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Motivation

The paper is motivated by solving an empirical problem:

estimating the effect of Medicare Levy Surcharge (MLS)

on the take-up of Private Health Insurances (PHI) from

contaminated data.
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Figure 1. PHI take-up against observed ln taxable income
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Two issues:

• Function has discontinuous point(s) (probably at un-

known locations);

• Data are contaminated by measurement errors.
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The problem

• The Model:

Yi = g(Xi) + ηi, (1)

where g(·) is a continuous function except that it has
a discontinuity at location s with the size of the dis-
continuity D = g(s+)−g(s−) unknown; the location of
the discontinuity s is either known or unknown (in our
case, it is known); and the error term ηi is uncorrelated
with Xi.

• Observed sample: {Wi, Yi}, i = 1, . . . , n

Wi = Xi + ϵi, (2)

where ϵi has a known distribution.
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The problem (2)
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Figure 2. Illustration of the problem
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Aims

• To solve our empirical problem; and in doing so,

• to develop a difference de-convolution kernel estimator

of functions with discontinuities at unknown locations

using contaminated data.
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Figure 3. Function estimates with 95% confidence bands
for PHI against ln taxable income
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Structure of the talk

1. Existing estimators of function discontinuities with error-

free data and of continuous functions with contami-

nated data;

2. Our approach when the distribution of ϵ is known;

3. Some Monte Carlo results;

4. Application: estimating the effect of MLS on the take-

up of PHI using contaminated data;

5. An alternative approach when the distribution of ϵ is

unknown;

6. Conclusions.
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Estimating functional discontinuities with

error-free data

When X is observed, the unknown regression function with

a discontinuity is usually estimated in two stages:

1) The discontinuity and its location are detected and esti-

mated using a range of estimators proposed in a few related

literatures such as change-point detection, edge detection

and image reconstruction (see Qiu, 2005);

2) The regression curve is estimated separately for each

side of the estimated discontinuity point.
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Difference kernel Estimators of functional

discontinuities

Diagnostic function:

d̂k(x, h) = ĝ+(x)− ĝ−(x), (3)

where ĝ+(x) =
∑

YiKr(
Xi−x

h )/
∑

Kr(
Xi−x

h ); and Kr(·), a
one-sided kernel function.

Estimators of the location and size of the discontinu-
ity:

ŝ = arg max
x∈[S0,S1]

d̂k(x, h), (4)

D̂ = d̂k(ŝ, h). (5)
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Estimating continuous functions with

error-ridden regressors

With measurement errors, a continuous g can be esti-

mated with alternative methods including the so-called de-

convolution kernel estimator proposed by Fan and Truong

(1993).

This estimator makes use of the property that the Fourier

Transform of the convolution of two distributions is the

product of Fourier Transforms of the two distributions.
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Fan and Truong (1993) de-convolution

estimator:

ĝd(x) =
∑

YjK
∗(

x−Wj

hd
)/
∑

K∗(
x−Wj

hd
) (6)

=
1

nhd

∑
YjK

∗(
x−Wj

hd
)/f̂n(x) (7)

where

K∗(u) =
1

2π

∫ +∞

−∞
exp−ituΦK(t)/Φϵ(t/hd)dt, (8)
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A difference de-convolution kernel estimator

Diagnostic function:

d̂d(x, h̃d) = ĝdr(x)− ĝdl (x) (9)

where

ĝdr(x) =
∑

YjK
∗
r(

x−Wj

h̃d
)/
∑

K∗
r(

x−Wj

h̃d
), (10)

K∗
r(u) = ŵr

i (x)K
∗(u), (11)

ŵr
i (x) = ˆProb{Xi > x|Wi} (12)
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If the location s is known, estimators of the size of

the discontinuity:

D̂d = d̂d(s, h̃d). (13)
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If the location is unknown, estimators of the location

and size of the discontinuity:

ŝd = arg max
xj∈[S0,S1]

d̂d(x, h̃d), (14)

D̂d = d̂d(ŝd, h̃d). (15)
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Recover the unknown function

Once s is estimated, g can be estimated separately for

points at each side of the discontinuity: x < ŝd and x > ŝd,

respectively.

The same trick of weighting kernels of each observation i

by ŵr
i (ŝd) and ŵl

i(ŝd) is needed, to estimate ĝdsr ≡ ĝd(x|x >

ŝd) and ĝdsl ≡ ĝd(x|x < ŝd), respectively.

The weights are relative to the discontinuity point so that

ĝdsr and ĝdsl are still ‘two-sided’ kernel estimators.
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The procedure can be summarised as follows:

Step 1: Estimate f̂X using f̂n in (7) from which wr
i (x) can

be calculated;

Step 2: Construct ĝdr(x) (and ĝdl (x)) using (10);

Stem 3: Estimate ŝd and D̂d using (14) and (15), respec-

tively;

Step 4: Obtain ĝdlr, the estimates of g, by estimating ĝdsr
and ĝdsl around ŝd separately using de-convolution kernels

weighted by ŵr
i (ŝd) and ŵl

i(ŝd), respectively.
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Bandwidth selection and band estimation

• Bandwidths are chosen using a bootstrapping proce-
dure for a continuous function which minimise the Asymp-
totic Mean Integrated Square of Error (AMISE), as
those proposed by Delaigle and Gijbels (Annals of the
Institute of Statistical Mathematics, 2004).

• The confidence bands of the unknown discontinuity lo-
cation is obtained using a bootstrapping procedure:

– We draw with replacements R bootstrap samples
from the original dataset. For each of these R sam-
ples, we obtain estimated discontinuity location ŝr,
r = 1, . . . R. A confidence interval of s is then con-
structed from the empirical distribution of {ŝ1, . . . ŝR}.
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Monte Carlo Simulations

The setting:

y ∈ {0,1}

with

Prob{y = 1|x} =
exp(x/4+ 0.8I(x > 1.0))

exp(x/4+ 0.8I(x > 1.0)) + 1
,

x ∼ N(0,1)

W = x+ ϵ

and ϵ follows a two-point distribution with σϵ = .1 or .2.
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Results of Monte Carlo Simulations

Table 1. MISE of 200 Monte Carlo Simulations
(True Parameters: x = 1 and d ≈ .179)

Known location Unknown location
σ n Size Function Location Size Function
0.1 1,000 0.0037 0.0018 0.0355 0.0022 0.0018
0.2 1,000 0.0024 0.0012 0.0757 0.0013 0.0019
0.1 3,000 0.0013 0.0007 0.0110 0.0006 0.0008
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Empirical application—Perturbed data

• A confidentialised ‘1% Sample Unit Record File of In-
dividual Income Tax Returns’ for the 2003-04 financial
year developed by the Australian Tax Office (ATO)

• For our purpose, we focus only on single males who are
between 20 and 69 years of age so that they all face
the same $50,000 threshold;

• To minimise the number of income sources/deduction
sources so that we can have enough knowledge of the
error distribution, the sample is restricted further;

• The final sample for analysis consists of 4,357 individ-
uals.
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Empirical application—Sample statistics

Table 2. Sample statistics

Variable Mean Std. Dev.
Dummy, with PHI .302
Gross earnings ($k) 32.178 17.33
Total deductions ($k) 1.094 1.71
Taxable income ($k) 31.084 16.87
Work-related deductions ($k) .958 1.63
Work-related/Total deductions (%) .809 .26
Nonwork related/Gross earnings (%) .004 .01
Obs. 4,357
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Empirical application—Results

Table 3. Estimates of the MLS effect at known threshold

h = .070(‘Optimal’) 0.223[0.18, 0.27]
h = .077 0.241[0.20, 0.28]
h = .062 0.199[0.15, 0.24]

In brackets are the bootstrapped 95% confidence intervals.
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Empirical application—Results

Table 4. Estimates of the MLS effect (unknown threshold)

Location Size
h = .070(‘Optimal’) 10.869[10.73, 10.97] .230[0.20, 0.28]
h = .077 10.869[10.73, 10.97] .249[.22, .30]
h = .062 10.869[10.72, 10.99] .209[0.19 0.26]

In brackets are the bootstrapped 95% confidence intervals.

29



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

9.9 10.1 10.3 10.5 10.7 10.9 11.1 11.3

PH
I ta

ke
-up

 

ln Taxable income 

gl

gr

d=gr-gl

glr

Figure 7. De-convolution kernel estimates for PHI against ln taxable

income (glr: two-sided; gl, gr: one-sided; d = gr − gl. hd = .070)

30



When the distribution of ϵ is unknown:

an alternative estimator (Kang, et al, 2015)

Compare the conventional kernel estimator and a ‘one-

step-right’ estimator:

ĝ+(x) =
n∑

j=1

YjKr

(
Wj − x

hn

)/ n∑
j=1

Kr

(
Wj − x

hn

)

ĝ
n,r
+ (x) =

n∑
i=1

YiKr

(
Wi − (x+ hn)

hn

)/ n∑
i=1

Kr

(
Wi − (x+ hn)

hn

)
,

(16)
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A modified kernel estimator for g+(x)

ĝn+(x) =

∑n
i=1 YiKr

(
Wi−x
hn

)
Kq

(
|ĝ+(Wi)−ĝ

n,r
+ (x)|

ρn

)
∑n

i=1Kr

(
Wi−x
hn

)
Kq

(
|ĝ+(Wi)−ĝ

n,r
+ (x)|

ρn

) , (17)

where ρn = maxx<Wi<x+hn |ĝ+(Wi)− ĝ
n,r
+ (x)|;

and Kq (as Kr) is also a decreasing kernel function on [0,1].
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A consistent estimator for s

• Under some regularity conditions, the estimator

ŝn = arg max
x∈(2hn,1−2hn)

∣∣∣ĝn+(x)− ĝn−(x)
∣∣∣

is consistent: |ŝn − s| = O(hn),

and the asymptotic bias of this estimator is smaller
than the estimator using conventional kernels.

• The corresponding jump magnitude D in g(x) can be
estimated by D̂ = ĝn+(ŝn)− ĝn−(ŝn)
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Conclusions

• We propose a new devolution-kernel estimator for func-
tions with discontinuities at unknown locations using
contaminated data;

• The results of Monte Carlo simulations show that the
estimator performs reasonably well;

• The estimator is used for estimating the effect of MLS
on the take-up of PHI in Australia; A sizable MLS effect
on the take-up of PHI is found at a location different
from the threshold implied by the policy;

• If the distribution of the measurement error term is un-
known, we propose a modified kernel estimator. Under
certain regularity conditions, the estimator is consis-
tent.
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