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Impacts of a Capacity Advantaged Bidder in Sequential Common Value Auctions:
Evidence from the Laboratory

Abstract
As bidders reach capacity throughout a sequential common value auction, theory predicts they
will account for the option value of purchasing later units against fewer rivals. Mergers, joint
purchasing arrangements, or a common bidding agent may result in a capacity advantaged
bidder. Using laboratory experiments, we find that bidders account for the option value of
winning later units when capacity constraints are significantly binding. Similar to the predictions
of value advantaged bidder theory, the capacity advantaged bidder bids more aggressively,
purchasing more units at lower prices than disadvantaged rivals. However, the creation of a

capacity advantaged bidder transfers surplus to all bidders primarily due to the reduction in the
number of bidders.

1. Introduction
Advantaged bidder theory predicts that a value advantaged bidder in common value auctions
strategically bids more aggressively resulting in higher bids than would otherwise be expected
when common values are the same for all bidders (Bikhchandani 1988; Klemperer 1998; Rose
and Kagel 2008). The aggressive bidding reduces competition by enhancing the winner’s curse
of a disadvantaged rival. In a sequential multi-unit auction, the value advantaged bidder would
be expected to purchase most, if not all, units at prices below those of a disadvantaged rival
resulting in asymmetric prices and quantities between these two bidder types. Therefore, a
disadvantaged bidder earns less surplus than the advantaged bidder and less surplus than when
common values are the same for all bidders.

Laboratory research has not supported the value advantaged bidder theory (Levin and
Kagel 2005; Rose and Levin 2008). Recent empirical research of prices in English auctions for
cattle, however, has observed such asymmetries between an allegedly cost (value) advantaged
bidder (a common agent representing a collaboration of beef processors) and independent

bidders (Coatney, Shaffer and Menkhaus 2012). Prices also were significantly less than regional



averages indicating a reduction in competition (Coatney, Shaffer and Menkhaus 2012; Coatney
and Tack 2011). While the degree of cost advantage held by the common bidding agent could
not be explicitly identified, holding multiple purchase orders from some of the largest firms
likely resulted in a capacity advantage for the agent. There is both theoretical and empirical
evidence of reduced competition in English auctions resulting from a value advantaged bidder.
Could there also be a capacity advantage that contributes to reduced competition?

Our research contributes to the literature by exploring the potential for a capacity
advantage based explanation of reduced competition and asymmetric prices and quantities
between advantaged and disadvantaged bidders in an English auction setting. Generally
speaking, when at least some bidders are expected to reach capacity before the end of an auction,
bidders are expected to shade their bids in accordance with the option value of winning later
units against fewer rivals (Weber 1983; Bernhardt and Scoones 1994; Fatima, Wooldridge and
Jennings 2005). A capacity advantage can arise when a subset of capacity constrained firms
either merge, purchase units at an auction through a joint purchasing arrangement, or form a
buyer collaboration by hiring a common bidding agent. Mergers are common place across all
industries and joint purchasing arrangements and common bidding agents are prevalent in the
crude oil, health care and livestock industries (Hendricks and Porter 1992; FTC/DOJ 1996;
USDA, GIPSA 2008).

Because asymmetries in capacity can occur after a subset of similarly sized firms
combine their purchases, we must also simultaneously address the competitive impacts resulting
from the creation of a capacity advantaged bidder. In doing so, we design two treatments to be
tested in the laboratory — symmetric and asymmetric capacity constraints. Bidding agents have

identical purchase or capacity requirements in the symmetric case. In the latter treatment, an



advantaged bidder is created by a hypothetical joint purchasing venture. The asymmetric
treatment increases the likelihood that all but the advantaged bidder reaches capacity before the
end of the auction period. Therefore, as a robustness check, we allow for a fairly restrictive
auctioneer/seller reservation price in the laboratory experiment to combat the potential for single
bidder competition toward the end of the auction.

Results from sequential common value English auction laboratory experiments indicate
that the capacity advantaged buyer bids more aggressively than disadvantaged bidders, and the
advantaged bidder is able to purchase more units at prices below those purchased by the
disadvantaged bidders. These results are consistent with current value advantage theory. There
also is evidence of option value bidding as bidders shade their bids for early units, especially in
the presence of a capacity advantaged bidder. Furthermore, the creation of the advantaged
bidder transfers a significant amount of surplus to both advantaged and disadvantaged

competitors. These results are robust in the presence of restrictive seller reservation prices.

2. Bidding in Common Value English Auctions

We present the theory that provides the basis for comparison in our estimated bidding equations
presented later. Under the following bidding strategy it is assumed that either capacity
constraints do not impact bidding decisions or bidders simply fail to recognize the possibility of
reduced competition for later units.

We begin by assuming that i =1,...,n symmetric firms (bidders) compete for multiple
units offered during the auction period, g =1,...,Q . Because bidders ignore or fail to recognize
future reductions in competition, we can ignore the unit’s subscript. Following Levin, Kagel and

Richard (1996), the true common value, x, , for each unit is independently and identically drawn



from a uniform distribution with supports (i—g). Each bidder’s private signal PS, for each unit

is then independently and identically drawn from the uniform distribution with supports

[max(g, X, — &), min (Z X, +g)} ! The&, which is common knowledge, can be thought of as

bidder expertise in evaluating the true common value.

As the bidding ascends in a common value English auction, the one-shot risk-neutral
Nash equilibrium (RNNE) bidding strategy when capacity constraints are non-binding for the
I =3<n bidders is for the lowest private value signal holder to drop out of the bidding when
their signal is reached (Milgrom and Weber 1982; Levin, Kagel and Richard 1996). All drop-
out bids are perfectly observable and are common knowledge to all market participants. From
the information conveyed by the first drop-out bid, the n—1 bidders still in the bidding optimally
drop out in accordance with their updated unbiased estimate of the true common value
(reservation bid). This strategy protects bidders against adverse selection, thus mitigating the

effects of “winners curse”. The ordered vector of RNNE drop-out bids is

(Ps., +d,,) (PS, +di)

d =| PS,
' 2 2

L]

(1)

! The authors refer to the area of the joint unconditional distribution of private signals and
common values when max(x, X, —&) = x as region 1, [(x, —¢&),(X, + &)] as region 2 and
min(?, X, +g) =X asregion 3. Interestingly, in region 1, if X, = X then all private signals drawn

are greater than the true common value.
% This presumes that the auctioneers initial asking bid is below the lowest private signal held by

the bidders.



Bidders are observed to drop out of the bidding in order of their ranked private signals

S,j» Where j=1 is the lowest up to j =h, the highest private signal. The d;, = PS;, is the first

(Ps—i,1<j<h + di,l) are the

bidder observed to drop out of the bidding and the d”, ,_; ., = 5
subsequent observed drop-out bids. The winner holding the highest private signal (s_; ) wins

(Ps—i,h—l + di,l)
5 :

the bid and pays the second highest drop-out bid, d”;, , =

Because n>3 may not be guaranteed before the end of the auction period as capacity
constraints bind, we further consider the cases if n reaches two or one. If n=2are remaining for

the g < Q units, again x, is independently and identically drawn for each unit from a uniform
distribution with supports (i, 5). For simplicity we assume private signals are independently
and identically drawn from the uniform distribution with supports [x, —&, X, +¢] 3 Letting
X=%—¢€ ;_( =X, +¢, the k™ highest private signal order statistic is

n+1-k
n+1

Ers ZZ“L[ j(;_(—;_() Even with only two bidders, the dominant strategy in an English

auction is for the lowest private signal holder to drop out of the bidding first (Milgrom and
Weber 1982). If the low private signal bidder were to continue bidding and win, the expected
price paid is greater than the true common value, an irrational decision. The highest signal
holder’s best response is to wait for the lowest signal bidder to drop out. In the eventuality there

is ever an uncontested bidder, n=1, we assume the auctioneer establishes a reservation price

® These are region 2 of the joint unconditional distribution of private signals and common values.



equal to lowest expected private signal r =E,_, = ;(+(—11)(}— ;()v q ("™ highest order
ZAN £

statistic) rather than letting an item go for bid of zero.

3. Capacity Constraint Considerations

Because firms that compete for common value objects such as crude oil and cattle for processing
typically maintain excess capacity (USDA, GIPSA 2007; Corts 2008), we are specifically
concerned about the impact of what we will define later as a partially binding capacity constraint.
Previous option value bidding research by Fatima, Wooldridge and Jennings 2005 assumes
bidders hold unit or symmetric capacity. Therefore, the number of bidders is necessarily reduced
by one as the auction period progresses. However, in a more realistic multi-unit demand
(capacity) setting, predicting the level of competition for later units is not as straightforward as
reducing the bidders by one across each unit offered for sale. To predict which unit each of n

bidders expect to reach capacity, C,, we utilize the negative binomial distribution.* The negative

binomial distribution predicts the g™ unit each bidder unilaterally expects to reach capacity at

ai = < _1+l , Where the probability of winning any given unitis p, = 1 when bidders have the
p n

same common values and follow symmetric bidding strategies in that no one bidder bids more

* The negative binomial distribution is mathematically represented as

q-1 s(1-p)
r-1

s where

J p*(l-p)*® gq=s,5+1,..., with mean 3 and variance

P(Q=q|s,p)=[

p =1/n is the probability n symmetric bidders win any given unit, s =C, and Q is auction

supply.



aggressively/passively than their rival(s).> When an industry holds excess capacity, ZCi >Q,
i=1

this implies each bidder’s capacity is greater than the expected number of units they will

Q

purchase C, > E[q,], where E[q;] = For capacities to be non-binding, in the sense that every

bidder expects to compete for every unit, industry excess capacity is such that ai >Q.° For

capacities to be partially binding, bidders expect one less competitor at unit a+1 but do not

expect to win any unit uncontested such that ai +1<Q< ZCi ." For capacities to be fully
i=1

binding, all bidders expect to face no competition for at least the last unit sold, therefore,

ZCi <Q.% A common simplifying assumption is that bidders replace their expectations of the
i=1

path of competition throughout the auction session with their certainty equivalents (Wilson

1979). Unlike the unit-demand (capacity) theory of Fatima, Wooldridge and Jennings (2005),

the number of bidders is expected to remain constant from units q =1—» g, and then steadily

> Under asymmetric bidding strategies, p, would be endogenously determined.

® For example, letn =5, Q = 10 and C; = 3. Total industry capacity is 15 > Q. Therefore,

q=11>Q.

" For example, letn =5, Q = 12 and C; = 3. Total industry capacity is 15 > Q. Therefore,
g=11<Qand).C,=15>Q.

i=1
® For example, letn =5, Q = 15 and C; = 3. Total industry capacity is 15 = Q. Therefore,

g=11<Qand).C,=15=Q.

i=1



decline. We will demonstrate, however, that the creation of a capacity advantaged bidder under
partially binding capacity constraints could result in the capacity advantaged bidder facing no

competition for later units in the auction period.

4. Experiment Treatments and Hypotheses

We design two treatments to test the impacts of creating a capacity advantaged bidder on
competition in a laboratory English auction setting. The two treatments are designated as (1)
symmetric capacity (SC) and (2) asymmetric capacity (AC) created by a joint purchasing venture
of a subset of symmetric capacity firms. In designing the treatments, we select parameters that
result in partially binding capacity constraints in the SC treatment and become more binding in

the AC treatment.

4.1  Symmetric Capacity Treatment
In the SC treatment, there are n =5 equally capacity constrained buyers (firms). Each bidder’s

potential purchases per auction period is C, =3 units resulting in an industry capacity of

ZCi =15units. The quantity offered for sale per auction period is restricted toQ =12, resulting

i=1

in a 20 percent over capacity. These parameters meet the partially binding capacity constraint in
that each of the five bidders has an equal chance of reaching capacity by unit 11, and no bidder
expects to purchase any unit uncontested. Each bidder can expect to purchase between 2 and 3
units per auction period. Because bidders expect one less competitor for the last unit, there is an

incentive for bidders to shade their bids throughout the auction period.



4.2  Asymmetric Capacity Treatment

In the AC treatment, we form a joint purchasing venture among three out of the five firms. This
results in three remaining bidders competing in the auction - one capacity advantaged bidder
(AB) and two capacity disadvantaged bidders (DB).

The AB’s capacity is nine units, commanding a dominant position in total capacity.
Assuming symmetric bidding strategies, each of the two DBs and the AB expect to purchase
three and six units, respectively. Because the negative binominal distribution does not guarantee
clearly defined expected competition break points in all circumstances, the final determination of
the expected number of bidders across the full auction period is provided in Appendix A. Given
symmetric bidding strategies, the DBs are expected to begin reaching capacity by unit 7 and all
will reach capacity by unit 9. The AB is expected to win 50 percent of all units available during
the auction period, the last three uncontested. Hence, the creation of the joint purchasing
venture results in a capacity advantage, enhancing the likelihood the AB will win more units at
lower prices than the DBs. Furthermore, because all DB are expected to reach capacity before
the end of the auction period, the potential for bid shading and the resulting buyer revenue is

enhanced.

4.3  Hypotheses

The following are the null hypotheses we empirically test in the laboratory for each treatment.
Competition from disadvantaged bidders may be reduced due to their submission of
lower bids (Bikhchandani 1988; Klemperer 1998; Rose and Kagel 2008).
Ho 1 (Asymmetric Prices and Quantities): Without asymmetric capacities, asymmetric

prices and quantities between bidders cannot persist.



Some bidders are expected to reach capacity before the end of the auction by design and
to a greater extent in the AC treatment, given the predictions of Weber (1983) Bernhardt
and Scoones (1994) and Fatima, Wooldridge and Jennings (2005).

Ho 2 (Option Value Bidding): Both the first and subsequent bidders to drop out do not
shade their bids in either treatment below the RNNE bidding strategy.

Overall competition may be reduced due to the reduction in the number of bidders and
lower submitted bids by disadvantaged bidders, given the predictions of Bikhchandani
(1988), Klemperer (1998) Rose and Kagel (2008).

Ho 3 (Surplus Transference): The joint purchasing venture does not transfer surplus from

sellers to buyers.

5. Experimental Design

We conduct a series of three sessions for each of the two treatments. Each session consists of six
separate auction periods. Within each auction period, there are 12 individually auctioned units
via the irrevocable exit ascending “clock” method where the auctioneer’s starting price is less
than the lowest private signal for the unit and increases incrementally until the second to last
bidder exits (Levin, Kagel and Richard 1996). In total, 216 units were auctioned for each
treatment.

Randomly drawn common values and private signals per bidder identification and unit
auctioned remain the same across each of the six experimental sessions to control for bidding
and anomalies across treatments that may arise simply due to each bidder’s randomly drawn
private signal. Special consideration was given regarding a perceived value advantage in the AC
treatment when forming the joint purchasing venture. Because the randomly drawn private

signal means within the experimental session were the highest for bidders one and two, we chose
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bidder three to purchase on behalf of these two bidders in order to mitigate the potential
influence of a real value advantage.’

Subjects were recruited from graduate students in economics and finance, as well as from
upper-division mathematics courses. Instructions were read by the experimenter, questions
addressed, and a post-instruction quiz was given to insure that each subject understood the
instructions. The essential features of a common value English auction were incorporated into
the laboratory auction to test the above hypotheses. Subjects were provided information of i) the
number of bidders, ii) the number of auction periods, iii) the number units offered for sale per
auction period, iv) each bidder’s capacity constraint, v) subject identification by bidder type (DB
or AB), vi) the number of firms comprising the joint purchasing venture, vii) the payoff
functions of all bidders, and viii) the seller’s reservation price is equal to some expected lowest
private signal.

Practice rounds were conducted to familiarize subjects with the procedures of the auction
and data entry into an electronic buyer’s card (Excel spreadsheet). To begin the auction, asking

bids were projected on a screen in the front of the room. Unknown to the subjects, the algorithm

for auctioneer’s asking bid (ASB) for the g™ unit sold was ASB, = min (slyq -2 rq) , where s, is

the lowest ranked private signal actually drawn for the g unit sold and r, is the seller’s

reservation price. The seller’s reservation price equaled the lowest expected private signal
calculated from the distribution of private signals for each unit sold. Each ASB was well below

expected levels of bid shading. Subjects were given a bidding paddle embossed with a number

¥ Mean (standard deviation) private value draws across the six auction periods were 59.81
(20.75), 58.42 (20.80), 56.94 (20.68) for bidders 1 through 3, respectively, and 55.45 (20.57),

and 54.10 (20.79) for bidders 4 and 5, respectively.
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to identify the bidder, dropping their paddle to indicate exit from bidding. Subjects were able to
see who was bidding, closely monitored by the experimenter, and not allowed to communicate
by talking or using gestures.

Finally, though negative aggregate surpluses are not expected given the reservation bid
training, subjects started with small unknown symmetric equal endowments. Aside from a $5.00
show-up fee, the endowment was set large enough to mitigate potential bankruptcies and kept
unknown to avoid overly aggressive bidding due to limited liability (Hansen and Lott, 1991;

Loureiro, Umberger and Hine 2003).

5.1 Mitigating Subject Learning of the Winner’s Curse

Experience matters, especially in the brutal environment of common value auctions (Garvin and
Kagle 1994; Levin, Kagel and Richard 1996; Kagel and Richard 2001; Casari, Ham and Kagel
2007). Our subject pool had no prior experience in common value auctions. To enhance their
attention to the issues of capacity constraints, we informed our novice bidders about the winner’s
curse and demonstrated how to avoid it by forming a reservation bid from the bid of the first
bidder to drop out of the bidding.® At no time were the subjects informed that the reservation
bid was an equilibrium bidding strategy of any kind. Each bidder recorded the first drop-out bid
in electronic bidding sheets. Remaining active bidders were provided an updated reservation bid

in accordance with equation (1).

5.2  Backward Induction and Subgame Perfection Ability

19 Because of the importance of the winner’s curse, employers spend considerable time and

resources training new buyers before ‘turning them loose’.
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We attempt to control for each subject’s ability to choose subgame perfect bidding strategies.
Understanding the option value of winning later units requires the agent to backward induct a
fairly complex auction game. Experimental subjects routinely struggle with the cognitive
requirements, the expense of backward induction, as well as issues of trust and other human
behavior (McKelvey and Palfrey 1992; Fey, McKelvey and Palfrey 1996; Johnson et. al. 2002;
Binmore et. al. 2002; Palacios-Huerta and Volij 2009; Levitt, List and Sadoff 2011).

Prior to conducting the auction experiment, subjects were given a one-shot simultaneous
choice four stage increasing pie centipede game (figure 1). Subjects were the “You” player and
were matched against the experimenter “Me”. Subject ability to evaluate credible
threats/promises they face in real world, “Me” further stated “If you are willing to wait, | will
split the $4.00 of my budget that | have to play with you. What will you do?” To avoid potential
contamination of the subsequent auction experiment by endowments and relationship between
the experimenter and subjects, experiment participants were not informed of the experimenter’s

choice or of their payoffs until completion of the session.

5.3  Risk Aversion

We also attempt to control for each subject’s risk aversion. Prior to conducting the auction
experiment, a risk aversion test following Holt and Laury (2002) (table 1) was administered.
Although the dominant bidding strategy in common value English auctions does not rely on risk
aversion, if bidders are risk averse, they would likely bid lower than predicted by risk neutrality
(Levin, Kagel and Richards 1996; Kagel 1995). The more important consideration in our
experimental setting is that bidders may partially focus on the risk of not fulfilling their capacity

or expected number of purchases. This may be especially true for the capacity advantaged bidder
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who is less likely to reach capacity. As a result, risk averse bidders may bid more aggressively

(Buccola 1982; Ashenfelter 1989; McAfee and Vincent 1993).

6. Empirical Estimation and Results
We begin by describing general outcomes from the two treatments. The remainder of this

section is comprised of the empirical tests of the null hypotheses stated above.

6.1  General Description of Data and Results

The relevant data from the experiment sessions include bidder characteristics derived from the
pre-tests, drop-out bids, bidder identification, wins per bidder, surpluses, and earnings per unit.
The data revealed that 56 percent of the actual winners matched the predicted winner in the SC
treatment and 74 percent for the AC treatment. Hence, efficiency was improved by the creation
of a capacity advantaged bidder.

A summary of the risk aversion pre-test is provided in table 1. In general, most (2/3)
subjects did not switch from the less risky lottery option (A) to the riskier lottery option (B) until
after paired lottery choice 5, the risk neutral switching point. Some in fact did not switch to the
more risky option until lottery 9, indicating extreme risk aversion. From the centipede game,
roughly 71 percent of the subjects correctly chose the subgame perfect equilibrium strategy of
“take” in the first round suggesting the majority of the study participants exhibited the ability to
backward induct and evaluate threats/promises that are not credible.

In the SC treatment, the bidding data consisted of 221 of 216 possible first drop-out bids
and 495 of 648 subsequent possible drop-out bids because of drop-out ties and bidders reaching
capacity. In the AC treatment, the bidding data consisted of 166 of 162 possible first drop-out

bids and 102 of 126 subsequent possible drop-out bids because of drop-out ties, bidders reaching
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capacity, and the AB regularly winning the last three units uncontested (figure 2). Consistent
with the negative binomial predictions, unit 9 is the average point in the auction where the AB
faced the last DB.

Other aspects of the bidding data include instances when the seller’s reservation price
was binding upon the sale price. Inthe SC and AC treatments, the seller’s reservation price was
binding for two and 49 percent of the purchases, respectively. If the buyer refused to accept the
seller’s reservation price the unit was not sold (no-sale). There were six observed no-sales in the
AC treatment recorded, three by DBs and three by the AB and none in the SC treatment. In

these instances, the winner’s updated reservation bid was less than the seller’s reservation price.

6.2  Asymmetric Prices and Quantities Hypothesis

We now test whether asymmetric capacities result in asymmetric prices and quantities between
the AB and DBs. We estimate the following winning bid (price dependent) empirical model
separately for each treatment by Ordinary Least Squares. Using only the data of the highest

(denoted 1< j <h) bidder to drop out of the bidding, the estimated price (winning bid) equation

for each treatment and simulation is
4

Phq =B+ :6)1CVq +5, ABhiq + Zﬁrshdq * &g )
r=3

where: B, = price paid for the g™ unit auctioned, 1<q<Q; B, = intercept; CV, = true common

value for the g™ unit; AB... = AB dummy variable in the symmetric treatment where i = 1 if one

hiq
of the potential joint venture firms were to win the q™ unit auctioned and 0 otherwise,
alternatively, the AB dummy variable in the asymmetric treatment where i = 1 if the AB wins the

q™ unit auctioned and 0 otherwise; Shaq @nd Sy, = auction session dummy variables, where d = 1

15



w.r.t. auction sessions 2 or 3 and 0 otherwise; and &, = pg; , 4, +Vi,» Where | indicates the

respective auction session (1, 2 or 3) cross-section.
The true common value is included as a proxy for the changing average private

signals/reservation bids per unit. According to general theory we expect 4, > 0. For comparison
purposes, the SC treatment results for g, (test for asymmetric prices) control for a potential joint

venture among bidders 1, 2 and 3. In the AC treatment, bidder 3 is the AB representing the joint
venture. Bidders designated as 4 and 5 remain the same in both treatments.

The auction session variables are included to capture any unique group dynamics. For
instance, a group may generally be more risk averse, or perform poorly at solving for subgame
perfection. Also, subjects in the experiment were recruited from a pool of students who may
have prior relationships, or develop unobservable synergies during the experiment, the type and
extent to which are unknown. As such, the sign of the coefficient on each auction session is
unknown.

The data are arranged in a time series fashion across auction sessions, auction periods and
units auctioned within period. The data include all units purchased less the six no-sales in the
AC treatment. Auction session represents the cross-section within the time series of observables.
The change in subjects across each auction session may cause some disruption to the time series
components of the model. Auction period is not a cross section as the series contains the same
set of subjects. Therefore, to test for serial correlation, we follow a procedure suggested in
Greene (2003, 317-318). The aggregate model including all auction sessions is first estimated.
Corresponding rho’s are then estimated for each cross-section. A Durbin-Watson test statistic is
calculated based on the average estimated rho per cross-section. If serial correlation is

determined to be a problem, the data are transformed by the Yule-Walker procedure.
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6.2.1 Results

Results of the estimated treatment equations (2) are provided in table 2. Based on R?, both
models fit the data quite well. Not surprisingly, the underlying true common value in both
treatments provides the greatest contribution to the dependent variable, winning bid. Prices paid
across auction sessions were significantly different from one another, hence indicating some
unobservable synergies existed within groups of bidders.

In the SC treatment, there were no statistical differences in prices paid between the
hypothetical joint purchasing venture and the two latter disadvantaged bidders. Hence, no
apparent value advantages were perceived among the potential joint purchasing venture
members. However, in the AC treatment the AB paid significantly lower prices on average than
the DBs, regularly purchasing the last three units uncontested (figure 2), and purchased roughly
50 percent of the total units available as predicted (table 3). Therefore, we reject the null, Ho 1,
and conclude that with asymmetric capacities, asymmetric prices and quantities between the AB

and DBs persist.

6.3 Option Value Bidding Hypothesis

We now test whether bidders shade their bids indicative of option value bidding in each
treatment. The estimated bidding models are estimated separately in two stages. Following the
RNNE bidding equation (1), the first stage is the bidding function of the first bidder to drop out.
The second stage bidding function consists of all those bidders remaining in the bidding,
excluding the winner.

Using only the data of the first bidder (or bidders in case of a tie) observed to drop out,

(denoted j =1), the first bidding model is
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5 8
Dy, =4 +4PS,, + 4,AB;, + z/ir Risky,, + 4;SubPerf,,, + Z}tr S (3)
r=3 r=7

where: D, = the observed first drop-out bid for the q™ unit sold; A, = the intercept; PS,,=the

private signal held by the first bidder to drop-out of the bidding for the g™ unit sold and is equal

to the risk neutral Nash equilibrium (RNNE) bidding strategy denoted in equation (1); AB,;,=
same definition as equation (2), but only applies to the AC treatment; Risk,,, = three dummy

variables where s = 1 at the subject’s switching point from the safer to riskier option is at the
paired lottery 6, 7 or 8 and 9*!, and 0 otherwise, where the base comparison is a switching point

of paired lottery 5 (risk neutral) and higher values increasing in risk aversion; SubPerf,,, =

dummy variable where z = 1 if the subject incorrectly answered the subgame perfect pre-test
(ability to backward induct) and O otherwise; S,,, and &, are the same definitions as in equation
).

Using the data of all subsequent bidders observed to drop out and not win the unit,

(denoted1< j <h), the second bidding model is
5 -
Dicjanyg =70 + 71RBu iy T 72ABu jcnyig + ZS, e RISk(l<j<h)sq + 7eSUbPerf(1<j<h)zq
8 - @
+ Z 7rS(1<j<h)dq *+ Eacj<mig

r=7

where: Dy, = any j™ observed ordered drop-out bid from 1< j <h for the g™ unit sold, Ao =

) PS .. jchyq + Dig N N .
intercept; RB,_ .1y, = ) = updated reservation bid which is equal to the risk neutral

Nash equilibrium (RNNE) bidding strategy denoted in equation (1); AB,, = same definition as

1 Switching points 8 and 9 are combined due to collinearity problems found during estimation.
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equations (2) and (3), but only applies to the AC treatment to test for possible asymmetric

bidding; Risk and SubPerf = same definitions as in equation (3); and S;,_; )4, and

(1<j<h)sq (1<j<h)zq

& jniq = Same definitions as equations (2) and (3).

We estimate both reduced and full models for each treatment to check the robustness of
bid shading indicative of option value bidding. The reduced models are absent controls for
bidder characteristics and group dynamics and thus are identified by the RNNE bidding model.

The RNNE bidding model imposes the restrictions that the intercept coefficients 4, and y, =0
and 4, and y, =1. Though losing the full structural identification, we choose to regress the

observed data’s updated reservation bid, RB on drop-out bids because i) subjects were

(1<j<h)q *
specifically educated on the value of reservation bidding via sufficient statistics to mitigate the

winner’s curse and ii) RB,_;_,,, was provided in subjects electronic cards.

By controlling for the AB in the AC treatment, we are able to test whether bidder
knowledge of asymmetric capacity constraints is manifested in asymmetric bidding. Given the
earlier symmetric price results, we do not control for a potential joint purchasing venture in the
SC treatment. In both treatments we expect higher risk aversion to result in higher drop-out bids.
Bidders who understand backward induction and subgame perfection are expected to shade their
drop-out bids, more so in the AC treatment. No expectations can be derived for the impacts of
auction session.

Data are maintained in the same cross-section time-series fashion as in the price
estimation of equation (2), as well as in order of drop outs for each unit sold, and serial

correlation is tested and addressed in the same manner. Again, each auction session of the
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treatments represents the cross-sections of the data. F-tests are conducted to test the intercept

restrictions for evidence of bid shading.

6.3.1 Bidding Function Results

The Ordinary Least Squares results of the first and subsequent drop-out bidding functions are
provided in table 4. Based on R?, all reduced and full models fit the data quite well. With the
exception of the SC’s full model for the first drop-out bid, the intercept is not significantly less
than zero. This suggests bidders in the SC treatment did not significantly shade their bids, thus
indicating that bidders did not weigh the option value of winning the last of twelve units with
one less bidder. However, all AC model intercepts were significantly less than zero. Therefore,
bidders significantly shaded their bids indicating that the three bidders accounted for the option
value of winning later units. Given these results, we fail to reject the option value bidding null,
Ho 2, across drop-out bids for the symmetric capacity treatment. However, we reject the option
value bidding null, Hy 2, for the asymmetric capacity treatment and conclude that with
asymmetric capacities both first and subsequent bidders shade their bids below a RNNE bidding
strategy without partially binding capacity constraints.

In all the reduced and full models, the strongest explanatory variables were private
signals for the first to drop out and the updated reservation bid for subsequent drop-out bids.
From the full model estimations, more risk averse bidders tended to submit higher bids in the SC
treatment only. Those who performed well at the subgame perfection test (centipede game)
generally shaded their bids more those who did not, but particularly in the AC treatment. With
the exception of the first bidders to drop out in the SC treatment, auction session did not appear
to impact the results. Finally, the capacity advantaged bidder’s drop-out bids were significantly

higher than the disadvantaged bidders indicating a more aggressive bidding strategy.
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6.4  Surplus Transference Hypothesis

The observed (OBS) and simulated RNNE average prices, average per unit surpluses per
treatment are provided in table 5. No subject experienced bankruptcy. Though not statistically
different, subjects paid on average slightly more than expected under RNNE in the SC treatment
and earned less surplus per unit than if they had engaged in a RNNE strategy. Also not
statistically different in the AC treatment, prices were slightly less, and per unit surpluses slightly
higher, than those expected when bidders follow a RNNE strategy. Average per unit prices were
not statistically different in the AC treatment, but were roughly one token less or 10% of the
possible private signal range. However, the average per unit surpluses was significantly higher
in the AC treatment. Therefore, we reject the null, Hy 3, and conclude that the joint venture

transfers surplus from sellers to buyers.

7. Conclusions

Capacity constraints can significantly impact the bidding behavior and outcomes, especially in
the case of a capacity advantaged bidder. We extend unit-demand sequential common value
English auction literature by incorporating realistic multi-unit demand and a limited degree of
excess industry capacity. The impacts of capacity constraints and the creation of a capacity
advantaged bidder on competition in a laboratory auction are observed. The creation of
asymmetric capacities, potentially by a joint venture, merger or common bidding agent, can
significantly alter the strategic interactions among the remaining bidders resulting in reduced
competition and asymmetric outcomes of price and quantity between a capacity advantaged and

disadvantaged bidders.
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Our results indicate that the asymmetric outcomes of price and quantity are largely driven
by the capacity advantage. The advantaged bidder in our study is able to win later units
uncontested after smaller disadvantaged bidders meet their capacities. The advantaged bidder,
facing less competition than the disadvantaged bidders, is observed to pay lower prices on
average than disadvantaged bidders. Average per unit price, though not statistically smaller, was
found to be economically depressed by roughly 10 percent after the formation of the joint
purchasing venture. Taken together, the predicted and observed market outcomes associated
with a capacity advantaged bidder are similar to those predicted by value advantaged bidder
theory and observed empirically (Bikhchandani 1988; Klemperer 1998; Rose and Kagel, 2008;
Coatney, Shaffer and Menkhaus 2012).

Contrary to value advantaged bidder theory, we find a positive externality from the
presence of a capacity advantaged bidder. The surpluses of the disadvantaged bidder are
significantly enhanced, rather than reduced, primarily because there are fewer competing
bidders. Our empirical evidence also suggests that the reduction in competition is potentially
greater when a bidder is both value and capacity advantaged. For instance, the merger or joint
venture may simultaneously reduce transactions costs conferring both a capacity and value
advantage.

Though we also find that the capacity advantaged bidder bids more aggressively than
disadvantaged bidders, our results are not directly comparable with value advantaged bidder
theory. Value advantaged bidder theories do not account for i) the source, potentially from an ex
ante strategic choice, ii) the sustainability of the advantage, nor iii) the potential for changes in

industry structure resulting from such an advantage. Therefore, our results suggest that further
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theoretical and empirical investigations of various forms and combinations of capacity and value
advantages are warranted.

We find that bidder characteristics are important considerations, especially when there
are many bidders. Not surprisingly, bidders who perform poorly at backward induction may not
have considered the reduction in competition for latter units and were thus unable to take full
advantage of option value bidding. Risk averse bidders in the more competitive atmosphere of
the no-collaboration treatment appear to have traded off per unit surpluses with the desire to
purchase more units.

Finally, we observe an unexpected finding. A statistically significant transfer of surplus
from seller to buyer does not require a statistically significant decrease in average prices. The
impacts of strategic choices seem to be masked by the noise of random valuations and bids
across multiple units. This pattern suggests that empirical analyses of anticompetitive behavior
in real world sequential common-value auctions that do not find a statistical difference in prices

cannot conclude that competition was not significantly reduced (Porter 2005).
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Table 1: Holt and Laury Risk Aversion Pre-test and Results

Ten Paired Lottery-Choice

Decisions
Expected Payoff Percent of
. . Difference by Choose Subject Pool
Lottery Option A Option B Choosing Option B Switching from
Option A over B Option Ato B
1 1/10 of $5.00, | 1/10 of $10.00, 5 875 insane 0
9/10 of$4.00 9/10 0f$0.25 '
2 2/10 of $5.00, 2/10 of $10.00, 2000 highly risk 0
8/10 of $4.00 8/10 of $0.25 ' loving
3 3/10 of $5.00, | 3/10 of $10.00, 1125 very risk 0
7/10 of $4.00 7/10 of $0.25 ' loving
4 4/10 of $5.00, | 4/10 of $10.00, 0025 slightly risk 0
6/10 of $4.00 6/10 of $0.25 ' loving
5 5/10 of $5.00, | 5/10 of $10.00, risk neutral
5/10 0f $4.00 | 5/10 of $0.25 "0.625 29.17
6 6/10 of $5.00, 6/10 of $10.00, slightly risk
4/10 of $4.00 | 4/10 of $0.25 -1.500 averse 29.17
7 7/10 of $5.00, | 7/10 of $10.00, very risk
3/10 0f $4.00 | 3/10 of $0.25 2375 averse 25.00
8 8/10 of $5.00, 8/10 of $10.00, highly risk
2/10 of $4.00 2/10 of $0.25 -3.250 averse 8.33
9 9/10 of $5.00, | 9/10 of $10.00, 4125 extremely risk 8.33
1/10 of $4.00 1/10 of $0.25 ' averse '
10 10/10 of $5.00, | 10/10 of $10.00, -5.000 comatose 0
0/10 of $4.00 0/10 of $0.25 '
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Table 2: Results of Testing Null Hypotheses 1 (Asymmetric Prices)

Symmetric Joint Venture and
Capacity Asymmetric Capacity
(5 Bidders) (3 Bidders)
Winning Bid  Coefficient™ Coefficient®
(Std. Error) (Std. Error)
-0.72 -0.79"
Intercept
(0.43) (0.37)
0.996" 0.987"
CcVv
(0.006) (0.005)
, 0.07 -0.50"
AB
(0.25) (0.21)
. 0.816" 0.655"
? (0.295) (0.260)
. 0.6717 0.587"
’ (0.295) (0.262)
R 0.993 0.995
D-W 2.00 2.08

“Significantly different from 0 at a. = .01.

™ Significantly different from 0 at o = .05.

L OLS estimates are reported as the null of no serial
correlation cannot be rejected. The estimated rho’s for
the symmetric treatment model across auction sessions
are .09, -0.02 and -0.07. The estimated rho’s for the
asymmetric treatment model across auction sessions are -
0.05, 0.06 and -0.13. The Durbin-Watson (D-W) is
approximated by 2(1- ﬂp)-

2 The advantaged bidder (AB) in the symmetric treatment
compares the price differential between the potential
joint venture firms to firms excluded from the joint
venture.
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Table 3: Results of Testing Null Hypotheses 1 (Asymmetric Quantities): Average Percent
Purchases by Treatment and Bidder Type - Observed and Predicted

Symmetric Capacity
(5 Bidders)

Joint Venture and Asymmetric Capacity
(3 Bidders)

Average Total Purchases per

Average Total Purchases per Auction

Strategy Auction Period Period
Bidders Bidders Advantaged Disadvantaged
1to3 4and 5 Bidder 3 Bidders 4 and 5
(obs=648) (obs=432) (obs=648) (obs=432)
0.20 0.21 0.50° 0.24%
Observed
(0.40) (0.40) (0.50) (0.43)
) 0.19 0.22 0.50° 0.25%
Predicted
(0.39) (0.41) (0.50) (0.43)

% Shaprio-Wilk test rejects the null of normality for symmetric capacity and asymmetric
capacity at the a = 0.01. The one tailed Wilcoxon Two-Sample Test rejects the null that
purchases by the capacity advantaged bidder are not greater than the disadvantage bidder at

the a = 0.01.
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Table 4: Capacity Treatment Results Testing Null Hypotheses 2 (Option Value Bidding)
and Hypotheses 3 (Aggressive Bidding)

Symmetric Capacity

Joint Venture and Asymmetric Capacity

(5 Bidders) (3 Bidders)
First Subsequent First Subsequent

Drop-Out Bids Drop-Out Bids Drop-Out Bids Drop-Out Bids

Reduced Full Reduced Full Reduced Full Reduced Full
Model!  Model>  Model®  Model? | Model* Model>  Model'!  Model?

Intercept 0.14 -1.46" 0.22" 0.03 -0.74" -2.18 -1.13°  -1.57
(0.37) (0.32) (0.10) (0.13) (0.348) (0.57) (0.37) (0.43)

PS or 0.99" 0.99" 1.00" 1.00" 1.00" 1.00" 0.99" 1.00"
RB? (0.006)  (0.005)  (0.002)  (0.002) | (0.006) (0.006)  (0.006)  (0.004)
AB 0.88" 0.87
(0.44) (0.32)

Riske 0.677 0.04 0.48 0.78
(0.30) (0.09) (0.65) (0.47)

Risk; 0.81° 0.32 0.86 0.60
(0.28) (0.10) (0.56) (0.42)

Riskse 0.65" 0.41 -0.45 -0.03
(0.33) (0.12) (0.95) (0.70)

SubPerf 0.65 -0.15™ 2.46" 1.55"
(0.23) (0.08) (0.90) (0.58)
S, 1.93 0.12 0.22 -0.0008
(0.26) (0.09) (0.45) (0.34)

S; 0.75 0.11 0.60 -0.07
(0.27) (0.10) (0.44) (0.33)

R’ 993 .995 .999 .999 .994 .995 915 .999

D-W 1.65 2.12 1.97 2.05 1.87 2.06 1.75 2.03

“Significant at a = .01. " Significant at « =.05. ~ Significant at a = .10.
LYule-Walker estimates of the standard errors are reported for the reduced models due to positive serial

correlation.

2 Because there is no serial correlation, OLS estimates are reported for the full models. The Durbin-
Watson (D-W) is approximated by 2(1- H, ). The estimate rho’s for the symmetric treatment first stage

model across auction sessions are -0.17, 0.03 and -0.04 and second stage -0.05, -0.07 and 0.04. The

estimate rho’s for the asymmetric treatment first stage model across auction sessions are -0.19, 0.20 and -
0.11 and second stage -0.11, 0.10 and -0.03.
*PS (private signal) is applicable to the first drop-out bid per equation (3) and RB (reservation bid) is

applicable to the subsequent drop-out bids per equation (4).

- No condition index was greater than 20 for any model (Greene 2003, pg. 58).
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Table 5: Capacity Treatment Results Testing Null Hypothesis 3 (Surplus Transference) for
Observed (OBS) and Risk Neutral Nash Equilibrium (RNNE) Simulations

Symmetric Capacity
(5 Bidders)
OBS RNNE OBS RNNE

) ) Average Per Average Per
Average Prices  Average Prices ) )
Unit Surplus Unit Surplus

(Std. Dev.) (Std. Dev.)
(Std. Dev.) (Std. Dev.)
56.47 56.21 0.39%4M 0.65%"
(20.72) (20.61) (1.79) (1.81)
Joint Venture and Asymmetric Capacity
(3 Bidders)
55.46 55.58 1.33% 1.28%
(20.55) (20.36) (1.59) (1.68)

alvs.azandblvs-bZ ghanrio-Wilk test rejects the null of normality at the
a = 0.05 for the symmetric treatment and at a = 0.01 for the
asymmetric treatment. The one tailed Wilcoxon Two-Sample Test
rejects the null that the asymmetric treatment average per unit
surplus is not greater than the symmetric treatment mean at the o =
0.01.

28



Figure 1: Backward Induction Pre-test (Centipede Game)
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Figure 2: Percentage Wins per Unit by the Advantaged (AB) and Disadvantaged Bidders
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Appendix A: Derivation of the Bidder Competition Path — Units 7 through 12 - Asymmetric
Capacity Treatment

Assuming bidding strategies are symmetric, capacity disadvantaged bidders (DBs) and the
capacity advantaged bidder (AB) have an equally likely chance of winning units 1 to 7. From
the negative binomial distribution bidders replace the probability of facing three bidders for unit
7, prob(b=3, 7) = 1, with its certainty equivalent. The probability any given bidder b wins unit 7
is prob(b win 7) = 1/3 and the probability one of the DB will win unit 7 is prob(DB win 7) = 2/3.
If one of the DB wins unit 7, b = 2 for unit 8 and prob(b win 8) = 1/2. If A wins unit 7, b = 3 for
unit 8 and prob(b win 8) = 1/3 and the probability one of the DB will win unit 8 is prob(DB win
7) = 2/3, and so on. Table A.1 summarizes the approximate joint probabilities over the expected
bidder profiles for units 7 through 12, with the most likely in bold.

Table A.1: Joint Probabilities over Bidder Competition Profiles per Unit

Unit 7 8 9 10 11 12

prob(b=3) 1 3333 1111 0370 .0123 .0041
prob(b=2) 0 6667 5556 .3519 .2006 .1024
prob(b=1) 0 0 3333 6111 .7870 .8873

Three bidders are expected to compete up through the 7™ unit, where the 7" unit represents the
expected breaking point for a reduction in the number of competing bidders. There likely will be
2 bidders competing for units 8 and 9. This is because AB has a higher joint probability of
winning the 8" unit. At unit 9, the auction game is expected to end as a DB has a higher joint

probability of winning. All bidders expect the AB to purchase units 10, 11 and 12 uncontested.
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