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Impacts of a Capacity Advantaged Bidder in Sequential Common Value Auctions:

Evidence from the Laboratory 

 
Abstract
As bidders reach capacity throughout a sequential common value auction, theory predicts they 
will account for the option value of purchasing later units against fewer rivals.  Mergers, joint 
purchasing arrangements, or a common bidding agent may result in a capacity advantaged 
bidder.  Using laboratory experiments, we find that bidders account for the option value of 
winning later units when capacity constraints are significantly binding.  Similar to the predictions 
of value advantaged bidder theory, the capacity advantaged bidder bids more aggressively, 
purchasing more units at lower prices than disadvantaged rivals.  However, the creation of a 
capacity advantaged bidder transfers surplus to all bidders primarily due to the reduction in the 
number of bidders. 

1. Introduction 

Advantaged bidder theory predicts that a value advantaged bidder in common value auctions 

strategically bids more aggressively resulting in higher bids than would otherwise be expected 

when common values are the same for all bidders (Bikhchandani 1988; Klemperer 1998; Rose 

and Kagel 2008).  The aggressive bidding reduces competition by enhancing the winner’s curse 

of a disadvantaged rival.  In a sequential multi-unit auction, the value advantaged bidder would 

be expected to purchase most, if not all, units at prices below those of a disadvantaged rival 

resulting in asymmetric prices and quantities between these two bidder types.  Therefore, a 

disadvantaged bidder earns less surplus than the advantaged bidder and less surplus than when 

common values are the same for all bidders. 

 Laboratory research has not supported the value advantaged bidder theory (Levin and 

Kagel 2005; Rose and Levin 2008). Recent empirical research of prices in English auctions for 

cattle, however, has observed such asymmetries between an allegedly cost (value) advantaged 

bidder (a common agent representing a collaboration of beef processors) and independent 

bidders (Coatney, Shaffer and Menkhaus 2012).  Prices also were significantly less than regional 
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averages indicating a reduction in competition (Coatney, Shaffer and Menkhaus 2012; Coatney 

and Tack 2011).  While the degree of cost advantage held by the common bidding agent could 

not be explicitly identified, holding multiple purchase orders from some of the largest firms 

likely resulted in a capacity advantage for the agent.  There is both theoretical and empirical 

evidence of reduced competition in English auctions resulting from a value advantaged bidder.  

Could there also be a capacity advantage that contributes to reduced competition?  

 Our research contributes to the literature by exploring the potential for a capacity 

advantage based explanation of reduced competition and asymmetric prices and quantities 

between advantaged and disadvantaged bidders in an English auction setting.  Generally 

speaking, when at least some bidders are expected to reach capacity before the end of an auction, 

bidders are expected to shade their bids in accordance with the option value of winning later 

units against fewer rivals (Weber 1983; Bernhardt and Scoones 1994; Fatima, Wooldridge and 

Jennings 2005).  A capacity advantage can arise when a subset of capacity constrained firms 

either merge, purchase units at an auction through a joint purchasing arrangement, or form a 

buyer collaboration by hiring a common bidding agent.  Mergers are common place across all 

industries and joint purchasing arrangements and common bidding agents are prevalent in the 

crude oil, health care and livestock industries (Hendricks and Porter 1992; FTC/DOJ 1996; 

USDA, GIPSA 2008).   

Because asymmetries in capacity can occur after a subset of similarly sized firms 

combine their purchases, we must also simultaneously address the competitive impacts resulting 

from the creation of a capacity advantaged bidder.  In doing so, we design two treatments to be 

tested in the laboratory – symmetric and asymmetric capacity constraints.   Bidding agents have 

identical purchase or capacity requirements in the symmetric case.  In the latter treatment, an 
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advantaged bidder is created by a hypothetical joint purchasing venture.  The asymmetric 

treatment increases the likelihood that all but the advantaged bidder reaches capacity before the 

end of the auction period.  Therefore, as a robustness check, we allow for a fairly restrictive 

auctioneer/seller reservation price in the laboratory experiment to combat the potential for single 

bidder competition toward the end of the auction.      

Results from sequential common value English auction laboratory experiments indicate 

that the capacity advantaged buyer bids more aggressively than disadvantaged bidders, and the 

advantaged bidder is able to purchase more units at prices below those purchased by the 

disadvantaged bidders. These results are consistent with current value advantage theory.  There 

also is evidence of option value bidding as bidders shade their bids for early units, especially in 

the presence of a capacity advantaged bidder.  Furthermore, the creation of the advantaged 

bidder transfers a significant amount of surplus to both advantaged and disadvantaged 

competitors. These results are robust in the presence of restrictive seller reservation prices. 

 
2. Bidding in Common Value English Auctions 

We present the theory that provides the basis for comparison in our estimated bidding equations 

presented later.  Under the following bidding strategy it is assumed that either capacity 

constraints do not impact bidding decisions or bidders simply fail to recognize the possibility of 

reduced competition for later units. 

 We begin by assuming that 1,...,i n  symmetric firms (bidders) compete for multiple 

units offered during the auction period, 1,...,q Q .  Because bidders ignore or fail to recognize 

future reductions in competition, we can ignore the unit’s subscript.  Following Levin, Kagel and 

Richard (1996), the true common value, 0x , for each unit is independently and identically drawn 
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from a uniform distribution with supports x x .  Each bidder’s private signal iPS for each unit 

is then independently and identically drawn from the uniform distribution with supports 

0 0max , ,min ,x x x x .1  The , which is common knowledge, can be thought of as 

bidder expertise in evaluating the true common value.   

As the bidding ascends in a common value English auction, the one-shot risk-neutral 

Nash equilibrium (RNNE) bidding strategy when capacity constraints are non-binding for the  

3i n  bidders is for the lowest private value signal holder to drop out of the bidding when 

their signal is reached (Milgrom and Weber 1982; Levin, Kagel and Richard 1996).2  All drop-

out bids are perfectly observable and are common knowledge to all market participants.  From 

the information conveyed by the first drop-out bid, the 1n  bidders still in the bidding optimally 

drop out in accordance with their updated unbiased estimate of the true common value 

(reservation bid).  This strategy protects bidders against adverse selection, thus mitigating the 

effects of “winners curse”.  The ordered vector of RNNE drop-out bids is  

,2 ,1 , ,1*
, ,1

    
  . . .  .

2 2
i i i h i

i j i

PS d PS d
PSd                                                                

(1) 
                                                      
1 The authors refer to the area of the joint unconditional distribution of private signals and 

common values when 0max( , )x x x  as region 1, 0 0[( ), ( )]x x  as region 2 and  

0min ,x x x   as region 3.  Interestingly, in region 1, if 0x x  then all private signals drawn 

are greater than the true common value.     

2 This presumes that the auctioneers initial asking bid is below the lowest private signal held by 

the bidders. 
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Bidders are observed to drop out of the bidding in order of their ranked private signals 

,i js , where 1j  is the lowest up to j h , the highest private signal.  The *
,1 ,1i id PS  is the first 

bidder observed to drop out of the bidding and the ,1 ,1*
,1

  
2

i j h i
i j h

PS d
d  are the 

subsequent observed drop-out bids.  The winner holding the highest private signal ( ,i hs ) wins 

the bid and pays the second highest drop-out bid, , 1 ,1*
, 1

  
2

i h i
i h

PS d
d  .   

Because 3n  may not be guaranteed before the end of the auction period as capacity 

constraints bind, we further consider the cases if n reaches two or one.  If 2n are remaining for 

the q Q units, again 0x  is independently and identically drawn for each unit from a uniform 

distribution with supports ,  x x .  For simplicity we assume private signals are independently 

and identically drawn from the uniform distribution with supports 0 0,x x .3  Letting 

0x  , 0x ,  the kth highest private signal order statistic is 

( )
1

1PS k
n kE

n
.  Even with only two bidders, the dominant strategy in an English 

auction is for the lowest private signal holder to drop out of the bidding first (Milgrom and 

Weber 1982).  If the low private signal bidder were to continue bidding and win, the expected 

price paid is greater than the true common value, an irrational decision.  The highest signal 

holder’s best response is to wait for the lowest signal bidder to drop out.  In the eventuality there 

is ever an uncontested bidder, 1n ,  we assume the auctioneer establishes a reservation price 

                                                      
3 These are region 2 of the joint unconditional distribution of private signals and common values.   
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equal to lowest expected private signal ( )
1

( 1)PS k nr E q
n

(nth highest order 

statistic) rather than letting an item go for bid of zero. 

 
3. Capacity Constraint Considerations 

Because firms that compete for common value objects such as crude oil and cattle for processing 

typically maintain excess capacity (USDA, GIPSA 2007; Corts 2008), we are specifically 

concerned about the impact of what we will define later as a partially binding capacity constraint.  

Previous option value bidding research by Fatima, Wooldridge and Jennings 2005 assumes 

bidders hold unit or symmetric capacity.  Therefore, the number of bidders is necessarily reduced 

by one as the auction period progresses.  However, in a more realistic multi-unit demand 

(capacity) setting, predicting the level of competition for later units is not as straightforward as 

reducing the bidders by one across each unit offered for sale.  To predict which unit each of n 

bidders expect to reach capacity, iC , we utilize the negative binomial distribution.4  The negative 

binomial distribution predicts the qth unit each bidder unilaterally expects to reach capacity at 

1 1i
i

Cq
p

 , where the probability of  winning any given unit is 1
ip

n
 when bidders have the 

same common values and follow symmetric bidding strategies in that no one bidder bids more 

                                                      
4 The negative binomial distribution is mathematically represented as

( )1
( | , ) (1 ) , 1,...,

1
s q sq

P Q q s p p p q s s
r

 with mean s
p

and variance 2

(1 )s p
p

, where 

1 /p n  is the probability n symmetric bidders win any given unit, is C  and Q is auction 

supply.   
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aggressively/passively than their rival(s).5  When an industry holds excess capacity, 
1

n

i
i

C Q , 

this implies each bidder’s capacity is greater than the expected number of units they will 

purchase [ ]i iC E q , where [ ]i
QE q
n

 .  For capacities to be non-binding, in the sense that every 

bidder expects to compete for every unit, industry excess capacity is such that iq Q .6  For 

capacities to be partially binding, bidders expect one less competitor at unit 1q  but do not 

expect to win any unit uncontested such that 
1

1
n

ii
i

q Q C .7  For capacities to be fully 

binding, all bidders expect to face no competition for at least the last unit sold, therefore, 

1

n

i
i

C Q .8  A common simplifying assumption is that bidders replace their expectations of the 

path of competition throughout the auction session with their certainty equivalents (Wilson 

1979).  Unlike the unit-demand (capacity) theory of Fatima, Wooldridge and Jennings (2005), 

the number of bidders is expected to remain constant from units 1 iq q  and then steadily 

                                                      
5 Under asymmetric bidding strategies, ip  would be endogenously determined. 

6 For example, let n = 5, Q = 10 and Ci = 3.  Total industry capacity is 15 > Q.  Therefore, 

11q Q .   

7 For example, let n = 5, Q = 12 and Ci = 3.  Total industry capacity is 15 > Q.  Therefore, 

11q Q and
1

15
n

i
i

C Q . 

8 For example, let n = 5, Q = 15 and Ci = 3.  Total industry capacity is 15 = Q.  Therefore, 

11q Q and
1

15
n

i
i

C Q .   
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decline.  We will demonstrate, however, that the creation of a capacity advantaged bidder under 

partially binding capacity constraints could result in the capacity advantaged bidder facing no 

competition for later units in the auction period. 

 
4. Experiment Treatments and Hypotheses 

We design two treatments to test the impacts of creating a capacity advantaged bidder on 

competition in a laboratory English auction setting.  The two treatments are designated as (1) 

symmetric capacity (SC) and (2) asymmetric capacity (AC) created by a joint purchasing venture 

of a subset of symmetric capacity firms.  In designing the treatments, we select parameters that 

result in partially binding capacity constraints in the SC treatment and become more binding in 

the AC treatment.  

 
4.1 Symmetric Capacity Treatment 

In the SC treatment, there are 5n  equally capacity constrained buyers (firms).  Each bidder’s 

potential purchases per auction period is 3iC  units resulting in an industry capacity of 

1
15

n

i
i

C units.  The quantity offered for sale per auction period is restricted to 12Q , resulting 

in a 20 percent over capacity.  These parameters meet the partially binding capacity constraint in 

that each of the five bidders has an equal chance of reaching capacity by unit 11, and no bidder 

expects to purchase any unit uncontested.  Each bidder can expect to purchase between 2 and 3 

units per auction period.  Because bidders expect one less competitor for the last unit, there is an 

incentive for bidders to shade their bids throughout the auction period. 
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4.2 Asymmetric Capacity Treatment  

In the AC treatment, we form a joint purchasing venture among three out of the five firms.  This 

results in three remaining bidders competing in the auction - one capacity advantaged bidder 

(AB) and two capacity disadvantaged bidders (DB).   

The AB’s capacity is nine units, commanding a dominant position in total capacity.  

Assuming symmetric bidding strategies, each of the two DBs and the AB expect to purchase 

three and six units, respectively.  Because the negative binominal distribution does not guarantee 

clearly defined expected competition break points in all circumstances, the final determination of 

the expected number of bidders across the full auction period is provided in Appendix A.  Given 

symmetric bidding strategies, the DBs are expected to begin reaching capacity by unit 7 and all 

will reach capacity by unit 9.  The AB is expected to win 50 percent of all units available during 

the auction period, the last three uncontested.   Hence, the creation of the joint purchasing 

venture results in a capacity advantage, enhancing the likelihood the AB will win more units at 

lower prices than the DBs.  Furthermore, because all DB are expected to reach capacity before 

the end of the auction period, the potential for bid shading and the resulting buyer revenue is 

enhanced.  

  
4.3 Hypotheses 

The following are the null hypotheses we empirically test in the laboratory for each treatment.  

Competition from disadvantaged bidders may be reduced due to their submission of 

lower bids (Bikhchandani 1988; Klemperer 1998; Rose and Kagel 2008). 

H0 1 (Asymmetric Prices and Quantities):  Without asymmetric capacities, asymmetric 

prices and quantities between bidders cannot persist.  
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Some bidders are expected to reach capacity before the end of the auction by design and 

to a greater extent in the AC treatment, given the predictions of Weber (1983) Bernhardt 

and Scoones (1994) and Fatima, Wooldridge and Jennings (2005). 

 H0 2 (Option Value Bidding):  Both the first and subsequent bidders to drop out do not 

shade their bids in either treatment below the RNNE bidding strategy.  

Overall competition may be reduced due to the reduction in the number of bidders and 

lower submitted bids by disadvantaged bidders, given the predictions of Bikhchandani 

(1988), Klemperer (1998) Rose and Kagel (2008). 

H0 3 (Surplus Transference):  The joint purchasing venture does not transfer surplus from 

sellers to buyers. 

 
5. Experimental Design  

We conduct a series of three sessions for each of the two treatments.  Each session consists of six 

separate auction periods.  Within each auction period, there are 12 individually auctioned units 

via the irrevocable exit ascending “clock” method where the auctioneer’s starting price is less 

than the lowest private signal for the unit and increases incrementally until the second to last 

bidder exits (Levin, Kagel and Richard 1996).  In total, 216 units were auctioned for each 

treatment.   

Randomly drawn common values and private signals per bidder identification and unit 

auctioned remain the same across each of the six experimental sessions to control for bidding 

and anomalies across treatments that may arise simply due to each bidder’s randomly drawn 

private signal. Special consideration was given regarding a perceived value advantage in the AC 

treatment when forming the joint purchasing venture.  Because the randomly drawn private 

signal means within the experimental session were the highest for bidders one and two, we chose 
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bidder three to purchase on behalf of these two bidders in order to mitigate the potential 

influence of a real value advantage.9 

Subjects were recruited from graduate students in economics and finance, as well as from 

upper-division mathematics courses.  Instructions were read by the experimenter, questions 

addressed, and a post-instruction quiz was given to insure that each subject understood the 

instructions.  The essential features of a common value English auction were incorporated into 

the laboratory auction to test the above hypotheses.  Subjects were provided information of i) the 

number of bidders, ii) the number of auction periods, iii) the number units offered for sale per 

auction period, iv) each bidder’s capacity constraint, v) subject identification by bidder type (DB 

or AB), vi) the number of firms comprising the joint purchasing venture, vii) the payoff 

functions of all bidders, and viii) the seller’s reservation price is equal to some expected lowest 

private signal.   

Practice rounds were conducted to familiarize subjects with the procedures of the auction 

and data entry into an electronic buyer’s card (Excel spreadsheet).  To begin the auction, asking 

bids were projected on a screen in the front of the room.  Unknown to the subjects, the algorithm 

for auctioneer’s asking bid (ASB) for the qth unit sold was 1,min 2,q q qASB s r , where 1,qs  is 

the lowest ranked private signal actually drawn for the qth unit sold and qr  is the seller’s 

reservation price.  The seller’s reservation price equaled the lowest expected private signal 

calculated from the distribution of private signals for each unit sold.  Each ASB was well below 

expected levels of bid shading.  Subjects were given a bidding paddle embossed with a number 
                                                      
9 Mean (standard deviation) private value draws across the six auction periods were 59.81 

(20.75), 58.42 (20.80), 56.94 (20.68) for bidders 1 through 3, respectively, and 55.45 (20.57), 

and 54.10 (20.79) for bidders 4 and 5, respectively. 
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to identify the bidder, dropping their paddle to indicate exit from bidding.  Subjects were able to 

see who was bidding, closely monitored by the experimenter, and not allowed to communicate 

by talking or using gestures. 

Finally, though negative aggregate surpluses are not expected given the reservation bid 

training, subjects started with small unknown symmetric equal endowments.  Aside from a $5.00 

show-up fee, the endowment was set large enough to mitigate potential bankruptcies and kept 

unknown to avoid overly aggressive bidding due to limited liability (Hansen and Lott, 1991; 

Loureiro, Umberger and Hine 2003). 

                                                               
5.1  Mitigating Subject Learning of the Winner’s Curse

Experience matters, especially in the brutal environment of common value auctions (Garvin and 

Kagle 1994; Levin, Kagel and Richard 1996; Kagel and Richard 2001; Casari, Ham and Kagel 

2007).  Our subject pool had no prior experience in common value auctions.  To enhance their 

attention to the issues of capacity constraints, we informed our novice bidders about the winner’s 

curse and demonstrated how to avoid it by forming a reservation bid from the bid of the first 

bidder to drop out of the bidding.10   At no time were the subjects informed that the reservation 

bid was an equilibrium bidding strategy of any kind.  Each bidder recorded the first drop-out bid 

in electronic bidding sheets.  Remaining active bidders were provided an updated reservation bid 

in accordance with equation (1).   

 
5.2 Backward Induction and Subgame Perfection Ability 

                                                      
10 Because of the importance of the winner’s curse, employers spend considerable time and 

resources training new buyers before ‘turning them loose’. 
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We attempt to control for each subject’s ability to choose subgame perfect bidding strategies.  

Understanding the option value of winning later units requires the agent to backward induct a 

fairly complex auction game.  Experimental subjects routinely struggle with the cognitive 

requirements, the expense of backward induction, as well as issues of trust and other human 

behavior (McKelvey and Palfrey 1992; Fey, McKelvey and Palfrey 1996; Johnson et. al. 2002; 

Binmore et. al. 2002; Palacios-Huerta and Volij 2009; Levitt, List and Sadoff 2011).     

Prior to conducting the auction experiment, subjects were given a one-shot simultaneous 

choice four stage increasing pie centipede game (figure 1).  Subjects were the “You” player and 

were matched against the experimenter “Me”.  Subject ability to evaluate credible 

threats/promises they face in real world, “Me” further stated “If you are willing to wait, I will 

split the $4.00 of my budget that I have to play with you.  What will you do?”  To avoid potential 

contamination of the subsequent auction experiment by endowments and relationship between 

the experimenter and subjects, experiment participants were not informed of the experimenter’s 

choice or of their payoffs until completion of the session.  

     
5.3 Risk Aversion  

We also attempt to control for each subject’s risk aversion.  Prior to conducting the auction 

experiment, a risk aversion test following Holt and Laury (2002) (table 1) was administered.  

Although the dominant bidding strategy in common value English auctions does not rely on risk 

aversion, if bidders are risk averse, they would likely bid lower than predicted by risk neutrality 

(Levin, Kagel and Richards 1996; Kagel 1995).  The more important consideration in our 

experimental setting is that bidders may partially focus on the risk of not fulfilling their capacity 

or expected number of purchases. This may be especially true for the capacity advantaged bidder 
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who is less likely to reach capacity.  As a result, risk averse bidders may bid more aggressively 

(Buccola 1982; Ashenfelter 1989; McAfee and Vincent 1993).   

 
6. Empirical Estimation and Results  

We begin by describing general outcomes from the two treatments.  The remainder of this 

section is comprised of the empirical tests of the null hypotheses stated above.     

 
6.1 General Description of Data and Results

The relevant data from the experiment sessions include bidder characteristics derived from the 

pre-tests, drop-out bids, bidder identification, wins per bidder, surpluses, and earnings per unit.  

The data revealed that 56 percent of the actual winners matched the predicted winner in the SC 

treatment and 74 percent for the AC treatment.  Hence, efficiency was improved by the creation 

of a capacity advantaged bidder. 

A summary of the risk aversion pre-test is provided in table 1.  In general, most (2/3) 

subjects did not switch from the less risky lottery option (A) to the riskier lottery option (B) until 

after paired lottery choice 5, the risk neutral switching point.  Some in fact did not switch to the 

more risky option until lottery 9, indicating extreme risk aversion.  From the centipede game, 

roughly 71 percent of the subjects correctly chose the subgame perfect equilibrium strategy of 

“take” in the first round suggesting the majority of the study participants exhibited the ability to 

backward induct and evaluate threats/promises that are not credible.   

In the SC treatment, the bidding data consisted of 221 of 216 possible first drop-out bids 

and 495 of 648 subsequent possible drop-out bids because of drop-out ties and bidders reaching 

capacity.  In the AC treatment, the bidding data consisted of 166 of 162 possible first drop-out 

bids and 102 of 126 subsequent possible drop-out bids because of drop-out ties, bidders reaching 
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capacity, and the AB regularly winning the last three units uncontested (figure 2).  Consistent 

with the negative binomial predictions, unit 9 is the average point in the auction where the AB 

faced the last DB.  

Other aspects of the bidding data include instances when the seller’s reservation price 

was binding upon the sale price.  In the SC and AC treatments, the seller’s reservation price was 

binding for two and 49 percent of the purchases, respectively.  If the buyer refused to accept the 

seller’s reservation price the unit was not sold (no-sale).  There were six observed no-sales in the 

AC treatment recorded, three by DBs and three by the AB and none in the SC treatment.  In 

these instances, the winner’s updated reservation bid was less than the seller’s reservation price. 

   
6.2 Asymmetric Prices and Quantities Hypothesis 

We now test whether asymmetric capacities result in asymmetric prices and quantities between 

the AB and DBs.  We estimate the following winning bid (price dependent) empirical model 

separately for each treatment by Ordinary Least Squares.  Using only the data of the highest 

(denoted 1 j h ) bidder to drop out of the bidding, the estimated price (winning bid) equation 

for each treatment and simulation is 

4

0 1 2
3

hq q hiq r hdq hlq
r

P CV AB S                                                                                   (2) 

where: hqP  price paid for the qth unit auctioned, 1 q Q ; 0  intercept; qCV   true common 

value for the qth unit; hiqAB   AB dummy variable in the symmetric treatment where i = 1 if one 

of the potential joint venture firms were to win the qth unit auctioned and 0 otherwise, 

alternatively, the AB dummy variable in the asymmetric treatment where i = 1 if the AB wins the 

qth unit auctioned and 0 otherwise; 2h qS  and 3h qS  auction session dummy variables, where d = 1 
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w.r.t. auction sessions 2 or 3 and 0 otherwise; and ( 1)lq l q lqv , where l indicates the 

respective auction session (1, 2 or 3) cross-section.   

The true common value is included as a proxy for the changing average private 

signals/reservation bids per unit.  According to general theory we expect 1 0 .  For comparison 

purposes, the SC treatment results for 2 (test for asymmetric prices) control for a potential joint 

venture among bidders 1, 2 and 3.  In the AC treatment, bidder 3 is the AB representing the joint 

venture.  Bidders designated as 4 and 5 remain the same in both treatments.           

The auction session variables are included to capture any unique group dynamics.  For 

instance, a group may generally be more risk averse, or perform poorly at solving for subgame 

perfection.  Also, subjects in the experiment were recruited from a pool of students who may 

have prior relationships, or develop unobservable synergies during the experiment, the type and 

extent to which are unknown.  As such, the sign of the coefficient on each auction session is 

unknown.     

The data are arranged in a time series fashion across auction sessions, auction periods and 

units auctioned within period.  The data include all units purchased less the six no-sales in the 

AC treatment.  Auction session represents the cross-section within the time series of observables.  

The change in subjects across each auction session may cause some disruption to the time series 

components of the model.  Auction period is not a cross section as the series contains the same 

set of subjects.  Therefore, to test for serial correlation, we follow a procedure suggested in 

Greene (2003, 317-318).  The aggregate model including all auction sessions is first estimated.  

Corresponding rho’s are then estimated for each cross-section.  A Durbin-Watson test statistic is 

calculated based on the average estimated rho per cross-section.  If serial correlation is 

determined to be a problem, the data are transformed by the Yule-Walker procedure.   
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6.2.1  Results 

Results of the estimated treatment equations (2) are provided in table 2.  Based on R2, both 

models fit the data quite well.  Not surprisingly, the underlying true common value in both 

treatments provides the greatest contribution to the dependent variable, winning bid.  Prices paid 

across auction sessions were significantly different from one another, hence indicating some 

unobservable synergies existed within groups of bidders.   

In the SC treatment, there were no statistical differences in prices paid between the 

hypothetical joint purchasing venture and the two latter disadvantaged bidders.  Hence, no 

apparent value advantages were perceived among the potential joint purchasing venture 

members.  However, in the AC treatment the AB paid significantly lower prices on average than 

the DBs, regularly purchasing the last three units uncontested (figure 2), and purchased roughly 

50 percent of the total units available as predicted (table 3).  Therefore, we reject the null, H0 1, 

and conclude that with asymmetric capacities, asymmetric prices and quantities between the AB 

and DBs persist.  

 
6.3  Option Value Bidding Hypothesis  

We now test whether bidders shade their bids indicative of option value bidding in each 

treatment.  The estimated bidding models are estimated separately in two stages.  Following the 

RNNE bidding equation (1), the first stage is the bidding function of the first bidder to drop out.  

The second stage bidding function consists of all those bidders remaining in the bidding, 

excluding the winner. 

Using only the data of the first bidder (or bidders in case of a tie) observed to drop out, 

(denoted 1j ), the first bidding model is 



18 
 

5 8

1 0 1 1 2 1 1 6 1 1 1
3 7

q q iq r sq zq r dq lq
r r

D PS AB Risk SubPerf S                                       (3) 

where: 1qD  the observed first drop-out bid for the qth unit sold; 0  the intercept; 1qPS  the 

private signal held by the first bidder to drop-out of the bidding for the qth unit sold and is equal 

to the risk neutral Nash equilibrium (RNNE) bidding strategy denoted in equation (1); 1iqAB  

same definition as equation (2), but only applies to the AC treatment; 1sqRisk   three dummy 

variables where s = 1 at the subject’s switching point from the safer to riskier option is at the 

paired lottery 6, 7 or 8 and 911, and 0 otherwise, where the base comparison is a switching point 

of paired lottery 5 (risk neutral) and higher values increasing in risk aversion; 1zqSubPerf   

dummy variable where z = 1 if the subject incorrectly answered the subgame perfect pre-test 

(ability to backward induct) and 0 otherwise; 1dqS  and 1lq  are the same definitions as in equation 

(2).  

Using the data of all subsequent bidders observed to drop out and not win the unit, 

(denoted1 j h ), the second bidding model is 

5

(1 ) 0 1 (1 ) 2 (1 ) (1 ) 6 (1 )
3

8

(1 ) (1 )
7

            

j h q j h q j h iq r j h sq j h zq
r

r j h dq j h lq
r

D RB AB Risk SubPerf

S                             
(4) 

where: (1 )j h qD   any jth observed ordered drop-out bid from 1 j h  for the qth unit sold, 0  

intercept; (1 ) 1
(1 ) 2

j h q q
j h q

PS D
RB   updated reservation bid which is equal to the risk neutral 

Nash equilibrium (RNNE) bidding strategy denoted in equation (1); iqAB  same definition as 

                                                      
11 Switching points 8 and 9 are combined due to collinearity problems found during estimation. 
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equations (2) and (3), but only applies to the AC treatment to test for possible asymmetric 

bidding; (1 )j h sqRisk  and (1 )j h zqSubPerf   same definitions as in equation (3); and  (1 )j h dqS  and 

1 ,j h lq  same definitions as equations (2) and (3).   

We estimate both reduced and full models for each treatment to check the robustness of 

bid shading indicative of option value bidding.  The reduced models are absent controls for 

bidder characteristics and group dynamics and thus are identified by the RNNE bidding model.  

The RNNE bidding model imposes the restrictions that the intercept coefficients 0 0 and 0  

and 1 1 and 1 . Though losing the full structural identification, we choose to regress the 

observed data’s updated reservation bid, (1 )j h qRB , on drop-out bids because i) subjects were 

specifically educated on the value of reservation bidding via sufficient statistics to mitigate the 

winner’s curse and ii) (1 )j h qRB was provided in subjects electronic cards.     

By controlling for the AB in the AC treatment, we are able to test whether bidder 

knowledge of asymmetric capacity constraints is manifested in asymmetric bidding.  Given the 

earlier symmetric price results, we do not control for a potential joint purchasing venture in the 

SC treatment.  In both treatments we expect higher risk aversion to result in higher drop-out bids.  

Bidders who understand backward induction and subgame perfection are expected to shade their 

drop-out bids, more so in the AC treatment.  No expectations can be derived for the impacts of 

auction session.   

Data are maintained in the same cross-section time-series fashion as in the price 

estimation of equation (2), as well as in order of drop outs for each unit sold, and serial 

correlation is tested and addressed in the same manner.  Again, each auction session of the 
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treatments represents the cross-sections of the data. F-tests are conducted to test the intercept 

restrictions for evidence of bid shading.   

 
6.3.1  Bidding Function Results 

The Ordinary Least Squares results of the first and subsequent drop-out bidding functions are 

provided in table 4.  Based on R2, all reduced and full models fit the data quite well.  With the 

exception of the SC’s full model for the first drop-out bid, the intercept is not significantly less 

than zero.  This suggests bidders in the SC treatment did not significantly shade their bids, thus 

indicating that bidders did not weigh the option value of winning the last of twelve units with 

one less bidder.  However, all AC model intercepts were significantly less than zero.  Therefore, 

bidders significantly shaded their bids indicating that the three bidders accounted for the option 

value of winning later units.  Given these results, we fail to reject the option value bidding null, 

H0 2, across drop-out bids for the symmetric capacity treatment.  However, we reject the option 

value bidding null, H0 2, for the asymmetric capacity treatment and conclude that with 

asymmetric capacities both first and subsequent bidders shade their bids below a RNNE bidding 

strategy without partially binding capacity constraints.   

In all the reduced and full models, the strongest explanatory variables were private 

signals for the first to drop out and the updated reservation bid for subsequent drop-out bids.  

From the full model estimations, more risk averse bidders tended to submit higher bids in the SC 

treatment only.  Those who performed well at the subgame perfection test (centipede game) 

generally shaded their bids more those who did not, but particularly in the AC treatment.  With 

the exception of the first bidders to drop out in the SC treatment, auction session did not appear 

to impact the results.  Finally, the capacity advantaged bidder’s drop-out bids were significantly 

higher than the disadvantaged bidders indicating a more aggressive bidding strategy.     
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6.4 Surplus Transference Hypothesis  

The observed (OBS) and simulated RNNE average prices, average per unit surpluses per 

treatment are provided in table 5.  No subject experienced bankruptcy.  Though not statistically 

different, subjects paid on average slightly more than expected under RNNE in the SC treatment 

and earned less surplus per unit than if they had engaged in a RNNE strategy.  Also not 

statistically different in the AC treatment, prices were slightly less, and per unit surpluses slightly 

higher, than those expected when bidders follow a RNNE strategy.  Average per unit prices were 

not statistically different in the AC treatment, but were roughly one token less or 10% of the 

possible private signal range.  However, the average per unit surpluses was significantly higher 

in the AC treatment.  Therefore, we reject the null, H0 3, and conclude that the joint venture 

transfers surplus from sellers to buyers. 

7. Conclusions 

Capacity constraints can significantly impact the bidding behavior and outcomes, especially in 

the case of a capacity advantaged bidder.  We extend unit-demand sequential common value 

English auction literature by incorporating realistic multi-unit demand and a limited degree of 

excess industry capacity.  The impacts of capacity constraints and the creation of a capacity 

advantaged bidder on competition in a laboratory auction are observed.  The creation of 

asymmetric capacities, potentially by a joint venture, merger or common bidding agent, can 

significantly alter the strategic interactions among the remaining bidders resulting in reduced 

competition and asymmetric outcomes of price and quantity between a capacity advantaged and 

disadvantaged bidders.     
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Our results indicate that the asymmetric outcomes of price and quantity are largely driven 

by the capacity advantage.  The advantaged bidder in our study is able to win later units 

uncontested after smaller disadvantaged bidders meet their capacities.  The advantaged bidder, 

facing less competition than the disadvantaged bidders, is observed to pay lower prices on 

average than disadvantaged bidders.  Average per unit price, though not statistically smaller, was 

found to be economically depressed by roughly 10 percent after the formation of the joint 

purchasing venture.  Taken together, the predicted and observed market outcomes associated 

with a capacity advantaged bidder are similar to those predicted by value advantaged bidder 

theory and observed empirically (Bikhchandani 1988; Klemperer 1998; Rose and Kagel, 2008; 

Coatney, Shaffer and Menkhaus 2012).   

Contrary to value advantaged bidder theory, we find a positive externality from the 

presence of a capacity advantaged bidder.  The surpluses of the disadvantaged bidder are 

significantly enhanced, rather than reduced, primarily because there are fewer competing 

bidders.  Our empirical evidence also suggests that the reduction in competition is potentially 

greater when a bidder is both value and capacity advantaged.  For instance, the merger or joint 

venture may simultaneously reduce transactions costs conferring both a capacity and value 

advantage.   

 Though we also find that the capacity advantaged bidder bids more aggressively than 

disadvantaged bidders, our results are not directly comparable with value advantaged bidder 

theory.  Value advantaged bidder theories do not account for i) the source, potentially from an ex

ante strategic choice, ii) the sustainability of the advantage, nor iii) the potential for changes in 

industry structure resulting from such an advantage.  Therefore, our results suggest that further 
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theoretical and empirical investigations of various forms and combinations of capacity and value 

advantages are warranted.   

We find that bidder characteristics are important considerations, especially when there 

are many bidders.  Not surprisingly, bidders who perform poorly at backward induction may not 

have considered the reduction in competition for latter units and were thus unable to take full 

advantage of option value bidding.  Risk averse bidders in the more competitive atmosphere of 

the no-collaboration treatment appear to have traded off per unit surpluses with the desire to 

purchase more units. 

Finally, we observe an unexpected finding.  A statistically significant transfer of surplus 

from seller to buyer does not require a statistically significant decrease in average prices.  The 

impacts of strategic choices seem to be masked by the noise of random valuations and bids 

across multiple units.  This pattern suggests that empirical analyses of anticompetitive behavior 

in real world sequential common-value auctions that do not find a statistical difference in prices 

cannot conclude that competition was not significantly reduced (Porter 2005).   
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Table 1: Holt and Laury Risk Aversion Pre-test and Results 

 Ten Paired Lottery-Choice 
Decisions    

Lottery Option A Option B 

Expected Payoff 
Difference by 

Choosing 
Option A over B 

Choose 
Option B 

Percent of 
Subject Pool 

Switching from 
Option A to B 

1 1/10 of $5.00,  
9/10 of$4.00 

1/10 of $10.00,  
9/10 of$0.25 2.875 insane 0 

2 2/10 of $5.00,  
8/10 of $4.00 

2/10 of $10.00,  
8/10 of $0.25 2.000 highly risk 

loving 0 

3 3/10 of $5.00,  
7/10 of $4.00 

3/10 of $10.00,  
7/10 of $0.25 1.125 very risk 

loving 0 

4 4/10 of $5.00,  
6/10 of $4.00 

4/10 of $10.00,  
6/10 of $0.25 0.025 slightly risk 

loving 0 

5 5/10 of $5.00,  
5/10 of $4.00 

5/10 of $10.00,  
5/10 of $0.25 -0.625 risk neutral 29.17 

6 6/10 of $5.00,  
4/10 of $4.00 

6/10 of $10.00,  
4/10 of $0.25 -1.500 slightly risk 

averse 29.17 

7 7/10 of $5.00,  
3/10 of $4.00 

7/10 of $10.00,  
3/10 of $0.25 -2.375 very risk 

averse 25.00 

8 8/10 of $5.00,  
2/10 of $4.00 

8/10 of $10.00,  
2/10 of $0.25 -3.250 highly risk 

averse 8.33 

9 9/10 of $5.00,  
1/10 of $4.00 

9/10 of $10.00,  
1/10 of $0.25 -4.125 extremely risk 

averse 8.33 

10 10/10 of $5.00,  
0/10 of $4.00 

10/10 of $10.00, 
0/10 of $0.25 -5.000 comatose 0 
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Table 2: Results of Testing Null Hypotheses 1 (Asymmetric Prices) 

 

Symmetric 

Capacity 

(5 Bidders)   

Joint Venture and 

Asymmetric Capacity 

(3 Bidders) 

Winning Bid

 

Coefficient 1 

(Std. Error) 

Coefficient 1 

(Std. Error) 

Intercept 
-0.72 

(0.43) 

-0.79** 

(0.37) 

CV 
0.996* 

(0.006) 

0.987* 

(0.005) 

AB2 
0.07 

(0.25) 

-0.50** 

(0.21) 

S2 
0.816*

(0.295)

0.655*

(0.260)

S3 
0.671**

(0.295)

0.587*

(0.262)

R2 0.993 0.995

D-W 2.00 2.08
*Significantly different from 0 at  = .01.
** Significantly different from 0 at  = .05.
1 OLS estimates are reported as the null of no serial 
correlation cannot be rejected.  The estimated rho’s for 
the symmetric treatment model across auction sessions 
are .09, -0.02 and -0.07.  The estimated rho’s for the 
asymmetric treatment model across auction sessions are -
0.05, 0.06 and -0.13.  The Durbin-Watson (D-W) is 
approximated by 2(1- � ). 
2 The advantaged bidder (AB) in the symmetric treatment 
compares the price differential between the potential 
joint venture firms to firms excluded from the joint 
venture. 
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Table 3: Results of Testing Null Hypotheses 1 (Asymmetric Quantities): Average Percent 
Purchases by Treatment and Bidder Type - Observed and Predicted 

Strategy 

Symmetric Capacity 

(5 Bidders)   

Joint Venture and Asymmetric Capacity 

(3 Bidders)   

Average Total Purchases per 

Auction Period 

Average Total Purchases per Auction 

Period 

Bidders  

1 to 3 

(obs=648) 

Bidders  

4 and 5 

(obs=432) 

Advantaged 

Bidder 3 

(obs=648) 

Disadvantaged 

Bidders 4 and 5 

 (obs=432) 

Observed 
0.20 

(0.40) 

0.21 

(0.40) 

0.50 a 

(0.50) 

0.24 a 

(0.43) 

Predicted 
0.19 

(0.39) 

0.22 

(0.41) 

0.50 a 

(0.50) 

0.25 a 

(0.43) 
a Shaprio-Wilk test rejects the null of normality for symmetric capacity and asymmetric
capacity at the  = 0.01.  The one tailed Wilcoxon Two-Sample Test rejects the null that 
purchases by the capacity advantaged bidder are not greater than the disadvantage bidder at 
the  = 0.01. 



27 
 

Table 4: Capacity Treatment Results Testing Null Hypotheses 2 (Option Value Bidding) 
and Hypotheses 3 (Aggressive Bidding) 

 
Symmetric Capacity 

(5 Bidders)   
Joint Venture and Asymmetric Capacity 

(3 Bidders)   

 
First  

Drop-Out Bids  
Subsequent  

Drop-Out Bids  
First  

Drop-Out Bids  
Subsequent  

Drop-Out Bids  
 Reduced 

Model1 
Full 

Model2 
Reduced 
Model1 

Full 
Model2 

Reduced 
Model1 

Full 
Model2 

Reduced 
Model1 

Full 
Model2 

Intercept 0.14 
(0.37) 

-1.46** 
(0.32) 

0.22** 
(0.10) 

0.03 
(0.13) 

-0.74** 
(0.348) 

-2.18* 
(0.57) 

-1.13* 
(0.37) 

-1.57* 
(0.43) 

PS or 
RB3 

0.99* 
(0.006) 

0.99* 
(0.005) 

1.00* 
(0.002) 

1.00* 
(0.002) 

1.00* 
(0.006) 

1.00* 
(0.006) 

0.99* 

(0.006) 
1.00* 

(0.004) 
AB      0.88* 

(0.44)  0.87* 
(0.32) 

Risk6  0.67** 
(0.30)  0.04 

(0.09)  0.48 
(0.65)  0.78 

(0.47) 
Risk7  0.81* 

(0.28)  0.32* 
(0.10)  0.86 

(0.56)  0.60 
(0.42) 

Risk8,9  0.65** 
(0.33)  0.41* 

(0.12)  -0.45 
(0.95)  -0.03 

(0.70) 
SubPerf  0.65* 

(0.23)  -0.15*** 
(0.08)  2.46* 

(0.90)  1.55* 
(0.58) 

S2  1.93* 
(0.26)  0.12 

(0.09)  0.22 
(0.45)  -0.0008 

(0.34) 
S3  0.75* 

(0.27)  0.11 
(0.10)  0.60 

(0.44)  -0.07 
(0.33) 

R2 .993 .995 .999 .999 .994 .995 .915 .999 
D-W 1.65 2.12 1.97 2.05 1.87 2.06 1.75 2.03 
*Significant at  = .01. **Significant at  = .05. ***Significant at  = .10. 
1 Yule-Walker estimates of the standard errors are reported for the reduced models due to positive serial 
correlation.   
2 Because there is no serial correlation, OLS estimates are reported for the full models. The Durbin- 
Watson (D-W) is approximated by 2(1- � ).  The estimate rho’s for the symmetric treatment first stage 

model across auction sessions are -0.17, 0.03 and -0.04 and second stage -0.05, -0.07 and 0.04.  The 
estimate rho’s for the asymmetric treatment first stage model across auction sessions are -0.19, 0.20 and -
0.11 and second stage -0.11, 0.10 and -0.03. 
3 PS (private signal) is applicable to the first drop-out bid per equation (3) and RB (reservation bid) is 
applicable to the subsequent drop-out bids per equation (4). 
- No condition index was greater than 20 for any model (Greene 2003, pg. 58). 
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Table 5: Capacity Treatment Results Testing Null Hypothesis 3 (Surplus Transference) for 
Observed (OBS) and Risk Neutral Nash Equilibrium (RNNE) Simulations  

Symmetric Capacity  

(5 Bidders)   

OBS RNNE OBS RNNE 

Average Prices 

(Std. Dev.) 

Average Prices  

(Std. Dev.) 

Average Per 

Unit Surplus 

(Std. Dev.) 

Average Per 

Unit Surplus 

(Std. Dev.) 

56.47 

(20.72) 

56.21 

(20.61) 

0.39 a1,b1 

(1.79) 

0.65 a1,b2 

(1.81) 

Joint Venture and Asymmetric Capacity 

(3 Bidders)   

55.46 

(20.55) 

55.58 

(20.36) 

1.33 a2 

(1.59) 

1.28 a2 

(1.68) 
a1 vs.a2 and b1 vs. b2 Shaprio-Wilk test rejects the null of normality at the 

 = 0.05 for the symmetric treatment and at  = 0.01 for the 

asymmetric treatment.  The one tailed Wilcoxon Two-Sample Test 

rejects the null that the asymmetric treatment average per unit 

surplus is not greater than the symmetric treatment mean at the  = 

0.01. 
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Figure 1: Backward Induction Pre-test (Centipede Game) 

 

 

Figure 2: Percentage Wins per Unit by the Advantaged (AB) and Disadvantaged Bidders 
(DB)
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Appendix A: Derivation of the Bidder Competition Path – Units 7 through 12 - Asymmetric 

Capacity Treatment

Assuming bidding strategies are symmetric, capacity disadvantaged bidders (DBs) and the 

capacity advantaged bidder (AB) have an equally likely chance of winning units 1 to 7.  From 

the negative binomial distribution bidders replace the probability of facing three bidders for unit 

7, prob(b=3, 7) = 1, with its certainty equivalent.  The probability any given bidder b wins unit 7 

is prob(b win 7) = 1/3 and the probability one of the DB will win unit 7 is prob(DB win 7) = 2/3.  

If one of the DB wins unit 7, b = 2 for unit 8 and prob(b win 8) = 1/2.  If A wins unit 7, b = 3 for 

unit 8 and prob(b win 8) = 1/3 and the probability one of the DB will win unit 8 is prob(DB win 

7) = 2/3, and so on.  Table A.1 summarizes the approximate joint probabilities over the expected 

bidder profiles for units 7 through 12, with the most likely in bold. 

Table A.1: Joint Probabilities over Bidder Competition Profiles per Unit  

Unit 7 8 9 10 11 12 

prob(b=3) 1 .3333 .1111 .0370 .0123 .0041

prob(b=2) 0 .6667 .5556 .3519 .2006 .1024

prob(b=1) 0 0 .3333 .6111 .7870 .8873

 

Three bidders are expected to compete up through the 7th unit, where the 7th unit represents the 

expected breaking point for a reduction in the number of competing bidders.  There likely will be 

2 bidders competing for units 8 and 9.  This is because AB has a higher joint probability of 

winning the 8th unit.  At unit 9, the auction game is expected to end as a DB has a higher joint 

probability of winning.  All bidders expect the AB to purchase units 10, 11 and 12 uncontested.   


