, which are
often hidden or unobserved by the econometrician. Sargent assumes the data are ridden with
measurement errors, which evolve as independent first-order autoregressions, AR(1)s. This
aids in identification because serially correlated measurement errors add restrictions to the PI
modelE] An extension of Sargent’s approach is Ireland (2001). He replaces the independent
AR(1) measurement errors with an unrestricted VAR(1) [f| Besides measurement error, this
VAR(1) inherits the dynamics in the data left unexplained by the RBC model.

Classical optimization is also used for GMM estimation of DSGE models. Christiano and
Eichenbaum (1992) obtain GMM estimates of some of the parameters of their RBC model using
its steady state conditions and relevant shock processes as moments. Since there are less
moment conditions than parameters, only a subset of the parameters are identified by GMM.

Identification is also an issue for ML estimation of DSGE models. For example, Altug,
Bencivenga, and Ireland identify only a subset of RBC model parameters after pre-setting or
calibrating the rest. Hall (1996) gives a reason for this practice. He shows that ML and GMM
identify DSGE model parameters on the same sample and theoretical information of first mo-
ments. Although ML is a full information estimator that engages all the moment conditions
expressed by a DSGE model, GMM and ML rely on the same first moments for identification. This
suggests the problems identifying DSGE models are similar for ML. and GMM estimators. Canova
and Sala (2009), Komunjer and Ng (2011), Fernandez-Villaverde et al. (2016), and Kociecki and
Kolasa (2018) provide more analysis of the hurdles facing the identification of DSGE models.

The frequentist assumption of a true model ties the identification problem to the issue
of DSGE model misspecification. The question is whether any parameters of a DSGE model can
be identified when it is misspecified. For example, frequentist ML loses its appeal when models
are known to be misspeciﬁedﬂ Thus, it seems that no amount of data or computing power will
solve problems related to the identification and misspecification of DSGE models.

A frequentist response to these problems is II. The first application of II to DSGE model
estimation is Smith (1993)116] He and Gourieroux, Monfort, and Renault (1993) note that Il yields
an estimator and specification tests whose asymptotic properties are standard even though
the true likelihood of the DSGE model is not known. The II estimator minimizes a GMM-like

6This Handbook has chapters on GMM estimation by A. Hall and its application to DSGE models by F. Ruge-Murcia.

7Altug identifies her RBC model similarly. Departing from this approach, Bencivenga uses a AR(1) taste shock
to identify her RBC model.

8 A Bayesian version of this approach is found in Curdia and Reis (2020).

9White (1982) develops quasi-ML for misspecified models, but its consistency needs a strong set of assumptions.

10Gregory and Smith (1990, 1991) anticipate the II approach to DSGE model estimation and evaluation.



criterion in the distance between a vector of theoretical and sample moments. These moments
are observed in the actual data and predicted by the DSGE model. Estimating DSGE model
parameters is “indirect” because the objective of the GMM-like criterion is to match moments
that the DSGE model only predicts using an auxiliary model. Theoretical moments are produced
by simulating synthetic data from the solution of the DSGE modelE-] A classical optimizer
moves the theoretical moments closer to the sample moments by updating the DSGE model
parameters holding the structural shock innovations ﬁxedF_z]

Dridi, Guay, and Renault (2007) extend the II estimator by acknowledging that the DSGE
model is false. They argue that the purpose of dividing the vector of DSGE model parameters,
0, into the parameters of interest, ®1, and the remaining nuisance or pseudo-parameters, 0>,
is to separate the part of a DSGE model having economic content from the misspecified part.
Thus, ©; represents the part of a DSGE model that is economically relevant for the moments
it aims to match. However, ®> cannot be ignored because it is integral to the DSGE model.
Fixing ©» or calibrating it with sample information contributes to identifying ®,, but without
polluting it with the misspecification of the DSGE model encapsulated by ®,. This insight is
the basis for Dridi, Guay, and Renault (DGR) to construct an asymptotic distribution of ®; that
accounts for misspecification of the DSGE model. The sampling theory is useful for tests of
the degree of misspecification of the DSGE model and to gauge its ability to match the data.

2.2 Bayesian Econometrics and DSGE Models

Bayesians avoid having to assume there exists a true or correctly specified DSGE model because
of the likelihood principle (LP). The LP is a foundation of Bayesian statistics and says that all ev-
idence about a DSGE model is contained in its likelihood conditional on the data as discussed
by Berger and Wolpert (1988). Since the data’s probabilistic assessment of a DSGE model is
summarized by its likelihood, the likelihoods of a suite of DSGE models possess the evidence
needed to judge which “best” fit the data. Thus, Bayesian likelihood-based evaluation is con-
sistent with the corollary, “It takes a model to beat a model,” of the mantra that “All models
are false.” Although there is no true DSGE model because, for example, this class of models is
afflicted with incurable misspecification, DSGE models give macroeconomists a framework to
understand actual data and offer advice to policy makers.

There exist several Bayesian approaches to estimate DSGE models. Most of these methods
are fully invested in the LP, which implies likelihood-based estimation. The goal is to construct
the posterior distribution, 9’(® ) %:T), of the parameters of a DSGE model conditional on the
sample data, V.7, of length T. Bayesian estimation exploits the fact that the posterior distri-
bution equals the DSGE model likelihood, £(ym | @), multiplied by the researcher’s priors on

the DSGE model parameters, P(0), up to a factor of proportionality
(1) 'J’(@ ‘ yl:T) o £<y1:r ‘ 9)3’(@)-

Bayesian estimation of DSGE models is confronted by posterior distributions too complicated

HSimulated quasi-ML yields an estimator that is asymptotically less efficient compared with II. Smith (1993) ties
the intuition to the differing likelihoods of the auxiliary model and the DSGE model.

12Christiano et al. (2005) estimate an NKDSGE model by matching its impulse response functions (IRFs) to those
of a structural VAR. Hall, Inoue, Nason, and Rossi (2012) develop optimal estimators for IRF matching.
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to evaluate analytically. The complication arises because the mapping from a DSGE model to
its é@(ym ‘ @) is nonlinear in ®, which suggests using simulation to approximate iP(@ ‘ ym).

Bayesian evaluation of estimated DSGE models relies on Bayes factors or posterior odds
ratios. The Bayes factor is

5 _ £(y1:T)®j’MJ>
gs | vur é@(ylzT ‘ @SvMS> |

(2)

which measures the odds the data prefer DSGE model j, M; (with parameter vector 0;), over
DSGE model s, J\/[SH Multiply BJ,S | Visr by the prior odds to find the posterior odds ratio,
which as the name suggests is ij’S Var = Bj,s | yl:T?((*Dj)/‘P(@S). Put another way, the log of
the Bayes factor is the log of the posterior odds of M; compared to M; net of the log of the
prior odds of these DSGE models. Geweke (1999, 2005) and Fernandez-Villaverde and Rubio-
Ramirez (2004) discuss the foundations of Bayesian evaluation of DSGE models, while Rabanal
and Rubio-Ramirez (2005) calculate Bayes factors to gauge the fit of several NKDSGE models.
The earliest example of Bayesian likelihood-based estimation of a DSGE model is DeJong,
Ingram, and Whiteman (2000a, b). They engage importance sampling (IS) to compute posterior
distributions of functions of ©, G(©®) FE] An S algorithm relies on a finite number of JJD random
draws from an arbitrary proposal density D(0) to approximate G(®), where the support of
D(O) covers the support of G(0). The approximation is computed with i = 1, ..., N weights,
W(0;), that smooth draws of ©; from D(@). Since the draws are from the incorrect distribution,
smoothing the approximation gives greater (less) mass to posterior draws of G(®;) that occur
frequently (infrequently) A drawback of IS is that it is often unreliable when © has large
dimension. Another is that there is little guidance about updating i]’(@ ) yt), and therefore

G(0), from one draw of D(0) to the next, given P(0).

Otrok (2001) reports estimates of a DSGE model grounded on the Metropolis-Hasting
(MH)-MCMC algorithm. This is, perhaps, the first instance of MH-MCMC simulation applied to
DSGE model estimation. The MH-MCMC algorithm proposes to update © using a multivariate
random walk, but first an initial draw of ® from P(®) is needed. The initial © is updated by
adding to it draws from a distribution of “shock innovations.” The decision to keep the initial ®
or to move to the updated ® depends on whether the latter increases £(yt ) @) probabilistically.
This process is repeated by sampling from the multivariate random walk to update 6.

The MH-MCMC simulator is often preferred to importance sampling methods to estimate
DSGE models. One reason is the MH algorithm places less structure on the MCMC simulator.
Thus, a wide class of time series models can be estimated by MH-MCMC simulation. Also,
MH-MCMC simulators tend to generate less serial correlation in posterior distributions, which
induces good asymptotic properties, compared with importance sampling. These properties
reduce the computational burden of updating the prior. Another good feature of MH-MCMC

13In general, Bayes factor involves the ratio of marginal likelihoods of M; and M;. The marginal likelihood
integrates out ®; from (V1.1 | @, M;); see Geweke (2005).

14The objective is to approximate E{G(0)} = [ G(0)[?(®|V;) /D(©) |D(0)de6.
15Given N draws from D(0), E{G(0)} is approximated as G = >, W(0,)G(0;) / SN, W(©;), where the weights,
W(0;), equal P(0;|V;) / D(0;).



simulation is that its flexibility lessens the demands imposed by high dimensional ®. We post-
pone further discussion of the MH-MCMC simulator to section 5.3.

There is a large and growing literature that leans heavily on MH-MCMC simulation meth-
ods to estimate DSGE models. Open economy NKDSGE models are estimated in this way by,
among others, Adolfson, Laséen, Lindé, and Villani (2007), Lubik and Schorfheide (2007), Kano
(2009), Justiniano and Preston (2010), Rabanal and Tuesta (2010), Guerrén-Quintana (2010b),
Quint and Rabanal (2014), Fueki, Fukunaga, Ichiue, and Shirota (2016), Kulish and Rees (2017),
Barthélemy and Cléaud (2018), Junicke (2019), Garcia-Cicco and Garcia-Schmidt (2020), and
Zarazua Juarez (2023). Dey (2017), Alessandria and Choi (2021), and Benigno, Foerster, Otrok,
and Rebucci (2025) do the same for international RBC models. More evidence of the wide ap-
plicability of the MH-MCMC algorithm to estimating disparate DSGE models are, among others,
Sala, S6derstrom, and Trigari (2008), Leeper, Plante, and Traum (2010), Aruoba and Schorfheide
(2011), Brzoza-Brzezina and Kolasa (2013), Brzoza-Brzezina, Kolasa, and Makarski (2013), Koll-
mann, Ratto, Roeger, and in’t Veld (2013), Villa (2016), Galvao (2017), Ormefo and Molnar
(2017), Hirose and Kurozumi (2017), Molinari and Turino (2018), Becard and Gauthier (2022),
and Ferroni, Fisher, and Melosi (2024). These papers estimate DSGE models that include labor
market search, fiscal and monetary policy interactions, compare the impact on real allocations
of the sticky price monetary transmission mechanism with monetary search frictions, conduct
an evaluation on U.S. data of the financial frictions of the Bernanke, Gertler, and Gilchrist (1999)
financial accelerator and the Kiyotaki and Moore (1997) collateral constraint using Smets and
Wouter (2003, 2007) as the baseline, assess Euro zone fiscal policy during the 2007-2009 finan-
cial crisis, repeats the exercise of evaluating competing theories of financial frictions but the
comparison is on Euro zone and U.S. data, asks if estimating on real-time data instead of the
current release affects estimates of a DSGE model and yields better forecasts, whether including
professional forecasts improves model fit under rational or non-rational expectations, gauges
the impact of forward guidance instructions from the FOMC through the lens the Treasury term
structure, ask if shocks to advertising alters the allocation of real resources and persistence
in macro aggregates, study the role collateral on bank loans has in propagating shocks at the
business cycle frequencies, and adds information to a DSGE model about its shocks to account
for aggregate fluctuations during the pandemic of 2020.

There are other ways to estimate DSGE models using Bayesian methods. Schorfheide
(2000) uses the MH-MCMC simulator along with a structural BVAR, which serves as a “refer-
ence” model. The fit of the DSGE and reference models to the data is judged within a Bayesian
decision problem using a few selected moments under symmetric and asymmetric loss func-
tions. The moments are structural IRFs that have economic meaning within the context of the
DSGE models. Misspecification is avoided in this non-LP Bayesian evaluation process because,
as Schorfheide argues, the moments on which the DSGE models are estimated are identified by
the structural BVAR. He also contends that his approach yields valid DSGE model evaluation
when no DSGE model fits the model well, which is not true of the Bayes factor; also see Geweke
(2010). This argument is similar to arguments DGR make for parsimony. They advise against
using all the moments inherent in the likelihood to bind the DSGE model to the data for II
estimationEG] Instead, the analyst should choose moments most economically meaningful for
the DSGE model, which is a frequentist analogue to the Bayesian framework of Schorfheide.

16Kim (2002), Chernozhukov and Hong (2003), Sims (2007), Gallant, Giacomini, and Ragusa (2017), and Kano
(2025) have Bayesian treatments of limited information estimators.



Other useful studies of the problem of misspecification are Guerrén-Quintana (2010a),
Inoue, Kuo, and Rossi (2020), Canova, Ferroni, and Matthes (2020), and Canova and Matthes
(2021). Guerrén-Quintana confronts a NKDSGE model with different information sets of ob-
served data to ask which is most informative for estimating DSGE model parameters. Fixing
the NKDSGE models but changing the observed data rules out using the posterior odds ra-
tio to conduct model evaluation. Instead, Guerrén-Quintana engages IRFs and out-of-sample
forecasts to choose among the competing data sets. These evaluation tools reveal that the
posterior of a DSGE model is affected by the composition and size of the information sets used
in Bayesian MH-MCMC estimation. This is a signal of misspecification. Another way to assess
misspecification in DSGE models uses the diagnostic tools developed by Canova, Ferroni, and
Matthes (2020). They want to understand the effects of using data generated by an economy
that has drifting structural parameters, whether exogenous or not, on estimates of fixed co-
efficient DSGE models. Not surprisingly, a fixed coefficient DGSE model solved using linear
methods almost never recovers any aspect of an economy in which TVPs contribute to generat-
ing the data. Applying higher-order solutions only helps when the shocks to the TVPs are seen
as the coefficients of decision rules of fixed coefficient DSGE models. An implication of these
results is the reduced-forms of TVP-DSGE models are not good approximations of TVP-VARs.
Inoue, Kuo, and Rossi (2020) argue that misspecification can be detected by adding distur-
bances to the parts of the reference DSGE model that are most suspect. This appends noise
to the least trustworthy parts of the DSGE model. If correct, the likelihood of the DSGE model
should be dominated by the likelihood of the reference model. A potential Bayesian solution
to misspecification of DSGE models is in Canova and Matthes (2021). They argue that forming
a composite likelihood of two or more DSGE models guards against misspecification. The com-
posite likelihood places cross-model restrictions on the parameters shared by the models. The
result is estimates of these parameters that are in accord across the models.

Whether identification of DSGE models is a problem for Bayesians is not clear. For many
Bayesians all that is needed for identification is a well posed priorFZ] Poirier (1998) points out
that this position has potential costs in that prior and posterior distributions can be equivalent
if the data are uninformative. This problem differs from identification problems frequentists
face. Identification of a model is a problem that arises in population for a frequentist, while
for a Bayesian the source of the equivalence is data interacting with the prior. Nonetheless,
Poirier provides analysis suggesting that © be split into those parameters for which the data
are informative, ®1, given the priors from those, ®», for which this is not possible.

Identification of DSGE models remains an active area of research in econometrics. Sev-
eral seminal papers are briefly mentioned here. One approach is Miiller (2012). He constructs
statistics that unwind the relative contributions of the prior and the likelihood to the posterior.
These statistics measure the “identification strength” of DSGE model parameters with respect
to a specific prior. Koop, Pesaran, and Smith (2013) describe two methods that compute condi-
tional and marginal posterior distributions to check the identification of DSGE models. Another
useful approach is found in Guerréon-Quintana, Inoue, and Kilian (2013). When DSGE models
are weakly identified (i.e., Bayesian posterior distributions cannot be considered frequentist
confidence sets), they advocate inverting the Bayes factor to obtain confidence intervals with
good small sample properties. We return to these issues at the end of this chapter.

17This is a proper prior that is independent of the data and has a density that integrates to one.



2.3 Nonlinear Solution Methods and DSGE Models

Macroeconomists have good reasons to invest in nonlinear solution methods. Part of the mo-
tivation is DSGE models are being endowed with preferences, technologies, market structures,
and structural shocks that induce nonlinearities, especially in conditional expectations of op-
timality conditions, that may not be glossed over in linear approximate solutions. This section
gives a brief outline of some of the nonlinear solution methods available at the moment.

The quest for serviceable nonlinear solution methods is traced back to the RBC litera-
ture. Taylor and Uhlig (1990) review eight solution methods that were applied to a one-sector
stochastic growth modelEg] Although some of the solution methods were nonlinear, Taylor
and Uhlig concluded linear approximate methods were more than adequate. For example, lin-
ear approximate methods were found to yield decision rules for the RBC model that were close
to decision rules produced by the nonlinear solution techniques. This suggests the primitives
of the canonical RBC model fail to induce sufficient nonlinearities to render linear approximate
solution methods inappropriate. Fernandez-Villaverde et al. (2016) and Aruoba, Bocola, and
Schorfheide (2017) make a similar case for many NKDSGE models['9 Nonetheless, nonlinear
solution methods remain of interest to researchers studying DSGE models{Z_U]

Macroeconomists often reach first for local or perturbation methods to solve DSGE mod-
els. These methods compute series expansions of the deviations of the state and control vari-
ables around the steady state of a DSGE model. Its optimality and equilibrium conditions
restrict the deviations. Perturbations are deviations that live in a given neighborhood (i.e.,
around the stead state). Since this defines perturbations as local solutions, an nth-order Taylor
expansion is a leading example. A linear approximate solution limits the Taylor expansion to
first derivatives of the state and control variable. This creates a system of linear stochastic
difference equations that can be solved using spectral methodsE-] We discuss this approach to
solving a NKDSGE model in sections 4.2 and 4.3.

Nonlinear perturbation methods are proposed by, among others, Kim, Kim, Schaumburg,
and Sims (2008), Fernandez-Villaverde et al. (2016), Levintal (2017), and Andreasen, Fernandez-
Villaverde, and Rubio-Ramirez (2018)17_7] Kim et al. and Fernandez-Villaverde et al. stop at
second derivatives and Andreasen et al. at third derivavtives, but Levintal argues fifth-order
Taylor expansions are needed to account for the nonlinearities tied, say, to stochastic volatility
(SV) driving DSGE model shocks. He develops methods to keep the costs of computing higher-
order own- and cross-derivatives to a minimum. Fernandez-Villaverde and Levintal (2018) apply
these nonlinear solutions to NKDSGE models with shocks subject to rare disasters.

Perturbation methods offer greater computational efficiency than using global methods
to solve DSGE models, which explains the popularity of local solution methods. However, the
low cost of local methods carries the potential risk of inaccurate solutions. Dorofeenko, Lee,

18The RBC model had power utility, one factor input, which was capital, and a AR (1) productivity shock.

19A NKDSGE model can be seen as a RBC model around which one or more nominal rigidities are wrapped.

20Coleman, Lyon, Miliar, and Maliar (2020) report an evaluation comparing the abilities of MatLab®, Python™,
and JuTia to solve a NKDSGE model using linear and nonlinear solution methods.

21'Two other linear solution methods are the linear-quadratic (LQ) approximation and the method of undetermined
coefficients (MUC). The LQ approximation is reviewed in the chapter by C. Cantore et al. in this Handbook.
Christiano (1991) is the source of the MUC. It is given a thorough analysis by Zadrozny (1998).

22Foerster, Rubio-Ramirez, Waggoner, and Zha (2016) solve a DSGE model with exogenous regime switching using
perturbation methods. This approach is extended to endogenous regime switching by Benigno et al. (2025).



and Salyer (2010), Kollmann, Maliar, Malin, and Pilcher (2011), Maliar, Maliar, and Villemot
(2013), and Fernandez-Villaverde et al. (2016) compare local and global methods. Their evi-
dence indicates that global solutions of DSGE models offer more accuracy than local methods
do, especially compared with linear approximate decision rules.

Global solutions methods operate on the entire domain of the state of a DSGE model
rather than a neighborhood as local methods do. This helps to explain the recent evidence that
global methods deliver lower error rates. The Stone-Weierstrass theorem also supports the use
of global solution methods. In brief, the theorem states that functions defined on a closed
bounded interval are uniformly approximated by polynomials. This holds for all functions
living on the closed bounded interval; see Goldberg (1976). Hence, inaccuracies in the solution
of a DSGE model are made negligible by expanding the approximating polynomials.

Using polynomials to solve DSGE models is in the class of global methods called pro-
jections. However, the choice of the projection function is not trivial. Projection methods can
suffer from multicollinearity in the same way it affects regressions with correlated regressors{z_g]
Once the type of projection has been chosen, the next step sets its degree of approximation.
Substitute the results for the state variables in the optimality conditions of a DSGE model and
construct residuals by converting the optimality conditions into a system of zero equationsFE]
This gives a system of nonlinear equations that either are solved for the coefficients of the
approximating polynomials or by minimizing the residuals under a loss function@

A simulation projections method is outlined by den Haan and Marcet (1990). This global
solution method solves a DSGE model by parameterizing the conditional expectations of its
optimality conditions with polynomials that are functions of the state variables. The parame-
terization of expectations approach (PEA) starts by creating JJD (multivariate) standard normal
random numbers. The random numbers are generated only once and serve as the innovations
of the DSGE model shocks. Given the shocks and an initial guess of the parameters of the PEA-
polynomials, build a synthetic sample of the state and control variables using the polynomials
and equilibrium conditions. Run a nonlinear regression of the combination of synthetic state
and control variables that are inside the conditional expectations of the optimality conditions
on the PEA-polynomials. The coefficient estimates of the PEA-polynomials are used to produce
a new synthetic sample. Rerun the nonlinear regressions and continue the process until the
coefficients of the PEA-polynomials satisfy a convergence criterion.

The PEA also suffers from multicollinearity. Faraglia, Marcet, Oikonomou, and Scott
(2014, 2019) address the issue by separating the state variables into two sets. One set contains
the states with the greatest explanatory power in the nonlinear regressions. The remaining
states are added as linear combinations into the PEA-polynomials, where the linear combina-
tions are constructed to be orthogonal to the first set of states. This insures against multi-
collinearity. Another approach to avoiding multicollinearity is developed by Judd, Maliar, and
Maliar (2011). They adapt techniques used to handle ill-conditioned matrices to the problem
of running regressions on multicollinear regressors@

23Fernandez-Villaverde et al. (2016) provide an exhaustive review of these issues and discuss the trade offs across
the families of projection functions used to solve DSGE models.

24The residual functions require computing the conditional expectations that are often part of the optimality
conditions. Judd, Maliar, Maliar, and Tsener (2017) have a convenient set of tools to accomplish this task.

25Maliar et al. (2013) propose a hybrid scheme to solve DSGE models that mixes projections and local methods.
The goal is a nonlinear solution method that has the accuracy of projections and efficiency of perturbations.

26Miliar and Miliar (2015) combine simulations with projections to refine the accuracy of PEA-polynomial methods.



2.4 SMC Methods and Bayesian Estimation of Nonlinear DSGE Models

Solving a DSGE model with nonlinear methods rules out estimating it with the predictive likeli-
hood generated by the Kalman filter. However, its nonlinear versions, which are the extended
and unscented Kalman filters, can be used. An issue is these filters can produce approxima-
tions of the nonlinearities of a DSGE model that, as Creal (2012) points out, result in inaccurate
predictions of the states that pile up and persist. Macroeconomists have sought to avoid these
problems by borrowing tools from the SMC literature to estimate DSGE models solved using
nonlinear methods. Since the SMC literature is vast, this section only skims itE]

Particle filters are the foundational class of SMC methods. Gordon, Salmond, and Smith
(1993) build the first particle filter (PF) by combining sequential IS (SIS) with a resampling step.
Their PF is a bootstrap because it uses the system of state equations, say, from the nonlinear
solution of a DGSE model, as the proposal distribution of the IS step. This is a straightforward
procedure for simulating 7 synthetic samples of the latent states of the DSGE model. The
elements of the cross-section of the states at date t are the 7 particles of the PF.

A problem is created by running the SIS on its own. Without resampling, fewer and fewer
particles retain probability mass as the SIS moves from date 1 to date T. Run long enough, one
particle absorbs all the mass with probability approaching one and is solely responsible for
estimating the states. The remaining 7—1 particles become degenerate carrying no probability
mass or weight for computing the states. As a result, the variance of the weights increase
without bound as the SIS algorithm moves through the sample. At each date t, a resampling
step replicates the particles carrying the most weight and gives less weight to the particles
having the least probability mass, where the weights are in essence the contributions of each
particle to the likelihood of the DSGE model 8| Posterior moments of the states are constructed
using the posterior distributions of the resampled 7 particles from date 1 to date T.

Much effort has been put devising alternative SMC algorithms to the bootstrap PF. A
motivation is it ignores information in the sample data, V.1, because the proposal distribution
is equated to the system of nonlinear state equations. Incorporating this information into the
weights employed in the resampling step improves the efficiency of a PF. This can be useful
when V.7 is believed to contain volatile measurement error. However, Fernandez-Villaverde et
al. (2016) discuss that exploiting the information in V.t is difficult when estimating the states
of a DSGE model solved with a nonlinear method[*]

Pitt and Shephard (1999, 2001) construct the auxiliary particle filter (APF) to include infor-
mation in V; in the resampling step. The APF is easy to implement for linearized DGSE models
because the resampling weights are functions of the predictive likelihoods of the Kalman filter
run particle by particle. It is also possible to estimate a subset of the states of a linearized DSGE
model with shocks subject to SV using the APFF_UI Although the SV creates nonlinear shock dy-
namics in the otherwise linearized DSGE model, knowing the realizations of the SV renders the

Maliar, Maliar, and Winant (2021) and Valaitis and Villa (2024) adapt the nonlinear regressions of the PEA to
neural networks to solve DSGE models with high-dimensional state vectors.
27Creal (2012) is a survey of SMC methods that is a worthwhile introduction. A more recent survey is Wills and
Schon (2023). Sarkka and Svensson (2023) is a graduate textbook on filtering from a Bayesian perspective.
28Hol, Schon, and Gustafsson (2006) and Li, Bolic, and Djuric (2015) review alternative resampling procedures.
29There are nonlinear filters for DSGE models; see Andreasen (2013) and Kollman (2015).
30Fernandez-Villaverde, Guerrén-Quintana, and Rubio-Ramirez (2010) and Justinino and Primiceri (2008) estimate
linearized NKDSGE models given SV in the shocks by embedding a bootstrap PF in a MH-MCMC sampler.
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DSGE model conditionally linearEr] This approach is associated with the mixture Kalman filters
of Chen and Liu (2000) and is a special case of a Rao-Blackwellized (RB)-PFPE] Their proposal
employs the Kalman filter to generate particle streams of the non-SV states of the linearized
DSGE conditional on the SVs of the shocks. Analytic integration (i.e., averaging) of the particle
streams produces posterior draws of the non-SV states. Instructions to combine a RB-PF with
an APF are found in Creal (2012). He notes that a RB-APF is more efficient than either is alone
or the bootstrap PF and should need far less particles as a result.

The bootstrap PF only yields estimates of the state variables of a DSGE model. This is true
of all SMC methods. This gap in the literature is filled in by Andrieu, Doucet, and Holenstein
(2010). They develop particle MCMC (PMCMC) algorithms grounded in the insight that Markov
chains are not sensitive to the approximation error that results from computing the (marginal)
likelihood of the DSGE model, given the likelihood estimator is unbiased. The PMCMC sampler
starts by running a PF to generate posterior draws of the states of the DSGE model and its
predictive likelihood, given a draw of its parameters. Conditional on these posterior draws, the
MCMC step selects draws of the DSGE model parameterFr_g] The results in Andrieu et al. justify
Fernandez-Villaverde and Rubio-Ramirez (2005, 2007) and Fernandez-Villaverde and Guerroén-
Quintana (2021) wrapping a MH-MCMC sampler around a bootstrap PF to obtain the posterior
distributions of the parameters and states of a NKDSGE model solved using a second-order
Taylor expansion

Implementing a PMCMC sampler always faces the question of selecting the number of
particles on which to run the algorithm. Answers are found in Pitt, dos Santos Silva, Giordani,
and Kohn (2012) and Doucet, Pitt, Deligiannidis, and Kohn (2015). The former group of authors
link the choice to finding the theoretical minimum of the error variance of the estimator of
the log likelihood. However, Pitt et al. assume the proposal and posterior distributions of the
parameters are precise duplicates. Doucet et al. void this assumption to construct a theoretical
stopping rule that swaps the error variance of the log likelihood for the computational costs
of adding another particle to the PMCMC algorithm.

An alternative to the PMCMC sampler is Chopin, Jacob, and Papaspiliopoulos (2013).
They call their algorithm the SMC?. It expands on the PMCMC sampler in two ways. First, the
SMC? sampler draws particle streams of the parameters and the states of a DSGE model. This
compares with the PMCMC that only draw particle streams of the states. Second, draws from
the posterior distribution of the parameters occur before the states are sampled@ Chopin et
al. argue an advantage of the SMC? algorithm is its speed in sampling the parts of the parameter
and state space that represent the highest points of the likelihood of a DSGE modelF__g]

31'The SVs are generated by simulation. A common assumption is the SVs evolve as geometric random walks.

32Rao-Blackwellization substitutes an estimator with its conditional expectation. This reduces the variance of
the estimator.

33 A PMCMC sampler limits the choice of resampling scheme; see Creal (2012) and Herbst and Schorfheide (2015).

343uT4ia code to implement PMCMC estimation of DSGE models solved using nonlinear perturbation methods is
provided by Salazar-Perez and Seoane (2025).

35Herbst and Schorfheide (2015) lay out the workings of a SMC? algorithm and use it to estimate a NKDSGE model.

36particle learning is another SMC algorithm that estimates parameters. Its origins are traced to Storvik (2002),
Fernhead (2002), and Carvalho, Johannes, Lopes, and Polson (2010). Lopes and Tsay (2011) introduce particle
learning to the econometrics literature. Ascari, Bonomolo, and Lopes (2019) estimate a linear NK model using
particle learning. A disadvantage of particle learning is it requires the parameters of a DSGE model to be
amenable to drawing from posterior distributions using only a limited number of sufficient statistics.
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3 A Canonical New Keynesian DSGE Model

This section builds a canonical NKDSGE model inspired by the recent literature. The specifica-
tion of this NKDSGE model is similar to those estimated by Smets and Wouters (2007) and Del
Negro and Schorfheide (2008), who in turn build on Smets and Wouters (2003) and Christiano
et al. (2005){3_7] The main features of the NKDSGE model are (a) the economy grows along
a stochastic path, (b) prices and wages are assumed to be sticky a la Calvo, (c) preferences
display internal habit formation in consumption, (d) investment is costly, and (e) there are
five exogenous shocks. There are shocks to the monopoly power of the final good firm, the
disutility of work, government spending and a shock to the growth rate of labor neutral total
factor productivity (TFP). All of these shocks are stationary AR(1)s. The fifth is a monetary
policy shock embedded in a Taylor rule.

3.1 Firms

There is a continuum of monopolistically competitive firms indexed by j € [0, 1]. A firm
produces an intermediate good using capital services, K; ¢, and labor services, L; ¢, which are
rented in perfectly competitive markets. The production function of firm j is given by

3) Vie = K% (zilye) " = kze, «e (0,1), k>0,

where Z; is labor neutral TFP common to all firms. The term k Z; is removed from the output of
firm j to guarantee that steady state profits are zero as well as to generate the period-by-period
fixed cost needed to support monopolistic competition among intermediate goods firms. We
assume that the growth rate of the TFP shock, z; = In (Z;/Z;_1), is an AR(1) process

zt = (1= pz)y +pzzi-1 + 02621

This AR(1) is stationary around the deterministic TFP growth rate y (> 0) because | p,| < 1 and
the innovation of z; is time invariant and homoskedastic, €, ~ N(0, 1) with o, > OF_g]

Intermediate goods are aggregated into the final good by a competitive firm. The final
goods firm has access to the aggregation technology

1 A 1+2\f,t
Y, = [J’ Yl/(1+ f,t)dj] ,

o It
where A ; is the stochastic degree of monopoly power exercised by intermediate goods firms.
Hence, the price elasticity, [1 + Afg;]/Af;, is time-varying. We assume the monopoly power
evolves according to the AR(1)

InAg: = (1 - p)\f>h’17\f +Pa; InAg; 1+ OA; €A

where |p;\f| <1,Ap, 0a, >0, and € ~ N(0, 1).

37See chapters in this handbook by C. Cantore et al. for a plethora of DSGE model specifications.
38The restriction y > 0 is also needed to have a well-defined steady state around which the NKDSGE model can
be linearized and solved.
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3.2 Staggered Price Setting

Firm j chooses its price P;; to maximize the present value of profits subject to the restriction
that changes in their prices are time dependent. At each date £, a fraction of the unit mass of
intermediate goods firms update their price to its optimal level. The remaining intermediate
goods firms update their prices by a fraction of lagged aggregate inflation. We posit that firms
revise their prices at the exogenous probability 1-C, every date t, while a firm not re-optimizing
its price updates according to the rule: P;; = (n*)l_l" (Trt_l)l"Pj,t_l, where 1* is steady state
inflation, the growth rate of the aggregate price level, t; = P;/P;_; — 1, defines inflation, and
1p € [0, 1]. Non-optimizing intermediate goods firms index (the log) of their prices to inflation
to a weighted average of steady state inflation and lagged inflation, according to the weight 1,
in periods when re-optimization is not allowed. When facing no (complete) indexation, these
firms sets Pj; = m*Pj ;1 (m-1Pjt-1), given 1, = 0 (1). Either way, the aggregate price level is
1/1-2

P, = [(1 - 1p)Pé;Af’t + lp[(rr*)lfl”(Trt,l)l”Pt,l]lfAf’f] / f't, where Pc; is the optimal price
to which firms update. This is Calvo staggered pricing with an incomplete indexation ruleP;g]
Its impact is to smooth inflation in response to the shocks in the NKDSGE model.

3.3 Households

The economy is populated by a continuum of households indexed by address i € [0, 1]. House-
hold i derives utility over “net” consumption and the disutility of workPE] This relationship is
summarized by the period utility function

1+v;
4) ’U(Ci,t, Cit-1, Li,t;<l>t) = ln<Ci,t - hCi,tq) - d)tﬁtvl’
where C;; and N;; are consumption and labor supply of household i, v; is the inverse of the
Frisch labor supply elasticity, and ¢ is an exogenous and stochastic preference shifter. Period
utility receives the flow of C;; net of a fraction h of C;;_;, which is the habit in consumption
displayed by preferences. Consumption habit is internal to households and governed by the
preference parameter h € (0, 1). Kano and Nason show households respond to the cost of
internal consumption habit by substituting away from current consumption. By postponing
current consumption, households move the peak of their consumption in response to a shock
into the business cycle horizons. The disutility of labor is altered date by date by the preference
shock. It follows the AR(1) process

Ing; = (1 - p¢) Ing +ppIni1 + ogpeg,

with |ps| < 1,04 >0, and £¢, ~ N(0, 1).

39Yun (1996) is responsible for adapting Calvo sticky pricing to a DSGE model environment. His insight was to
create an supply price aggregator, P4, that is substituted for Pc; and to understand that in equilibrium P; =
P,4,;. This eliminates the unobserved Pc,; from the state vector of the NKDSGE model leaving only P; and P;_;.

40 Agents in the economy are given access to complete insurance markets. This assumption is needed to eliminate
wealth differentials arising from wage heterogeneity.
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Households are infinitely-lived. For household i, this means that it maximizes the ex-
pected present discounted value of period utility

) E) > Bt'U<Ci,t, Cit-1, Nit; ¢t), B e€(0,1),
t=0
subject to the budget constraint

(6) PiCip+Pi [Iit + a(uif)Kit] +Birs1 = REuiKie+WitNip +Re_1Big +Ajp + 1 + Tig,

and the law of motion of capital

@ Kivor = (1— 6)Keg + Lig [1—r( fu ﬂ 5<(0,1),

i,t—-1

over uncertain streams of consumption, labor supply, capital intensity, u;, investment, I; ,
capital, K;;+1, and 1-period government bonds, B; .1, where E% is the expectation operator
conditional on the information set available to household i at time t, a(-) is the cost (in units
of the consumption good) household i generates when K; ;.1 is worked at intensity u; ¢, Rf is
the nominal rental rate of capital, W;; is the nominal wage household i charges for hiring N; ¢,
R is the gross nominal interest rate paid on B;, A;; captures net payments from complete
markets, I corresponds to profits from intermediate goods producers, T;; corresponds to
lump-sum transfers from the government to household i, and I'(-) is a function reflecting
costs associated with adjusting the flow of I;; into K; ;1. The function I'(-) is assumed to
be increasing and convex satisfying I'(y*) =I"(y*) = 0 and I’ (y*) > 0, where y* = exp(y).
Also note that K; = [K;di is the aggregate stock of capital. Given u;; is a choice variable for
household i, the nominal return on capital is Rf u; (K; gross of the real cost a(u; ). The cost
function a(-) satisfies the restrictions a(1) = 0, a’(1) > 0,and a’’ (1) > 0.

3.4 Staggered Nominal Wage Setting

Erceg et al. (2000) introduce Calvo staggered nominal wage setting into an NKDSGE model. We
adopt their approach. Assume that household i is a monopolistic supplier of a differentiated
labor service, L; ;. Households sell these labor services to a firm that aggregates labor and sells
it to final firms. This firm aggregates household labor services using the technology

1+Aw
L = |:J Ll/ 1+?\W ] . Ay e (O, oo),

where the nominal wage elasticity is (1 + Aw)/Aw.

The role of this firm is to sell aggregate labor services, L;, to intermediate goods firms in
a perfectly competitive market at the aggregate nominal wage, W;. The relationship between
L¢, Lit, Wi, and Wy is given by

Li; = [Wi,t]_(“)‘w)/?\w

L.
Wy t
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We assume, as Erceg et al. (2000) did in creating staggered nominal wage setting, that household
i is allowed to reset its nominal wage in a similar manner to the way intermediate goods firms
are update the prices of their output. Calvo staggered nominal wage setting permits house-
holds to re-optimize their labor market decisions at the fixed exogenous probability 1 — Cy
during each date t. Households not allowed to reset their nominal wages optimally employ the

rule W;; = (n*y*)l w (1Tt_1 exp(zt_1)>lWWi,t,1 to update, where 1y € [0, 1]. This rule in-

dexes (the log) of those nominal wages not being set optimally to a weighted average of steady

state inflation grossed up by the deterministic growth rate and lagged inflation grossed up

by lagged TFP growth, where 1y determines the weights. The nominal wage aggregator is W;
_ 1-ww W 1-Aw 1=

= [(1 — EW)Wé,tAW + Ew [(Tr*y*) (Tl't_l exp(zt_l)) Wi,t,l] ] , where a house-

hold optimally updates to W¢  when allowed. Similar to Calvo staggered pricing, the responses
of nominal wage growth to shocks in the NKDSGE model are smoothed by staggered nominal
wage setting.

3.5 The Government

As often in the new Keynesian literature, we assume a cashless economy; see Woodford (2003).
The monetary authority sets the short-term interest rate according to the Taylor rule used in
Del Negro et al. (2007) and Del Negro and Schorfheide (2008)

w2 1PR
Ry  (Rea\PR|(m\" (Y
o ()G ()] et

where R* (> 0) corresponds to the steady state gross nominal interest rate, Y, denotes the
target level of output, €, is a random shock to the systematic component of monetary policy,
which is distributed N(0, 1), and o (> 0) is the size of the monetary shock. The Taylor rule
has the central bank systematically smoothing its policy rate by pr as well as responding to
gaps in 11y from its steady state 1v*, and of Y; from its target Y.

Finally, we assume that government spending is a time-varying fraction of output, G; =
(1 —1/g¢)Y:. The fraction is driven by the shock g;, which follows the AR(1)

Ing: = (1 — pg) Ing* + pglngi—1 + o4€g4,t,

where |pg| <1, g% o04>0, and €4 ~ N(0, 1). Although taxes and 1-period bonds are
notionally used to finance Gy, the government inhabits a Ricardian world. Along the equilibrium
path 1-period bonds are in zero net supply, B; = 0, at all dates t, which forces aggregate lump
sum taxes, T, to equal G; setting the primary surplus, T; — G¢, to zero.
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3.6 Equilibrium
The NKDSGE model represents a decentralized market economy. Equilibrium requires (all but

1
one of) the goods, labor, and bond markets to clear These markets clear if K; = J Kjtdj =
0

1 1 1
K¢, given O < 1, Ly = J Litdj= J Ny dl, given 0 < Wy, and By = J Bydl =0, given 0 < Py,
0 0 0

R;. The market clearing conditions imply the aggregate resource constraint of the economy is

Api—D/As )\f,t/(?\f,tfl)
Y = Ct + It + a(u¢) K¢, where aggregate consumption is C; = [J Y O ”dj] .
o s

4 Preparing the NKDSGE Model for Estimation

The scale of the NKDSGE model suggests that it does not admit a closed-form solution. Hence,
we rely on linearization to obtain an approximate solution. The procedure consists of comput-
ing a first-order approximation of the NKDSGE model around its non-stochastic steady state.

4.1 Stochastic Detrending

The productivity shock Z; is non-stationary (i.e., has a unit root). Since its growth rate, z;, is
stationary, the NKDSGE model grows along a stochastic path. We induce stationarity in the
NKDSGE model by dividing the levels of trending real variables Y;, C;, I;, and K;+1 by Z;. This
is the detrending step, where for example }A’t = Y;/Z;. The nominal wage W; also needs to be
detrended after dividing it by the price level to obtain the detrended real wage, W = W; [ (Pt Zy).
The nominal rental rate of capital is converted into the real rate by dividing by P, rtk = Rl‘ /P¢.

4.2 Linearization

We engage a first-order Taylor or linear approximation to solve the NKDSGE model. The linear
approximation is applied to the levels of the variables found in the optimality and equilibrium
conditions of the NKDSGE modelF_Z] The first step is to detrend the optimality and equilibrium
conditions. Aggregating the production function yields Y; = Kf¥ (ZtLt)l_o‘ — KZ¢. Itis

Yie = exp(—zt)I?f‘L};"‘ - K,

which after detrending. Denote k j,t as the deviation of capital services from its steady state,

I?t = K; — K*, where K* denotes steady state capital services. Taking a linear approximation
of the previous expression gives

,)N’t = O(lzt + (1—(X)Tt — Zt.

417t is standard to impose a symmetric equilibrium on the NKDSGE model, which implies Vit =Yseand Py = Pj;
= P, for all s, j firms. The latter equality implies P; = P, ;. Similarly, W¢: = Wy, = W, for all £, j households.

42First-order approximations of the optimality and equilibrium conditions of a DSGE model in log levels is some-
times preferred to linearization in levels.
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The approach is easily extended to the remaining equilibrium and optimality conditions. Del
Negro and Schorfheide (2008) present the complete set of linearized optimality and equilibrium
conditions of the NKDSGE model.

4.3 Solution

Once the model has been detrended and linearized, the collection of its equilibrium conditions
can be cast as an expectational stochastic difference equation

(9) Ee{F(Xs, 41, Xs,t, Xe,ee1, Xeye)f = 0,

where Xc ; and Xc,; are vectors of predetermined and non-predetermined variables, respec-
tively. The predetermined variables are the states of the NKDSGE model and non-predetermined
variables,are its controls. These state and control vectors include

~ ~ ~ N - o~ ’
Xs,t = [yt—l Ct-1 it—1 ke W1 Rev 11 Ze ge P ?\f,t],

and

Xc,t = [JN’t & i It K W ﬁt] ,
whose elements are deviations from their steady state values.

Obtaining decision rules for the linearized NKDSGE model is tantamount to solving the
system of linear expectational difference equations @I) We engage a suite of programs de-
veloped by Schmitt-Grohé and Uribe (2004) to solve for the linear approximate equilibrium
decision rules of the state variables of the NKDSGE model[¥3] The solution of the NKDSGE
model takes the form

Xs,t AXs,t-1 + P&,

(10)
Xe,t = ¥YXs,t,

where the first system of equations is the linear approximate equilibrium decision rules of the
state variables, the second set maps from the state variables to the control variables, A, ®, and
¥ are matrices that are nonlinear functions of the structural parameters of the NKDSGE model,

4
and &; is the vector of structural innovations, [ez_t Ert €Ept Ert eg,t] .

43The programs are available at https://www.columbia.edu/~mu2166/2nd_order.htm. An alternative is
Dynare, which has code to solve DSGE models. This Handbook includes a review of Dynare by J. Madeira.
Sims (2002) develops another widely used method, gensys, that solves a linearized DSGE model in which its
two-sided system of stochastic difference equations has a singular leading matrix. Linearized NKDSGE mod-
els almost always fit this description. Similar linear solution methods are provided by Zadrozny (1998), Klein
(2000), and Lee and Park (2021).
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5 Bayesian Estimation of the NKDSGE Model

This section presents the tools needed to generate Bayesian estimates of the linear approximate
NKDSGE model of the previous section. Bayesian estimation employs the Kalman filter to
construct the likelihood of the NKDSGE model. Next, priors for the NKDSGE model are reported
because the likelihood multiplied by the prior is proportional to the posterior according to
expression (I). We end this section by reviewing several details of the MH-MCMC simulator.

5.1 The Kalman Filter and the Likelihood

A key step in Bayesian MH-MCMC estimation of a linearized NKDSGE model is evaluation of its
likelihood. A convenient tool to evaluate the likelihood of linear models is the Kalman filter 24
The Kalman filter generates projections or forecasts of the state of the linear approximate
solution of the NKDSGE model given an information set of observed macro time series.
Forecasts of these observables are also produced by the Kalman filter. The Kalman filter is
useful for evaluating the likelihood of a linearized NKDSGE model because the forecasts are
optimal within the class of all linear models. When shock innovations and the initial state of the
NKDSGE model are assumed to be Gaussian (i.e., normally distributed), the Kalman filter renders
forecasts that are optimal against all data-generating processes of the states and observables.
Another implication is that at date t the observables are normally distributed with mean and
variance that are functions of forecasts of the state of the linearized NKDSGE model and lagged
observables. Thus, the Kalman filter provides the building blocks of the likelihood of a linear
approximate NKDSGE model.

We describe the link between the solution of the linearized NKDSGE model with the
Kalman filter[*>| Define the expanded vector of states as S; = [.’)C'C ¢ Xs, t] . Using this definition,
the state space representation of the NKDSGE model consists of the system of state equations

(1L1) St = FSi1 +Q&, & ~N(0,1n),

and the system of observation equations

(11.2) Ye = M+HS; + Eup Eur ~N(0,3y),

where, Y; corresponds to the vector of observables at time ¢, F and Q are functions of the ma-
trices A, ®, and ¥, the matrix H, which contains zeros and ones, relates the model’s definitions
with the data, M is a vector required to match the means of the observed data, and &, is a
vector of measurement errors. Assume the vector of observables and the vector of states have
dimensions m and n, respectively. Also, define S;|;_; as the conditional forecast or expectation

of S; given {Sl, .. .,St,l}, or Stjr-1 = E{St ‘Sl, .. .,St,l}. Its mean square error or covariance

matrix is Pt\t—l = E{(St — St_1> (St — St—l)/}-

44T, Prioietti and A. Luati survey ML estimation of time series models using the Kalman filter in this Handbook.
45 Anderson and Moore (2005) is a foundational source for linear filtering. Harvey (1989) remains the seminal
textbook for state space modeling and the Kalman filter and its underpinning of likelihood-based estimation.
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The likelihood of the linearized NKDSGE model is built up by generating forecasts from

the state space system (11.1) and (11.2) period-by-period

(12)

£(y1:T‘®) = ﬁ£<Yt‘yt—1,®> :

where £ (Yt ‘ V-1, @) is the likelihood conditional on the information available up to date t—1

and to be clear Y;_1 = {Yo, Yt_l}. The Kalman filter computes this likelihood using the
following steps:

1.

2.

Set Sjjo =0and Pyjo = FPgo F + ', Q' = QQ’ conditional on the initial conditionsﬁ]

Compute Yyjo = H'Sy0 = 0, Q0 = E([Yl - Y1|0] [Yl - Yl\O],) =H PjoH + X,.

The forecasts made in previous two steps produce the date 1 predictive likelihood:

vife) = @m o |agh e[~ (o) |

. Next, update the date 1 forecasts and the associated mean square error (MSE) matrix:

Sip = 31|0+P1|0HQI|})(Y1—Y1\0>,
Pinp = P1|0—P1|0HQI|%)H'P1|0.

Repeat the predictive step 2, computing the predictive step 3, and update step 4 to gen-
erate the Kalman filter predictions of S; and Y;:

Stit-1 = FSt-1Pyje-1,
Pit-1 = FPro1t1 F+ 9,

Ytit-1 = H Sti-1,

Q-1 = E[<Yt_Yt|t—1>(Yt_Yt\t—l),] = HPyi-1H+ 32y,

46Let 35 be the unconditional covariance matrix of S. The state equations (11.1) imply =5 = FEsF + Q. Its

1

solution is vec(Zs) = [I, —-F® F]  vec(Q’), where vec(ABC) = (C’ ® A) vec(B), which yields Py = vec(Zs).
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the predictive likelihood,

L (Yt ‘ Yi-1, ®> = (2m) ™ ‘Qt_ﬁq ‘0.5 exp [‘%(Yt - Yt\t—l),Qt_ﬁ,l <Yt - Yt|t—1)] ,

and update the state vector and its MSE matrix
_ -1
Stit = Stjt-1 + Prie-1HQpp <Yt _Yt|t71>,

Pit = Peje-1 — Ptlt—lHQa%_lH,Ptlt—l,
fort=2,...,T.

Computing the likelihoods £(Y1 ‘@) £(Y2 ‘ Vi, @), £(Y3 ‘ VYo, @), £(Y:r_1 ‘yT—z, @), and

£(YT ‘ Yr_1, @) at Steps 3 and 5 builds the likelihood function of the linearized NKDSGE
model.

5.2 Priors

Our priors are borrowed from Del Negro and Schorfheide (2008). They construct priors by
separating the NKDSGE model parameters into three sets. Their first set consists of those
parameters that define the steady state of the NKDSGE model; see table 2 of Del Negro and
Schorfheide (2008, p. 1201). The steady state, which as Hall (1996) shows ties the steady state
of the NKDSGE model to the unconditional first moments of V.7, has no effect on the mecha-
nism that endogenously propagates exogenous shocks. This mechanism relies on preferences,
technologies, and market structure. The parameters of these primitives of the NKDSGE model
are included in the second set of priors. Along with technology, preference, and market struc-
ture parameters, Del Negro and Schorfheide add parameters of the Taylor rule to this set;
see the agnostic sticky price and wage priors of tables 1 and 2 of Del Negro and Schorfheide
(2008, pp. 1200-1201). The third set of parameters consist of AR1 coefficients and standard
deviations of the exogenous shocks; see table 3 of Del Negro and Schorfheide (2008, p. 1201).
We divide the parameter vector © into two parts to start. The 25 x 1 column vector

0 = [Cp T 1y hvia” T Aw Cw tw R™ pr w1 W2 y Ay pz Py Pa, Pg Oz O Oa, Oy UR] ,

contains the parameters of economic interest, which are to be estimated, in the order in which
they appear in section 3. Under the Del Negro and Schorfheide (2008) prior rubric, the elements
of ©; are grouped into the steady state parameter vector

Orss = [T ¥ Af Aw R¥]
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the parameters tied to endogenous propagation in the NKDSGE model

O1,prop = [Cp p hvia” T" Cw w pr Y1 (IJZ] ,

and

01,exog = [Pz Py PA; Pg Oz O Op; Oy O'R] ,

contains the slope coefficients and standard deviations of the exogenous AR(1) shocks that are
the source of fluctuations in the NKDSGE model.

Table 1 lists priors for 01,ss, ©1,prop, and O1,exog. We draw priors for ®; from normal,
beta, gamma, and inverse gamma distributions; see Del Negro and Schorfheide (2008) for de-
tails. The priors are summarized by the distribution from which we draw, the parameters of
the distribution, and implied 95% probability intervals.

Our choices reflect, in part, a desire to elicit priors on ©®; that are easy to understand.
For example, m* is endowed with a normally distributed prior. Its mean is 4.3%, which is less
than twice its standard deviation giving a 95% probability interval running from nearly —1% to
more than 9%. Thus, the prior reveals the extent of the uncertainty that surrounds steady state
inflation.

The beta distribution is useful because it restricts priors on NKDSGE model parameters
to the open unit interval. This motivates drawing the sticky price and wage parameter, Cp, 1p,
Cw, and 1, the consumption habit parameters, h, and the AR1 parameters, pr, Pz, P¢, PA s
and pg, from the beta distribution. The means and standard deviations of the priors display
our uncertainty about these NKDSGE model parameters. For example, the prior on h indicates
less uncertainty about it than is placed on the priors for Cp, 15, Cw, and 1y (i.e., the ratio of the
mean to the standard deviation of the priors of these parameters is less than three, while the
same ratio for the prior of h is 14). This gives larger intervals on which to draw the sticky price
and wage parameters than on h. Also, the prior 95% probability interval of h is in the range
that Kano and Nason (2014) show to be relevant for consumption habit to generate business
cycle fluctuations in similar NKDSGE models.

The AR1 coefficients also rely on the beta distribution for priors. The prior on pg suggests
a 95% probability interval of draws that range from 0.22 to 0.73. At the upper end of this
range, the Taylor rule is smoothing the policy rate R;. This interval has the same length but is
shifted to the left for p., which endows the technology growth prior with less persistence. The
taste, monopoly power, and government spending shocks exhibit more persistence with AR1
coefficients priors lying between 0.5 and 0.95.

The gamma distribution is applied to NKDSGE model parameters that require priors to
rule out non-negative draws or impose a lower bound. The latter restriction describes the use of
the gamma distribution for priors on the goods and labor market monopoly power parameters,
Ay and Ay, the capital utilization parameter, a’’, and the Taylor rule parameter on output, >.
A lower bound is placed on the prior of the deterministic growth of technology, y, the mean
policy rate R*, the labor supply parameter, v;, the investment cost parameter, I''’, and the
Taylor rule parameter on inflation, ;1. The prior on ; is set to obey the Taylor principle that
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R; rises by more than the increase in 11 net of w*. This contrasts with the prior on ; that
suggests a smaller response of R; to the output gap, Y; — Y, but this response is non-zero.

The priors on the standard deviations of the exogenous shocks are drawn from inverse-
gamma distributions. This distribution has support on an open interval that excludes zero and
is unbounded. This allows o0, o 5 Og, and or to have priors with 95% probability intervals
with lower bounds near zero and large upper bounds. These priors show the uncertainty held
about these elements of the exogenous shock processes of the NKDSGE model. The same is
true for the prior on oy, but its scale parameter has a 95% probability interval that exhibits
more uncertainty as it is shifted to the right especially for the upper bound.

The remaining parameters are necessary to solve the linearized NKDSGE model but are
problematic for estimation. The fixed or calibrated parameters are collected into

0, = [(xég*£ﬂ K].
The calibration of ®, results in

4

[0 6 g% $a x| = [0.33 0.025 0.22 1.0 0.0]

Although these values are standard choices in the DSGE literature, some clarification is in
order. As in Del Negro and Schorfheide (2008), our parametrization imposes the constraint
that firms make zero profits in the steady state. We also assume that households work one
unit of time in steady state. This assumption implies that the parameter ¢, the mean of the
taste shock ¢y, is endogenously determined by the optimality conditions in the model. This
restriction on steady state hours worked in the NKDSGE model differs from the sample mean
of hours worked. We deal with this mismatch by augmenting the measurement equation in the
state space representation with a constant or “add-factor” that forces the theoretical mean of
hours worked to match the sample mean; see Del Negro and Schorfheide (2008, p. 1197). This
amounts to adding $4 to the log likelihood of the linearized NKDSGE model

Inf (yl:T‘Gl; ®2) + Infa.

Also, rather than imposing priors on the great ratios, C*/Y*, I*/K*, K*/Y*, and G*/Y*, we
fix the capital share, «, the depreciation rate, §, and the share of government expenditure, g*.
This follows well established practices that pre-date Bayesian estimation of NKDSGE models.

5.3 Useful Information about the MH-MCMC Simulator

The posterior distribution of the NKDSGE model parameters in ©; is characterized using the
MH-MCMC algorithm. The MH-MCMC algorithm is started up with an initial ®;. This parameter
vector is passed to the Kalman filter routines described in section 5.1 to obtain an estimate
of L (ym— ) O1; @2). Next, the initial ®; is updated according to the MH random walk law of
motion. Inputing the proposed update of ®; into the Kalman filter produces a second estimate
of the likelihood of the linear approximate NKDSGE model. The MH decision rule determines
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whether the initial or proposed update of ®; and the associated likelihood is carried forward
to the next step of the MH algorithm. Given this choice, the next step of the MH algorithm is
to obtain a new proposed update of ®; using the random walk law of motion and to generate
an estimate of the likelihood at these estimates. This likelihood is compared to the likelihood
carried over from the previous MH step using the MH decision rule to select the likelihood and
©; for the next MH step. This process is repeated H times to generate the posterior of the

linear approximate NKDSGE model, P (@1 ‘ Vi-1; @2).
We summarize this description of the MH-MCMC algorithm with

1. Label the vector of NKDSGE model parameters chosen to initialize the MH algorithm 61,0.

2. Pass 61,0 to the Kalman filter routines described in section 5.2 to generate an initial
estimate of the likelihood of the linear approximate NKDSGE model, (%:T ‘ 01,05 @2).

3. A proposed update of 61_0 is (:)1‘1 which is generated using the MH random walk law of
motion, (:)1,1 = 61_0 + wde, €1 ~ NID <0d, Id>, where w is a scalar that controls the
size of the “jump” of the proposed MH random walk update, ¢ is the Cholesky decom-
position of the covariance matrix of @1, and d (= 25) is the dimension of ®;. Obtain
é@ ym ‘ @)1,1; @2) by running the Kalman filter using (:)1,1 as input.

4. The MH algorithm employs a two- stage procedure to decide whether to keep the initial
@1 o or move to the updated proposal G)l 1. First, calculate

N (Vl:T ‘ 011 ®2) 9’((:)1,1)
N (yl:T ‘61,0; @2) 9’<61,0)

w1 = min , 1,

where, for example, P ((:)1,1) is the prior at (:)1,1. The second stage draws a uniform random

variate P1 ~ u(o 1). If 1 < wy, 61,1 = (:)1,1 and set the counter g = 1. Otherwise,
maintain @1 1= @1 o and hold = 0.

5. Repeat steps 3 and 4 for £ = 2, 3, ..., H using the MH random walk law of motion
(13) Orp = Bro1 + wlep, & ~ NID(0a1, Lu),

and drawing @, ~ U(0, 1) to test against

L <y1:T ‘ O1,0; @2) 9’@1,#)
N (%:T ‘61,#1; ®2) 9’<61,€—1)

wyp = min , 1,

for equating 61,9 to either (:)1,{) or 4(51,{)_ 1- The latter implies that the counter is updated
according to o = g + 0, while the former has p = p + 1.
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Steps 1-5 of the MH-MCMC algorithm produce the posterior, P (61 |y1;T; @2), of the linear
H
approximate NKDSGE model by drawing from {G) 1 11]} . At each step £ in the MH-MCMC, the

decision to accept the updated proposal, @y < wy, is akln to moving to a higher point on the
likelihood surface.

There are several more issues that have to be resolved to run the MH-MCMC algorithm
to create P (61 |y1 TS @2) Among these are obtaining an 61 o to initialize the MH-MCMC,
computing 9, determining ¥, fixing w to achieve the optimal acceptance rate for the proposal
@1 ¢ of p/3, and checking that the MH-MCMC simulator has converged

Step 1 of the MH-MCMC algorithm leaves open the procedure for setting 61,0. We em-
ploy classical optimization methods and an MH-MCMC “burn-in” stage to obtain 61‘0. First, a
classical optimizer is applied repeatedly to the likelihood of the linear approximate NKDSGE
model with initial conditions found by sampling 100 times from ?(@1)@ These estimates
yield the mode of the posterior distribution of ®; that we identify as initial conditions for a
“burn-in” stage of the MH-MCMC algorlthm The point of this burn-in of the MH-MCMC algo-
rithm is to remove dependence of T @1 ‘ Vi.1; ®2> on the initial condition @1 0. Drawing @1 0

from a distribution that resembles ﬂ’ @1 ‘ylzT, @2) eliminates this dependence. Next, 10,000

MH steps are run with @ = 1 and ¢ = I; to complete the burn-in stage. The final MH step of the
burn-in gives 61,0 to initialize the H steps of the final stage of the MH-MCMC algorithm. The
10,000 draws of 61 generated during the MH burn-in steps are used to construct an empirical
estimate of the covariance matrix $9'. The Cholesky decomposition of this covariance matrix
is the source of ¢ needed for the MH law of motion (L3).

The scale of the “jump” from 0, y_; to él’,g determines the speed at which the proposals

(51,1; converge to P (61 \ym; ®2) within the MH-MCMC simulator. The speed of convergence
is sensitive to w as well as to H. The number of steps of the final stage of the MH-MCMC
simulator has to be sufficient to allow for convergence. We obtain H = 300,000 draws from
the posterior P (61 \ym; 62), but note that for larger and richer NKDSGE models the total
number of draws is often many times larger. Nonetheless, the choice of the scalar @ is key
for controlling the speed of convergence of the MH-MCMC. Although Gelman et al. (2004)
recommend that greatest efficiency of the MH law of motion is found with @ = 2.4/V/d, we
set w to drive the acceptance rate p/H € [0.23, O.BO]F_g]

It is standard practice to test to check the convergence of the MH-MCMC simulator, be-
sides requiring ©/H to 0.23. Information about convergence of the MH-MCMC simulator is
provided by the R statistic of Gelman et al. (2004, pp. 269-297). This statistic compares the

— M
variances of the elements within the sequence of {@Lg} ooq O the variance across several se-

47Gelman et al. (2014, pp 295-297) discuss rules for the MH-MCMC simulator that improve the efficiency of the
law of motion to give acceptance rates that are optimal.

48Chris Sims is responsible for the optimization software that we use. The optimizer is csminwel and available
at http://sims.princeton.edu/yftp/optimize/.

49This involves an iterative process of running the MH-MCMC simulator to calibrate @ to reach the desired
acceptance rate. Roberts, Gelman, and Gilks (1997) provide theory that the lower bound of 0.23 is the optimal
acceptance rate as d — oo with a rule of thumb of d > 6. Vihola (2012) proposes an adaptive algorithm for
MH-MCMC samplers that adjusts the covariance matrix of ©; ¢ to target any acceptance rate /X, say, 0.23.
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quences produced by the MH-MCMC simulator given different initial conditions. These different
initial conditions are produced using the same methods already described with one exception.
The initial condition for the burn-in stage of the MH-MCMC algorithm is typically set at the next
largest mode of the posterior distribution obtained by applying a classical optimizer to the log
likelihood of the linear approximate NKSDSGE model. This process is often repeated three to
five times. Gelman et al. (2004) suggest that R < 1.1 for each element of 61. If not, across the
posteriors of the MH-MCMC chains there is excessive variation relative to the variance within the
sequences. When R is large, Gelman et al. propose increasing JH until convergence is achieved
as witnessed by R < 1.1

6 Results

This section describes the data and reports the results of estimating the linear approximate
NKDSGE model on four samples of U.S. aggregate data using the Bayesian procedures of the
previous section.

6.1 Data

We follow Del Negro and Schorfheide (2008) in estimating the NKDSGE model on five aggregate
U.S. variables. The observables are per capita output growth, per capita hours worked, labor
share, inflation, and the nominal policy rate. The entire estimation sample begins in 1982Q1
and end with 2022Q4. This makes Bayesian estimation of the NKDSGE model parameters
conditional on the information set

Y; = [IOOAlnYt 100InL; 1001In gth

R ’
10077, 1001n<1 + ﬂ)] ,

t Yt 100

where A is the first difference operator. Per capita output growth, per capita hours worked,
labor share, inflation (= AlInP;), and the policy rate are annualized and in percentages. Real
GDP is divided by population (16 years and older) to create per capita output. Hours worked
is constructed by Del Negro and Schorfheide (2008). They interpolate annual observations on
aggregate hours worked into the quarterly frequency using the growth rate of an index of hours
worked of all persons in the nonfarm business sector and divide by population. We extend
these variables to 2022Q4. Labor share equals the ratio of total compensation of employees
to nominal GDP. Inflation is equated to the (chained) GDP price deflator. The effective federal
funds rate, Reff, is continuously compounded to generate the policy rate, Rt

*0Geweke (2005) advocates a convergence test examining the serial correlation within the sequence of each el-
ement of ®,, £ = 1, ..., H. Roy (2020) has a useful survey of these and other diagnostics to assess the
convergence of MCMC samplers.

>1The data are available at https://fred.stlouisfed.org. This website, which is maintained by the Federal
Reserve Bank of St. Louis, contains data produced by the Bureau of Economic Analysis (BEA), the Bureau of
Labor Statistics (BLS), and the Board of Governors of the Federal Reserve System (BofG). The BEA compiles real
GDP, annual aggregate hours worked, total compensation of employees, nominal GDP, and the chained GDP
deflator. The BLS provides the population series and the index of hours of all persons in the nonfarm business
sector. The effective federal funds rate is collected by the BofG.
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Figure 1 plots the elements of Y; from 1982Q1 to 2022Q4. We estimate the NKDSGE
model on this sample and three shorter ones. The shortest runs from 1982Q1 to 2019QA4.
Adding the next four observations yvields a sample from 1982Q1 to 2020Q4. Extending this
sample by four more quarters gives us a sample from 1982Q1 to 2021Q4. The four samples
let us study the impact of the pandemic and recession of 2020 and the recovery that followed
on posterior distributions of the NKDSGE model.

6.2 Posterior Moments

Tables 2a and 2b contain summary statistics of the posterior distributions of the NKDSGE
model estimated on the four samples. We report posterior medians, modes, and 95% probability
intervals of the NKDSGE model parameters in the tables. Posterior distributions of the NKDSGE
model generated on the four samples are grounded in the priors that appear in table 1 and
discussed in section 5.2. Table 2a lists posterior moments conditional on the 1982Q1-2019Q4
and 1982Q1-2020Q4 samples. The longer two samples contribute to posterior moments of
the NKDSGE model parameters that appear in table 2b.

Posterior moments of ®1,gs are found in the top panel of tables 2a and 2b. These esti-
mates reflect the information the first moments of Y;.r have for the theoretical first moments
of the NKDSGE model. Across tables 2a and 2b, there are differences in the estimates of the
NKDGSE model parameters when comparing the 1982Q1-2019Q4 and 1982Q1-2020Q4 sam-
ples with the 1982Q1-2021Q4 and 1982Q1-2022Q4 samples. For example, deterministic TFP
growth, y, has posterior medians and modes of 1.27-1.34% with 95% probability intervals run-
ning from 0.90% to 1.64-1.76% on the two samples of table 2a. Moving to table 2b shows
posterior medians and modes of y that increase to 1.61-1.69% and 95% probability intervals
of 1.22-1.31% to 2.02-2.08%. The upshot is the recovery from the pandemic and recession of
2020 is reflected, in part, in the posterior moments of deterministic TFP growth.

Shifts in the elements of ©; gs are largest for the posterior moments of steady state
inflation, 1t*. The posterior medians and modes of m* are near zero with a narrow 95% prob-
ability interval of (0.00%, 0.03%) on the 1982Q1-2019Q4 sample. Although these moments
rise across the three longer samples, there is evidence the posterior distributions of m* are at
least bimodal. Evidence is the gap between the posterior medians and modes of 1m*, which is
about 0.3% on the 19820Q1-2020Q4 sample and more than 0.5% on the 1982Q1-2021Q4 and
1982Q1-2022Q4 samples. These three samples yield posterior medians and modes of 0.42%
and 0.11%, 0.68% and 0.14%, and 0.63% and 0.11%. The 95% probability intervals of 1T* are
in (0.04%, 1.33%), (0.05%, 2.47%), and (0.05%, 3.10%), which shows there is increasing uncer-
tainty about r* after 2019.

Steady state price and nominal wage markups are large across the four samples. The pos-
terior medians and modes of A f indicate price markups around 50% on the 1982Q1-2020Q4,
1982Q1-2021Q4, and 1982Q1-2022Q4 samples, but more than 70% on the shortest sample.
Uncertainty around these posterior moments falls from the 1982Q1-2019Q4 sample in which
the 95% probability intervals of Ay imply markups between 50% and 109% to a range of 47%
to 71% on the 1982Q1-2022Q4 sample. The nominal wage markups are smaller, but are still
substantial. The posterior medians and modes of Ay indicate nominal wage markups of 24%
to 32% on the samples that exclude 2022. These estimates fall to less than 20% with a 95%
probability interval running from 6% to 41% on the sample ending in 2022Q4.
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We obtain posterior means and medians of the steady state policy rate, R*, that are largest
on the 1982Q1-20190Q4 sample and smallest on the 1982Q1-2022Q4 sample. These moments
of R* are 1.53% and 1.54% and 1.30% and 1.27%. However, the width of the 95% probability
intervals are 90 to 100 basis points on the four samples. The narrowest is R* € (0.84%, 1.78%)
on the longest sample and widest, R* € (0.94%, 2.08%) on the sample from 1982Q1 to 2020Q4.
This suggests the greatest uncertainty about R; coincided with the pandemic and recession of
2020 and the least during the recovery from these events.

The middle panel of tables 2a and 2b contains the posterior moments of 01, prop. Almost
half of the 11 NKDSGE model parameters exhibit drift across tables 2a and 2b. These param-
eters are the inverse of the Frisch labor supply elasticity, v;, the steady state cost of capital
intensity, a’’, Calvo stickiness in the nominal wage, Cy/, nominal wage indexation, ty, and the
Taylor rule coefficient on the inflation gap, ;. The Frisch labor supply elasticity has a lower
bound of 0.22 to 0.30 as implied by the 95% probability intervals in the four samples. Its upper
bound rises from 0.63 on the 1982Q1-2019Q4 sample to 1.25 by adding the four quarter of
2020 before falling to about 0.48 on the last two samples. Hence, the sample that ends in the
year of the pandemic and a short, deep recession is responsible for the largest posterior median
and mode of v;” I and the greatest posterior uncertainty. The posterior medians and modes of
a’’ fall by a quarter to a third between moving from table 2a to table 2b. This shows capital
utilization consumed less resources after the pandemic and recession of 2020.

Posterior moments of Ty indicate nominal wages are almost perfectly flexible on the
19820Q1-2019Q4 sample. Its posterior median, mode, and 95% probability interval imply the
frequency, (1 — Cw)fl, at which households reset their nominal wage is nearly every quarter.
The longer samples produce larger posterior moments of Cy . These estimates and (1 — CW)_l
show households adjust their nominal wages nearly every two quarters. In contrast, the ev-
idence is ty fell from the 1982Q1-2019Q4 and 1982Q1-2020Q4 samples to the 1982Q1-
202104 and 19820Q1-2022Q4 samples by nearly 40% or more. The latter two samples also dis-
play less uncertainty with narrower 95% probability intervals with an upper bound of around a
half. It is closer to 0.90, which indicates nearly complete indexation, on the 1982Q1-2019Q4
and 1982Q1-2020Q4 samples.

Finally, there is little uncertainty surrounding the posterior medians and modes of /; as
appears in table 2b. These moments are near 1.05 with 95% probability intervals running from
around 1.02 to 1.12, which show the Taylor principle is just met on the 1982Q1-2021Q4 and
19820Q1-2022Q4 samples. It is also satisfied on the shorter samples. Table 2a has posterior
medians and modes of ; in excess of two with comparatively wide 95% probability intervals.
Hence, the response of R; to an increase in the inflation gap was larger before 2021.

The remaining parameters in O1 prop are Calvo stickiness in the price level, Cp, price
indexation, tp, habits, h, the steady state cost of investment, I'"’, interest rate smoothing, pg,
and the Taylor rule coefficient on the output gap, @». Posterior moments of these parameters
are qualitatively and quantitatively alike on the four samples. The similarities allow us to infer
that firms update their prices about once every four quarter, firms unable to update do not index
to 111, habits in consumption are substantial, there are large costs associated with investing
in capital, the Taylor rule exhibits interest rate smoothing with a half-life of a monetary policy
shock at than three quarters, and the output gap has almost no role in the Taylor ruleff]

>2The half-life estimate is computed as In 0.5/In pg.
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The posterior moments of 01, exog appear in the bottom panel of tables 2a and 2b. The
first four rows of the panels list the posterior moments of the AR(1) parameters of the TFP
growth, monopoly, and government spending shocks. The posterior medians and modes reveal
TFP growth is approximately white noise, but the taste, markup, and government spending
shocks are observationally equivalent to random walks on the four samples. The relevant 95%
probability intervals suggest there is not an abundance of uncertainty about these estimates.

The rest of the bottom panel of tables 2a and 2b contain the scale volatilities of the
shocks of the NKDSGE model. These parameters are o, 0, OAss Og, and og. The latter shock
volatility is the smallest across the four sample. This is not evidence of the unimportance
of the monetary policy shock, but that its volatility is dominated by the other shocks. The
most volatile are the taste and monopoly shocks. However, the ranking of oy and o f changes
from the 1982Q1-2019Q4 sample to the 1982Q1-2020Q4 sample. Before 2020, the posterior
medians and modes restrict oy < 0 . This inequality flips subsequent to 2019 and holds in
the last two samples with o4 becoming three to four order of magnitude larger than o, £ Only
the 95% probability interval of oy displays increasing uncertainty across the four samples.

7 Conclusion

This chapter surveys Bayesian methods for estimating NKDSGE models with the goal of raising
the use of these empirical tools. We outline a canonical NKDSGE model to develop intuition
about its mechanisms that propagate exogenous shocks into business cycle fluctuations. Study-
ing the sources and causes of these propagation mechanisms requires us to review the opera-
tions needed to detrend its optimality and equilibrium conditions, a technique to construct a
linear approximation of the model, a strategy to solve for its linear approximate decision rules,
and the mapping from this solution to a state space model that produces Kalman filter predic-
tions and the predictive likelihood of the linear approximate NKDSGE model. The predictions
and predictive likelihood are useful inputs into a MH-MCMC sampler. Since it is the source of
posterior distributions of the NKDSGE model, we present an algorithm that implements this
simulation estimator. The algorithm relies on our priors of the NKDSGE model parameters
and several initial conditions. We employ the sampler to create posterior distributions of the
NKDSGE model. The posterior distributions yield moments of the NKDSGE model parameters
that we review. We also give a short history of DSGE model estimation along with discussing
issues that are at the frontier of this research agenda.

We describe Bayesian methods in this article that are valuable because DSGE models are
tools that aid our understanding of the sources and causes of business cycles and to evaluate
policy. This chapter estimates a canonical NKDSGE model on four quarterly samples and priors
that are standard in the published literature. The samples begin during the Volcker disinfla-
tion in 1982 and end in 2019, during the pandemic and related recession of 2020, 2021, and
2022. Across the four samples, many of the NKDSGE model parameters display little variation.
Although comforting, several parameters display movement from the pre-pandemic/recession
sample through the samples that end in 2020, 2021, and 2022. This is a potential signal for
model misspecification. There remain open questions about the effects misspecification has
on the relationship between priors, data, and the posterior distributions of NKDSGE models.
We hope this chapter acts to motivate future research on these and other issues.
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Table 1. Priors of NKDSGE Model Parameter

Steady State Parameters: 01, ss
Priors Probability
Distribution A; A» intervals, 95%

T* Normal 4.30 2.50 [-0.600, 9.200]
y Gamma 1.65 1.00  [0.304, 3.651]
Af Gamma 0.15 0.10  [0.022, 0.343]
|
]

Aw Gamma 0.15 0.10 [0.022, 0.343
R* Gamma 1.50 1.00 [0.216, 3.430

Endogenous Propagation Parameters: O1, prop

Priors Probability

Distribution A; A>  intervals, 95%
Cp Beta 0.60 0.20 [0.284, 0.842]
p Beta 0.50 0.28 [0.132, 0.825]
h Beta 0.70 0.05 [0.615, 0.767]
\Y%i Gamma 2.00 0.75 [0.520, 3.372]
a’ Gamma 0.20 0.10 [0.024, 0.388]
I Gamma  4.00 1.50 [1.623,6.743]
Cw Beta 0.60 0.20 [0.284, 0.842]
1w Beta 0.50 0.28 [0.132, 0.825]
PR Beta 0.50 0.20 [0.229, 0.733]
Y1 Gamma 2.00 0.25 [1.540, 2.428]
Yo Gamma 0.20 0.10 [0.024, 0.388]

Exogenous Propagation Parameters: O exog

Priors Probability

Distribution A; A» intervals, 95%

Pz Beta 0.40 0.25 [0.122, 0.674
P Beta 0.75 0.15 [0.458, 0.950
PAs Beta 0.75 0.15 [0.458, 0.950

]
]
]
04 Beta 0.75 0.15 [0.458, 0.950]
0z Inv-Gamma 0.30 4.00 [0.000, 7.601]
0¢p Inv-Gamma 3.00 4.00 [2.475, 28.899]
or, Inv-Gamma 0.20 4.00 [0.000, 6.044]
0, Inv-Gamma 0.50 4.00 [0.002,10.048]
or Inv-Gamma 0.20 4.00 [0.000, 6.044]

Columns headed A; and A; contain the means and standard deviations of the beta, gamma, and normal
distributions. For the inverse-gamma distribution, A; and A, denote scale and shape coefficients.
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Table 2a. Summary of Posterior Distributions of the NKDSGE Models

Sample: 19820Q1-20190Q4 Sample: 1982Q1-20200Q4

Steady State Parameters: 01,gs
Posterior Probability Posterior Probability
medians modes intervals, 95% medians modes intervals, 95%

y 1.268  1.335 [0.904,1.638]  1.335  1.322  [0.902, 1.763]
T 0.002  0.000 [0.000,0.032] 0.425  0.108 [0.036, 1.331]
A; 0759 0709  [0.502,1.089] 0579  0.511  [0.437, 0.858]
Aw  0.239  0.226  [0.095,0.480]  0.239  0.239  [0.109, 0.374]
R* 1527 1540 [1.089,1.984] 1.476  1.376 [0.943, 2.075]

Endogenous Propagation Parameters: 01, prop
Posterior Probability Posterior Probability
medians modes intervals, 95% medians modes intervals, 95%

Z, 0758 0.758 [0.716, 0.794] 0.710, 0.801
1,  0.043  0.022 [0.005, 0.117]
h 0813 0.825 [0.717, 0.876]
vi 2215 2074 [1.584, 3.386] 2.515  2.609 [0.802, 4.087]
a’ 0163 0131 [0.081, 0.332] 0.156 0.123 [0.072, 0.342]
I” 9453 9381 [6.616,12.973] 8.675  7.962 [6.172, 11.902]
[ ]
[ ]
[ ]
[ ]
[ |

0.775  0.757 | ]
0.023  0.004 [0.002, 0.089]
0.628  0.603 [0.511, 0.842]

Cw 0.089 0.079 10.041, 0.162 0.239 0.239 [0.109, 0.374]
w 0.622 0.583 0.376, 0.904 0.549 0.525 [0.360, 0.862]
PR 0.797 0.799 10.765, 0.826 0.813 0.813 [0.785, 0.839]
Y1 2.287 2.306 1.951, 2.645 2.321 2.355 [1.260, 2.689]
Yr 0.001 0.001 0.001, 0.002 0.001 0.001  [0.000, 0.002]

Exogenous Propagation Parameters: ©1 exog
Posterior Probability Posterior Probability
medians modes intervals, 95% medians modes intervals, 95%

[ ] 0037 0015 | ]
[ ] 0999 0999 [0.998, 0.999]
pa, 0996 0998 [0.990,0.999]  0.988  0.994 [0.922, 0.998]
py 0948 0954 [0.918,0.970]  0.934 0935 [0.902, 0.970]
o, 0633 0623 [0.576,0.698] 0.738  0.728 [0.672, 0.816]

[ ]

[ ]

[ ]

[ ]

Pz 0.067 0.028
P 0.999 0.999

0.007, 0.181
0.998, 0.999

0.004, 0.133

O 2.895 2.671 2.194, 4.274 8.671 3.281 [3.052, 15.026]
oA 3.812 3.625 2.881, 5.434 4.775 4472 [3.439, 6.770]
Og 0.772 0.706 0.641, 0.824 1.256 1.266 [1.027, 1.437]
OR 0.165 0.163 0.147, 0.186 0.161 0.159 [0.145, 0.180]
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Table 2b. Summary of Posterior Distributions of the NKDSGE Models

Sample: 19820Q1-20210Q4 Sample: 19820Q1-202204
Steady State Parameters: 01,gs
Posterior Probability Posterior Probability
medians modes intervals, 95% medians modes intervals, 95%

y 1.688  1.658  [1.309, 2.085] 1.611  1.591  [1.224, 2.015]
T 0677  0.142  [0.052, 2.472] 0.631  0.110  [0.047, 3.101]
A/ 0515 0510  [0.469, 0.598] 0.528 0512  [0.473, 0.706]
Aw 0315  0.320  [0.180, 0.433] 0.183  0.145  [0.058, 0.408]
R* 1363 1366  [0.879, 1.811] 1301 1.267  [0.835, 1.783]

Endogenous Propagation Parameters: 01, prop
Posterior Probability Posterior Probability
medians modes intervals, 95% medians modes intervals, 95%

£, 0775  0.778 [0.735, 0.813] 0.779  0.783 [0.735, 0.817]
1,  0.015  0.004 [0.001, 0.058] 0.017  0.004 [0.002, 0.066]
h 0730  0.737 [0.635, 0.814] 0.735  0.748  [0.653, 0.809]
v 3.048  2.835 [2.094, 4.450] 2.087 ,2.761 [2.060, 4.411]
a’ 0055  0.053 [0.028, 0.120] 0.048  0.037 [0.026, 0.107]
I” 10221 10433 [7.140,13.806] 10.204 10.065 [6.844, 13.853]
CZw 0315 0320 [0.180, 0.433] 0317  0.329 [0.168, 0.440]
w0396  0.384 [0.256, 0.539] 0.382  0.368  [0.244, 0.518]
pr 0.804  0.805 [0.777, 0.829] 0.809  0.814 [0.784, 0.831]
w1 1053  1.047 [1.023, 1.108] 1.052  1.044 [1.022, 1.115]
w2  0.000  0.000 [0.000, 0.000] 0.000  0.000 [0.000, 0.000]

Exogenous Propagation Parameters: ©1 exog
Posterior Probability Posterior Probability
medians modes intervals, 95% medians modes intervals, 95%

p- 0051  0.028 | [

pe 0999 0999 | [

pa, 0950 0954 | 0.953 0957 |

pg 0967  0.977 [ 0.930, 0.989 0.968  0.977 [ 0.933, 0.988
[ [
[ [
[ [

] 0059 0017
]
|
]
o: 0731 0731 [ 0.669, 0.803] 0738  0.737
|
|
|
]

0.999 0.999

o4 16.004 13.894 [11.150, 23.813 15.334 15.084 [10.674, 22.392
oA, 4.179 4.122 3.373, 5.311 4.587 4.327 3.490, 6.094
Og 0.837 0.837 [ 0.730, 0.963 0.853 0.856 [ 0.745, 0.977
OR 0.176 0.177 [ 0.157, 0.199 0.179 0.177 [ 0.160, 0.202
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Figure 1: Sample Data, 1982Q1 to 2022Q4
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Notes: The top left panel plots real GDP growth, AY; = (InY; — InY;_1) as a solid (blue) line and GDP deflator inflation, 11; = AY; = (InP; — InP;_1) as a dot-dash
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