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Abstract
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large capacity comprise the core of the network, connecting them to all other dealers,
while dealers who have small capacity operate at the periphery. The model matches
recent empirical findings on the negative relationship between order sizes and markups.
More importantly, we show that there may be structural breaks in this negative rela-
tionship as variations in order sizes may alter the inter-dealer network. These results
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1 Introduction

Over-the-counter (OTC) markets have grown exponentially in the last decade. As OTC

markets grow, researchers have increasingly investigated the trading structure of these mar-

kets. Research interest is further stimulated by the recent financial crisis, which has brought

attention to the OTC market for subprime mortgage derivatives. However, studies on OTC

markets overlook an important element – inter-dealer trading. Since dealers act as in-

termediaries in OTC markets, inter-dealer trades should affect trades between dealers and

other market participants, and hence affect the entire market. To provide new insights into

how inter-dealer trades influence OTC trading, we study an important aspect of inter-dealer

trades, the dealers’trading network. Specifically, we ask several questions. How does such

a network form? What determines a dealer’s position within the network? How does the

network affect price determination in an OTC market?

To address these questions, we construct a theoretical model to study how dealers strate-

gically form an inter-dealer network (the selling network in particular), and we then examine

how such an inter-dealer network affects other aspects of an OTC market.1 In our model,

OTC dealers form an inter-dealer network and trade through the network to share their

inventory risks. The more links a dealer has, the more benefits the dealer obtains from

risk-sharing. But the more links a dealer has, the greater are the costs he has to bear for

maintaining his links. A major part of this linking cost comes from the funding constraint of

collateral. For example, a seller in the CDS markets is usually required to post collateral as

a protection in case he fails to deliver his commitment.2 Preparing collateral could be costly

because of funding liquidity. A dealer with many links faces a larger linking cost, as he has

to prepare a larger collateral pool in the event of selling in the inter-dealer market.

The trade-off between the benefit of risk-sharing and the funding cost of collateral de-

termine the shape of the inter-dealer network. At one extreme, when the collateral cost is

trivial compared with the risk-sharing benefit, the inter-dealer network is a complete net-

work. In a complete network, all dealers are connected. At the other extreme, when the

collateral cost is overwhelming, the inter-dealer network is an empty network, one in which

no dealer is connected with any other dealer. Between these two extremes, inter-dealer net-

works can exhibit connectedness to varying degrees depending on the risk-sharing benefit

and the collateral cost.
1We focus on the selling network because dealers are more likely to be net sellers in OTC derivative

markets. Empirical research by Peltonen, Scheicher, and Vuillemey (2014) shows that dealers are net sellers
in the CDS markets.

2Duffi e, Scheicher, and Vuillemey (2014) provide detail discussion on collateral requirements in the CDS
markets.
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Inter-dealer networks affect OTC trading insofar as the number of links a dealer has

influences his markup (the difference between the price for which a dealer buys a security

and the price at which he sells it), trading volume, and inventory risk. In a more connected

network, a dealer has more links, which leads to a higher markup, higher volume, and

lower inventory risk. In such a network, having more links gives a dealer greater market

power in the inter-dealer market, which enables the dealer to sell at a higher price to other

dealers. Since a markup is proportional to its corresponding inter-dealer price, this highly

connected dealer charges a higher markup. Having more links also provides a dealer with

more opportunities to trade in the interdealer market. As a result, the dealer completes

more trades and manages his inventory risk more effectively.

Our model resonates with recent empirical studies which show that inter-dealer networks

have a significant influence on OTC trading. Hollifield, Neklyudov, and Spatt (2012) study

the inter-dealer network of securitization markets (e.g., asset-backed securities, collateral

debt obligations, commercial mortgage-backed securities, and collateral mortgage obliga-

tions) and Li and Schürhoff (2012) study the inter-dealer network operating in the municipal

bond markets. Both studies document that the structure of the inter-dealer network corre-

lates with dealers’markups in OTC trading. Moreover, they show that inter-dealer networks

across OTC markets exhibit structural similarity in spite of trading distinct classes of assets.

This common structure is the core-periphery structure. That is, some dealers are closer to

the center of a network than others.

In the above-mentioned empirical studies, inter-dealer networks are treated as exoge-

nously determined. This limits the capacity of the analyses to explain why inter-dealer

networks form the observed core-periphery structure, and how the core-periphery network

is related to prices in OTC trading. In principle, inter-dealer networks should be jointly

determined with prices and trading volumes in equilibrium, since these are outcomes based

on dealers’decisions. This suggests that theoretical models are needed to explain the for-

mation of inter-dealer networks. More importantly, such theoretical models should generate

new empirical implications by treating inter-dealer networks as endogenously determined

rather than exogenously determined as in past empirical studies. The theoretical model we

construct in this paper satisfies these conditions.

Using differences in dealers’capacity of providing liquidity, our model explains the core-

periphery feature of an inter-dealer network. Large-capacity dealers who can accommodate

large orders comprise the core, while small-capacity dealers who only accommodate small

orders become the periphery. This gives a novel testable empirical prediction regarding a

dealer’s location in a network: a dealer’s capacity of liquidity provision positively determines

his centrality (a measure that captures how central a dealer is in a network).
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In addition, we show that the unconditional relationship between investors’trading prices

and dealers’centrality is ambiguous. Dealers with high centrality do not necessarily offer

better prices to investors than dealers with low centrality. However, this relationship is

determined when it is conditioned on the size of the investor order. On orders with the

same size, high-centrality dealers offer investors more favorable prices than low-centrality

dealers. This conditional relationship between investors’trading prices and dealers’centrality

is consistent with empirical findings in Hollifield, Neklyudov, and Spatt (2012). The above

suggests that the order size is an important control variable in determining how centrality

is related to investors’trading prices.

Another novel empirical implication arising from our model involves potential structural

breaks in the price-size and price-volatility relationships in OTC markets. Changes in order

sizes or volatility can alter the fundamental structure of an economy, which in the setup

of this work is the inter-dealer network. As a result, sudden structural jumps emerge in

these relationships. Based on this result, we suggest that empirical studies examining OTC

markets should control for the stability of an inter-dealer network in order to avoid model

misspecification. Empirical research should, for example, include a measure of a network’s

connectedness as an additional control variable interacting with other control variables in

the regression model.

To the best of our knowledge, our study is the first to study strategic formation of an

interdealer network arising from dealers’risk-sharing needs. Our model not only confirms

existing empirical findings, but also provides new empirical implications pertaining to OTC

markets. Malamud and Rostek (2013) have also studied dealers who share risks through

inter-dealer networks. While they focus on dealers’strategic interactions in simultaneous

trading on the network, I emphasize the formation process of the network. Although we

model the rise of an inter-dealer network from a risk-sharing perspective, we do not rule out

other possible forces that may generate such a network. For example, sharing information is

a possible incentive for building a dealers’network.

Our study is also the first to apply the risk-sharing idea of the network formation literature

to a specific type of financial market, the OTCmarket. This approach provides the advantage

of identifying the relationship between agents’payoffs and primitive parameters, e.g., order

sizes and volatility, as the trading protocol and needs are concrete and specific. As a result,

we can explore issues that have not yet received much attention. For example, we consider

how order sizes and volatility contribute to determining a network as well as how they affect

equilibrium outcomes such as prices and quantities traded through the network.

In the next section, we review the related literature. Section 3 presents the benchmark

model and Section 4 analyses the equilibrium results. In Section 5, we extend the benchmark
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model to a case in which dealers’capacity of providing liquidity varies and show the core-

periphery network that emerges in equilibrium. Section 6 discusses the implications of the

model for “hot potato”trading, which involves trades that occur between successive dealers.

The empirical implications are summarized in Section 7. Finally, we conclude in Section 8.

2 Literature Review

Inter-dealer trading has been an important subject in market microstructure studies for a

long time. Ho and Stoll (1983) point out that inter-dealer trading benefits dealers, since

dealers are better able to manage their inventory risks by trading among themselves instead

of filling an investor order with uncertain arrival. Viswanathan and Wang (2004) show

that inter-dealer trading also benefits investors. In their model, an investor prefers trading

with one dealer and letting that dealer unwind his extra inventory later in the inter-dealer

market rather than splitting up the order and trading with multiple dealers. Thus, inter-

dealer trading is beneficial to both dealers and investors. Both papers model the incentive

for inter-dealer trading as the sharing of inventory risks. Based on this risk sharing idea,

others build models to study issues such as price formation, information transmission, and

transparency in multi-dealer markets (see Biais (1993), Lyons (1997), Naik, Neuberger, and

Viswanathan (1999), de Frutos and Manzano (2002), Yin (2005), and Cao, Evans, and

Lyons (2006)). Empirical evidence supports risk-sharing as the main driver behind inter-

dealer trading. Reiss and Werner (1998) and Hansch, Naik, and Viswanathan (1998) find

that dealers on the London Stock Exchange use the inter-dealer market primarily to share

their inventory risks. In the foreign exchange market, Lyons (1995) finds that dealers control

risk by systematically laying off inventory to other dealers.

Another thread of literature to which this work contributes, studies price determination in

OTC markets. Duffi e, Garleanu, and Pedersen (2005, 2007) study how search and bargaining

determine prices in OTC markets.3 Spulber (1996), employing an alternative type of search

model, shows that prices in decentralized markets (OTC markets) are determined by dealers’

transaction costs.4 In addition, dealers’transaction costs also affect OTC market structure.

Atkeson, Eisfeldt, and Weill (2013) show that market entry costs help to determine the

3Vayanos and Wang (2007), Vayanos and Weill (2008), and Weill (2008) extend the original model to
study OTC markets with multiple assets. Lagos and Rocheteau (2009) relax the assumption on constraint
asset holdings in the original model, which enables market participants to accommodate trading frictions by
adjusting their asset positions.

4This type of search model also receives extended treatment in the literature. Rust and Hall (2003)
extend the original model by introducing a centralized market to compete with decentralized markets. Zhong
(2013) incorporates Knightian uncertainty into the search process to study the impact of transparency on
OTC markets.
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structure of OTC trading, and thereby prices charged in OTC trading. Past studies also show

that dealers’strategies influence price determination. For example, Zhu (2012) shows that

repeated visits to the same dealer results in a less favorable price for the trader. Empirically,

the price of an asset in OTC trading seems to depend on order sizes and transparency of the

market environment. Green, Hollifield, and Schürhoff (2007) find that a dealer earns smaller

markups on larger trades in municipal bond markets. This negative relationship between

order sizes and markups is also found in corporate bond markets by Schultz (2001) and

Randall (2013). Bessembinder, Maxwell, and Venkataraman (2006), Goldstein, Hotchkiss,

and Sirri (2007), and Edwards, Harris, and Piwowar (2007) estimate the bid-ask spread in the

OTC market for corporate bonds, finding that more transparent bonds have smaller bid-ask

spreads. Recently, new empirical studies (Li and Schürhoff (2012) and Hollifield, Neklyudov,

and Spatt (2012)) have discovered a new factor that affects prices in OTC markets, namely

the inter-dealer network.

Finally, our study adds to the growing literature on network studies in financial markets.

Compared with the rich applications of network theory that have been made to other areas

in economics, the application of network theory to financial markets has only just begun.5

Blume et al. (2009) and Gale and Kariv (2007) study how a network intermediates trades in

a decentralized market. Gofman (2011) assesses the effi ciency of resource allocation through

the trading network in an OTC market. Malamud and Rostek (2013) develop a general

framework for studying dealers’strategic interactions in decentralized markets. The decen-

tralized market in their model is represented by a hypergraph (an abstract network, loosely

speaking). Breton and Vuillemey (2014) perform a numerical analysis on the network of

credit exposures in OTC derivative markets to examine impacts from different regulatory

collateral and clearing requirements. Many past studies also focus on information acquisition

from a network and its impact on financial markets. Han and Yang (2012) extend the ratio-

nal expectation equilibrium model to study the information network in a financial market.

Babus and Kondor (2012) study information transmission through inter-dealer networks in

OTC markets by extending the model in Vives (2011) to games in networks. In addition

to using network models to study OTC markets, others apply network models to the inter-

bank market to analyze the contagion risk in the banking system (see Leitner (2005), Babus

(2013), Blume et al. (2013), and Elliott, Golub, and Jackson (2013)). There is also a growing

body of empirical studies that explore networks’implications on a variety of topics ranging

from return predictability to CEOs’wages (see Cohen and Frazzini (2008), Cohen, Frazzini,

5Economic research on networks has tapped into various fields, such as job hunting in labor economics,
decentralized market trading in microeconomics, and international alliance and trading agreements in macro-
economics. Jackson (2008) and Easley and Kleinberg (2010) provide excellent surveys of network applications
in economic research.
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and Malloy (2008), and Engelberg, Gao, and Parsons (2012)).

3 The Model

3.1 The Environment

Suppose there areN ≥ 2 dealers in an OTCmarket. All dealers have the same mean-variance

utility function over their wealth W , and all dealers have the same risk-aversion parameter

ρ > 0. That is,

u (W ) = E [W ] =
ρ

2
V ar [W ] . (1)

The initial endowment, consisting of a portfolio of f units of a risk-free asset and I units

of a risky asset, is identical for all dealers. In this initial endowment, the risk-free asset

has a constant value of 1, while the risky asset has a random value v following a normal

distribution N (v, σ2).

Figure 1: The Timeline

Figure 1 illustrates the timeline within the model. The timeline goes as follows. At date 0,

dealers strategically form an inter-dealer network by building or severing links between each

other. At date 1, an investor arrives and wants to trade an order of size z. Only one dealer

in the network meets this investor, with a probability of meeting of 1
N
, which is the matching

rate. Assuming that the matching rate is 1
N
implies that the arriving investor meets and

trades with a dealer with probability one. The price of the investor-dealer transaction is p1.

At date 2, the dealer who fills the investor’s order at date 1 re-trades with other dealers to

adjust his inventory risk. However, this order-filling dealer can trade only with those dealers

who are connected to him. In this inter-dealer trade, the order-filling dealer solicits bids from

his connected dealers, and then chooses the price that clears the market. To differentiate

that price from the investor-dealer price p1, we denote the price in the inter-dealer market
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as p2. Finally, at date 3, the value of the risky asset is realized. In Section 6, we extend

the model to consider multiple rounds of interdealer trading before the value of the asset

is realized. By doing so, we are able to generate implications on “hot potato” trading in

inter-dealer markets.

We assume that the risk-aversion parameter, the initial endowment, the distribution of

the risky asset’s value, the matching rate, and the cost of adding links are common knowledge

to all dealers. Further, we assume that the arriving investor is a seller. Another interpretation

of this assumption is that the order-filling dealer (at date 1) faces a positive order imbalance

that he has to sell in the inter-dealer market to balance his inventory. An example of this

assumption is the AIG, whose book consisting almost solely of sold protection before the

crisis.

Since the equilibrium is solved by backward induction, we discuss the equilibrium at each

date in a backward sequence in the following sections.

3.2 The Inter-Dealer Trade at Date 2

In an inter-dealer market, a given dealer is able to contact several other dealers to explore

their interest in trading through inter-dealer brokers. Typically, a dealer who has filled an

investor’s order solicits bids from other dealers. Then, as soon as the order-filling dealer

receives quotes from interested dealers he chooses the price to clear the market. Past studies

use search-theoretic models to capture such an inter-dealer trade (see Duffi e, Garleanu, and

Pedersen (2005, 2007) and Lagos and Rocheteau (2009)). Those studies postulate that an

order-filling dealer sequentially searches for another dealer with whom to conduct a bilateral

trade. Recently, empirical studies by Saunders, Srinivasan, and Walter (2002), Dunne, Hau,

and Moore (2010), and Hendershott and Madhavan (2013) suggest that inter-dealer trading

in OTC markets has become more like multilateral trading than bilateral trading. Services

from inter-dealer brokers and the evolution of inter-dealer markets into limit-order book alike

systems enable the order-filling dealer to approach other dealers at the same time rather than

searching sequentially among dealers. To capture this multilateral feature of inter-dealer

trading, we model the inter-dealer trade as an auction of shares, as in Viswanathan and

Wang (2004).7

To reflect that an order-filling dealer trades only through his inter-dealer network, we

modify the model in Viswanathan and Wang (2004) by restricting the order-filling dealer

7The share auction is also called a uniform-price double auction. In such an auction, each player (the
dealer in our model) bids for his residual supply and the market-clearing condition determines the price.
This trading structure is used extensively in the literature to study the impact of strategic player interactions
on asset prices (e.g., Kyle (1989), Vives (2011), and Malamud and Rostek (2013)).
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to soliciting bids only from his connected dealers. Specifically, if dealer i fills the investor’s

order at date 1, he then announces an auction at date 2 to all his connected dealers. In the

auction, dealer i’s connected dealers submit their demand schedules, which are combinations

of prices and quantities, to dealer i. After dealer i collects those demand schedules, he

chooses the price and quantity to clear the market.

Following Viswanathan and Wang (2004), in such an inter-dealer trade auction, dealer

i’s equilibrium strategy is

xi (p) =
ni − 1

ni

{
v − p
ρσ2

− (I + z)

}
, (2)

where xi (p) is dealer i’s net demand for the risky asset conditional on the market-clearing

inter-dealer price pi2 = p, ni is the number of links dealer i has. Let dealer j be a dealer who

is linked to dealer i; dealer j’s equilibrium strategy is

xj (p) =
ni − 1

ni

{
v − p
ρσ2

− I
}
, (3)

which is the quantity demanded by dealer j conditional on the market-clearing inter-dealer

price pi2 = p. The market-clearing condition, which requires that xi (p) +
∑

j : linked with i
xj (p),

indicates that the inter-dealer price is

pi2 = v − ρσ2
(
I +

z

ni + 1

)
. (4)

This implies

xi
(
pi2
)

= −ni − 1

ni + 1
z and xj

(
pi2
)

=
ni − 1

ni + 1

z

ni
.

Viswanathan and Wang (2004) prove that the above strategies (Eq.(2), Eq.(3)) and

price (Eq.(4)) constitute a unique linear equilibrium in the inter-dealer trade. In the linear

equilibrium, dealer i’s risky holding after the inter-dealer trade is

I + z + xi
(
pi2
)

= I +
2z

ni + 1
, (5)

and dealer j’s risky holding after the inter-dealer trade is

I + xj
(
pi2
)

= I +
ni − 1

ni (ni + 1)
z. (6)

Dealers who are not connected with dealer i maintain their risky holdings as before. Eq.(6)
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indicates that the minimum number of links for ensuring that the inter-dealer trade occurs is

two, since ni < 2 implies that xj (pi2) ≤ 0. In other words, if the order-filling dealer connects

to only one other dealer, no inter-dealer trade occurs.

Both dealer i and dealer j benefit from the inter-dealer trade. For dealer i, his welfare

increases by

Gi ≡ u

(
v

(
I +

2z

ni + 1

)
+ f − pi2xi

(
pi2
))
− u (v (I + z) + f) (7)

=
ρσ2

2

ni − 1

ni + 1
z2.

And for dealer j, his welfare increases by

Gj ≡ u

(
v

(
I +

ni − 1

ni (ni + 1)
z

)
+ f − pi2xj

(
pi2
))
− u (vI + f) (8)

=
ρσ2

2

ni − 1

ni + 1

(
z

ni

)2
.

These benefits become more prominent when the risk increases (that is, increases in ρσ2z2),

which reinforces the idea that the inter-dealer trade is a channel through which dealers share

inventory risks. The benefit for dealer i increases with the number of links he has, whereas

the benefit for dealer j decreases with the number of dealer i’s links. The asymmetric effect

of ni on Gi and Gj comes from endowment heterogeneity. To understand this, we can write

a general formula for an arbitrary dealer k’s gains from trade:

Gk =
(n− 1) (n+ 1)

n2
(
Ik − I

)2
,

where Ik is the initial risky asset position for dealer k, and I is the average position among

n + 1 dealers. The above expression shows that gains from trade consist of two parts. The

first part, (n−1)(n+1)
n2

, depends only on the number of dealers, while the second part,
(
Ik − I

)2
,

depends on the distribution of initial risky asset positions. Under the current assumption,

Ii−I = I+z−
(
I + z

ni+1

)
= ni

ni+1
z for a dealer i who starts with I+z units of the risky asset,

while Ij−I = I−
(
I + z

ni+1

)
= − z

ni+1
for all other dealers who start with I units of the risky

asset. On the one hand, an increase in ni increases
(ni−1)(ni+1)

n2i
=

n2i−1
n2i
. This liquidity effect

benefits all traders. On the other hand, an increase in ni increases
(
Ii − I

)2
=
(

ni
ni+1

z
)2

while decreasing
(
Ij − I

)2
=
(

z
ni+1

)2
. This distributional effect through changing I is the

source of asymmetry. Intuitively, an increase in ni moves I closer to Ij = I and away from
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Ii = I + z, thereby increasing dealer i’s gains from trade relative to other dealers’gains

from trade. Importantly, whenever a new link is added, the distributional effect is typically6

asymmetric, because, by definition, the average I cannot move in the same direction for

everyone.

3.3 The Investor-Dealer Trade at Date 1

In an OTC market, direct trades between investors are rare, since each investor has his

unique needs. In most cases, investors trade with OTC dealers. Having said that, it should

be noted that investors cannot trade with multiple OTC dealers simultaneously. The lack of

a centralized venue where dealers and investors can post their quotes implies that investors

and dealers must search their counterparties for trades in OTC markets.7 As a result, even

though inter-dealer trades have evolved into multilateral trading, trades between investors

and dealers remain bilateral.

Following precedent in the literature, we use a search-and-bargaining model to charac-

terize the bilateral trading relationship between investors and dealers. To emphasize the

influence of the inter-dealer network, we simplify the search problem. In particular, the

probability that a dealer is matched with an incoming investor equals his matching rate 1
N
.

The matching rate measures the intensity of a dealer’s search for an investor.

When an investor meets a dealer, they bargain over the price. Following Nash (1950),

the price is the solution of the following bargaining problem

max
pi1

[
u
(
Wz − zpi1

)
− u (W0)

]q [
z
{
pi1 −

(
M0 −M1σ

2
)}]1−q

, (9)

where q represents the dealer’s bargaining power, and z (M0 −M1σ
2) is the investor’s reser-

vation value of holding the asset. Hence, pi1 − (M0 −M1σ
2) is the per unit utility gain for

the investor if he sells. The investor’s gains from the trade can arise from aspects such as the

search cost, his information about the asset, his risk aversion, and so on.8 To ensure that

the investor is willing to sell, we assume that 0 < M0 −M1σ
2 < v − ρσ2

(
I + z

2

)
. Finally,

Wz in the bargaining problem (9) is the wealth associated with buying z from the investor

(net of the payment to the investor) and W0 = vI + f .

6If adding a new dealer does not change the average position, there is no distributional effect. But this
is not a typical case.

7Although some inter-dealer markets have adopted limit-order book systems in which dealers can post
their quotes, those systems are usually not accessible to investors.

8One can replace this reduced-form assumption by explicitly modeling the seller’s decision; e.g., a seller
having a liquidity shock maximizes his mean-variance preference. This setting does not change the result of
the model, but it adds considerable complexity and introduces more parameters.
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If there exists an inter-dealer trade at date 2, then Wz = v
(
I + 2z

ni+1

)
+ f − pi2xi (pi2).

Recalling xi (pi2) = −ni−1
ni+1

z, the order-filling dealer’s gains from trade is

v
2z

ni + 1
− ρσ2

2

((
2z

ni + 1

)2
+ 2I

2z

ni + 1

)
+

(
ni − 1

ni + 1
pi2 − pi1

)
z

=

[
2

ni + 1

{
v − ρσ2

(
I +

z

ni + 1

)}
+
ni − 1

ni + 1
pi2 − pi1

]
z

=
(
pi2 − pi1

)
z,

where pi2 = v − ρσ2
(
I + z

ni+1

)
is the inter-dealer price from (4). Therefore, the bargaining

problem (9) becomes

max
pi1

{
pi2 − pi1

}q {
pi1 −

(
M0 −M1σ

2
)}1−q

,

to which the solution is

pi1 = (1− q) pi2 + q
(
M0 −M1σ

2
)
. (10)

Eq.(10) implies that the investor-dealer’s price, pi1, is proportional to the inter-dealer’s price,

pi2. In other words, when dealer i realizes that he can unload the extra inventory at a higher

price in the inter-dealer market, he is more inclined to fill the investor’s order at a higher

price.

If there is no inter-dealer trade at date 2, then the order-filling dealer’s final risky holding

is I + z and hence Wz = v (I + z) + f . This indicates that the order-filling dealer obtains

vz − ρσ2

2

(
z2 + 2Iz

)
− pi1z =

{
v − ρσ2

(z
2

+ I
)
− pi1

}
z

in gains from trade. Under this case, the solution of the bargaining problem is

pi1 = (1− q)
{
v − ρσ2

(z
2

+ I
)}

+ q
(
M0 −M1σ

2
)
. (11)

In sum, the price of the investor-dealer transaction is:

pi1 =

{
(1− q)

{
v − ρσ2

(
I + z

ni+1

)}
+ q (M0 −M1σ

2) ,

(1− q)
{
v − ρσ2

(
I + z

2

)}
+ q (M0 −M1σ

2) ,

with inter-dealer trading,

without inter-dealer trading.

(12)
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3.4 Network Formation at Date 0

In Sections 3.2 and 3.3, we show that the inter-dealer price, the investor-dealer price, and

trading volume of an inter-dealer trade depends on the equilibrium number of a dealer’s links.

In this section, we show that the equilibrium network determines the equilibrium number of

a dealer’s links. In particular, we demonstrate how the trade-off between the risk-sharing

benefit and the funding cost of collateral determines the equilibrium network, and hence

prices and trading volume in OTC trading.

At date 0, dealers strategically form and sever links with each other. For every link the

dealer adds, he incurs larger linking costs. In reality, the predominant part of the linking cost

comes from the funding cost of preparing collateral. Many OTC traded products are credit

derivatives, which usually impose collateral requirements on the seller of the credit product.

When a dealer adds more links to his network, he sells more in the inter-dealer market.

(Recall that a dealer sells −xi (pi2) = ni−1
ni+1

z in his inter-dealer trading.) This means the

dealer has to arrange more collateral in the event of selling in the inter-dealer market. Since

the preparation of extra collateral is costly, the dealer incurs larger funding cost on collateral

when he increases his links (see Brunnermeier and Pedersen (2008) for more discussion on

funding liquidity in trading).

The funding cost of collateral is

Pr (sell in inter-dealer trading) × σ
ni − 1

ni + 1
z︸ ︷︷ ︸

the risk of shares sold

× m. (13)

Eq.(13) shows that the funding cost of collateral consists of three parts. The first part is

the probability that collateral is needed in inter-dealer trading. That happens when the

order-filling dealer needs to sell parts of his investor order in the inter-dealer market, since

only the seller needs to post collateral in OTC trading. The second part measures the risk

of shares sold, which is the standard deviation of the value of shares sold. The last part, m,

is an arbitrary multiplier capturing the funding constraint. The larger the m, the higher the

funding cost. This constraint could relate to the margin requirement or the aggregate stress

of obtaining funding.

The value of adding links to a dealer is his risk-sharing benefit from inter-dealer trading

as shown in Eq.(7) and Eq.(8). With the benefit and the cost specified, we can solve for

the equilibrium network at date 0. A natural approach to modeling network formation is

defining a non-cooperative game among dealers, and such a non-cooperative game generates

an equilibrium outcome as a graph. An equilibrium network is such a graph, consisting of a

set of nodes and pairs of links that connect those nodes. To describe the equilibrium network,

13



we introduce the following notations. The equilibrium networkW is written as (N , E), where
N is the set of all dealers, i.e., N = {1, 2, . . . , N}, and E is the set of all links among those
dealers. We define ij ∈ W to mean that i and j are linked in networkW, and define ij /∈ W
to mean that i and j are not linked in network W. Therefore, E = {ij : for some i, j ∈ N}.
Although it is appealing to study network formation within a game-theoretical framework,

there are problems. There are, for example, various ways to specify such a game, such

as the simultaneous link-announcement game in Myerson (1977) and the sequential link-

announcement game in Aumann and Myerson (1988). In addition, as pointed out by Jackson

and Wolinsky (1996), some standard game-theoretic equilibrium notions are not suitable

for the study of network formation, since those notions do not reflect communication and

coordination in the formation of networks.

To circumvent the above mentioned problems, network theorists study properties of net-

works that are of interest to them and can be satisfied in the equilibria of some network-

formation games. In this spirit, we define an equilibrium inter-dealer network formed at date

0 using the strong stability concept from Jackson and van den Nouweland (2005):

Definition 1 Let N be the set of all nodes and N ′ be the subset of nodes. A network
W ′ is obtainable from W via deviation by N ′ ⊂ N if

i) ij ∈ W ′ and ij /∈ W implies {i, j} ⊂ N ′, and
ii) ij ∈ W and ij /∈ W ′ implies {i, j} ∩ N ′ 6= ∅.

Definition 1 says that changes in a network can be made by a coalition N ′ without the
consent of any dealers outside of N ′. Specifically, i) indicates that any new links that are
built involve only dealers in N ′; ii) indicates that at least one dealer involved in any deleted
link is in N ′.

Definition 2 Let Ui (W) be the payoff for dealer i in network W. Network W is

strongly stable if, for any N ′ ⊂ N , any W ′ that is obtainable from W via deviations by N ′,
and any i ∈ N ′ such that Ui (W ′) > Ui (W), there exists j ∈ N ′such that Uj (W ′) < Uj (W).

Definition 2 states that one cannot find a coalitional deviation from a strongly stable

network in which all relevant dealers are better off and with some are strictly better off.

Strong stability requires that the network formed be coalition-proof. That is, a coalitional

move from any subset of dealers cannot make all of them better off without hurting some

dealers in this subset.

Requiring that a network exhibit strong stability imposes a requirement that is stricter

than most other network stability requirements, since a strongly stable network makes tighter

predictions due to coalitional considerations. Thus, strong stability is more robust than other
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definitions of an equilibrium network. In addition, the concept of being coalition-proof, which

is used for cases in which players can communicate before they play a game, is particularly

applicable to describing the equilibrium of an inter-dealer network. In an inter-dealer market,

communications among dealers are almost inevitable.

Another appealing feature of strong stability is that a strongly stable network is the

outcome of a pure strategy Nash equilibrium from Myerson’s (1977) simultaneous link-

announcement game. More importantly, such a strongly stable network is the Pareto-effi cient

outcome of this simultaneous link-announcement game (see Jackson and van den Nouweland

(2005) and Jackson (2008)).

To simplify the notation, let m∗ ≡ 2m
ρσz

be the effective margin. Given a network W,
dealer i’s payoff Ui (W) is

Ui (W) =

i fills the order︷ ︸︸ ︷
1

N
u

(
v

(
I +

2z

ni + 1

)
+ f − pi2xi

(
pi2
))

+

i’s connected dealers fill the order︷ ︸︸ ︷
1

N

∑
j:ij∈W

u

(
v

(
I +

nj − 1

nj (nj + 1)
z

)
+ f − pj2xi

(
pj2
))

+

neither i nor his connected dealers fill the order︷ ︸︸ ︷(
1− 1

N
− 1

N

∑
j:ij∈W

)
u (vI + f)

−

total cost of links︷ ︸︸ ︷
1

N
σ
ni − 1

ni + 1
zm

(14)

=


ρσz2

2N

{
(q −m∗) ni−1

ni+1
+

∑
j:ij∈W

nj−1
n2j (nj+1)

1[nj≥2]

}
+ U0

U0

if ni ≥ 1,

if ni = 0,

where ni is the number of links dealer i has in network W, 1[nj≥2] is an indicator function
that takes 1 when nj ≥ 2 and 0 otherwise, and U0 is the payoff when dealer i has no link,

U0 =
qz {v − ρσ2I − (M0 −M1σ

2)}
N

+ EU (vI + f)− ρσ2qz2

2N
. (15)

Since all dealers are identical ex-ante, a strongly stable network in equilibrium should

be symmetric. That is, all dealers should obtain the same level of payoff. If not, then some

dealers enjoy higher payoffs than others. In such cases, dealers with lower payoffs could

deviate together with those connected to a higher payoff dealer to provide an improving de-
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viation. Thus, the original network would not be strongly stable. Proposition 1 formalizes
this intuition.

Proposition 1 Let a connected component be a sub-graph in which any two nodes

are either directly connected or indirectly connected through a path consisting of several links.

In a strongly stable network, all dealers in the same connected component, which has more

than one connection, have the same number of connections. If such a strongly stable network

consists of more than one connected component, then dealers in distinct components obtain

identical payoffs.

The symmetry of a strongly stable network suggests that the total number of dealers,

N , affects the existence of such a network. For example, when N = 6, symmetric networks

are those in which every dealer has 2, 3, or 5 links. Any discontinuity between links in a

symmetric network implies that no strongly stable network involving those links exists. In

the above case, when N = 6, there is no strongly stable network in which every dealer has 4

links. To avoid such discontinuities, we assume that N = 2k , where k is an integer greater

than one. Under this assumption, a symmetric network can have links the number of which

equals any integer between 2 and 2k − 1.

In Proposition 2, we characterize a strongly stable network in equilibrium. Together
with Eq.(2), Eq.(3) and Eq.(4), which characterize the inter-dealer equilibrium, and Eq.(10),

which characterizes the price of the investor-dealer trade, Proposition 2 describes the
equilibrium of the model.

Proposition 2
The following describes a strongly stable network in equilibrium.

(a) If m∗ > q + 1, then the strongly stable network is an empty network.

(b) If m∗ < q + 2N−1
(N−1)2 −

1
2
, then the strongly stable network is a complete network.

(c) If m∗ ∈
[
q + 2N−1

(N−1)2 −
1
2
, q + 1

]
, then the strongly stable network is such that all

dealers have the same number of links n∗, and n∗ solves:

max
n∈{bn∗∗c,bn∗∗c+1}

(
q −m∗ +

1

n

)
n− 1

n+ 1
,

where n∗∗ ≡ 1+
√
2−2q+2m∗

1−2q+2m∗ and bxc represents the largest integer no larger than x.
In equilibrium, risky asset holdings, the inter-dealer price, and the investor-dealer price

depend on the number of dealers’ links. Specifically, under (a), there is no inter-dealer
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network. Hence, there is no inter-dealer trading. The investor-dealer price is

p
(a)
1 = (1− q)

{
v − ρσ2

(
I +

z

2

)}
+ q

(
M0 −M1σ

2
)
. (16)

Under (b), the price in the inter-dealer trade is

p
(b)
2 = v − ρσ2

(
I +

z

N

)
, (17)

and the price in the investor-dealer trade is

p
(b)
1 = (1− q)

{
v − ρσ2

(
I +

z

N

)}
+ q

(
M0 −M1σ

2
)
. (18)

Under (c), the inter-dealer price is

p
(c)
2 = v − ρσ2

(
I +

z

n∗ + 1

)
, (19)

and the price in the investor-dealer trade is

p
(c)
1 = (1− q) p(c)2 + q

(
M0 −M1σ

2
)
. (20)

Figure 2 shows a complete network as an equilibrium network corresponding to Propo-
sition 2(b), while Figure 3 shows a 4-link symmetric network as an equilibrium network,

which corresponds to Proposition 2(c). The total number of dealers in Figure 2 and 3 is
eight.
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Figure 2: A Strongly Stable Network that is Complete

Note. The above figure shows an equilibrium network that is complete. In the complete network
all dealers are connected. Every dealer has seven links.

Figure 3: A Strongly Stable Network with Four Links

Note. The above figure shows an equilibrium network in which every dealer has four links.
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Proposition 2 indicates that the trade-off between the collateral cost and the risk-
sharing benefit determines the equilibrium of a network. A dealer becomes more connected

when the benefit from risk-sharing increases or when the collateral cost decreases. The

following proposition formalizes this statement.

Proposition 3 The number of links made by a dealer increases when the effective

margin m∗ decreases, that is, a) when the order size increases; b) when volatility increases;

or c) when the funding constraint (m) loosens.

Figure 4 shows the negative relationship between the number of links and the effec-

tive margin as stated in Proposition 3. Proposition 3 implies that larger orders give
rise to more connected inter-dealer markets. This seems to be consistent with anecdotal

evidence from dealer markets with tightly connected dealers. For example, in the foreign

exchange market, the bulk of the trading volume comes from inter-dealer trades, and those

trades usually consist of larger orders. In the past, stock trading in the upstairs market,

where broker-dealer firms trade with each other, almost exclusively carries out block trades.

Proposition 3 provides a testable empirical prediction pertaining to the inter-dealer net-
work of an OTC market. The connectedness of an inter-dealer network is positively related

to order sizes and volatility in an OTC market.

Figure 4: The Equilibrium Number of Links and the Effective Margin
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Note. Figure 4 depicts the relationship between the equilibrium number of links and the effective
margin. The effective margin ism∗ ≡ 2m

ρσz
. Parameters chosen are N = 8, ρ = σ = z = 1, q = 0.5

and m∗ ∈ [0, 0.8].

4 Comparative Statics Analysis of an Inter-Dealer Net-
work

Proposition 3 suggests two ways, or layers, in which primitives such as order sizes and
volatility can affect equilibrium. At the first layer, primitives change equilibrium outcomes
when an equilibrium network does not change. At the second layer, primitives change the
equilibrium network, which then changes equilibrium outcomes. We refer to the first layer
as the local property and the second layer as the global property. In the following sections,
we first show the results of a comparative analysis of the local property and then illustrate
results regarding the global property. Finally, we discuss the connection between local and
global properties.

4.1 The Local Property of an Inter-Dealer Network

To investigate the local property of an equilibrium network, we fix the equilibrium network
and then investigate how order sizes and volatility affect equilibrium prices. An important
equilibrium price is the markup for an order-filling dealer. The markup measures the order-
filling dealer’s profitability in making the market for investors. The markup is the price
difference between the price at which the order-filling dealer buys an asset from an investor
and the price at which he sells it to other dealers. That is,

markupi = pi2 − pi1 = q
{
pi2 −

(
M0 −M1σ

2
)}

(21)

Proposition 4 Given an equilibrium network, the inter-dealer price, the investor-
dealer price, and the markup decrease with the order size.

When the order size increases, inventory risk also increases. Meanwhile, the order-filling
dealer’s risk-sharing ability is fixed insofar as the network is fixed. To unload extra inventory,
the order-filling dealer has to sell it at a lower price in the inter-dealer market. The lower
interdealer price reduces the investor-dealer price. The order-filling dealer decreases his price
when buying an asset from an investor in the anticipation of a lower price for off-loading a
large order in the inter-dealer market. However, due to bargaining, the order-filling dealer
is not able to transfer completely the decrease in the inter-dealer price to the investor. This
reduces the order-filling dealer’s profitability because he must accept a smaller markup.
The negative relationship between markups and order sizes conforms to empirical findings

for corporate and municipal bond markets (see Randall (2013) and Green, Hollifield, and
Schürhoff (2007)). More importantly, our model offers an alternative explanation to those
offered in past studies. Past studies argue that larger orders are from sophisticated investors
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who have greater bargaining power and hence lead to smaller markups for dealers. We
show that, even if dealers have the same bargaining power as investors (when q = 1

2
), the

negative relationship between markups and order sizes persists because of the increasing
cost to dealers of unloading large inventory volume in the inter-dealer market. That said,
our explanation for this negative relationship does not contradict the explanation based on
bargaining power. Eq.(21) makes it obvious that a decrease in dealers’bargaining power,
q, decreases the markup. Thus, a larger order associated with a smaller dealer’s bargaining
power decreases the markup.

Proposition 5 The inter-dealer price and the investor-dealer price decrease with
volatility. If M1 > ρ

(
1 + z

ni+1

)
, then the markup increases with volatility; otherwise the

markup decreases with volatility.

As the previous discussion of the relationship between inter-dealer prices and order sizes
suggests, when volatility increases, a traded asset becomes more risky, which intensifies the
order-filling dealer’s risk-sharing need. Consequently, the inter-dealer price decreases, which
leads to a decrease in the investor-dealer price. However, the impact of volatility on the
markup is different from the impact of an order size on the markup. Besides affecting the
markup from the dealer side, volatility also affects the markup from the investor’s side.
Specifically, when volatility increases the investor’s utility for holding the asset M0 −M1σ

2

decreases, which implies that the investor is more willing to sell the asset. This results in
a further decrease in the investor-dealer price. When the investor’s willingness to sell is
relatively strong (when M1 > ρ

(
1 + z

ni+1

)
), the drop in the investor-dealer price exceeds

the drop in the inter-dealer price, and hence the markup increases. The relationship between
price markups and volatility depends on the investor’s altitude towards risk.

4.2 The Global Property of an Inter-Dealer Network

In Section 4.1, we discussed relationships between equilibrium outcomes and order sizes and
relationships between equilibrium outcomes and volatility within a fixed equilibrium network.
In this section, we consider the global property of an equilibrium network. In other words,
we examine what happens to equilibrium outcomes such as prices and trading volumes when
the equilibrium network changes.

Proposition 6 If the number of links that an order-filling dealer has increases, then
he sells at a higher interdealer price, buys at a higher investor-dealer price, and earns a
larger markup.

In an inter-dealer trade, the order-filling dealer solicits bids from his connected dealers.
If the network becomes more connected, the order-filling dealer links to more dealers. The
bidding competition becomes more intense, and hence drives the inter-dealer price in favor
of the order-filling dealer. Consequently, the order-filling dealer is willing to buy at a higher
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price from the seller. However, the order-filling dealer increases the investor-dealer price only
to the extent that his profit still increases. That is, his markup goes up.
Trading volume for a dealer involve two parts. The first part is his trading volume when

he is an order-filling dealer; the second part is his trading volume when one of his connected
dealers is an order-filling dealer. Specifically, dealer i’s expected number of trades is

1

N
+
∑
j:ij∈W

1

N
=
ni + 1

N
. (22)

With |xi (pi2)| = ni−1
ni+1

z and xj (pi2) = ni−1
ni(ni+1)

z, dealer i’s expected trading volume is

1

N

(
ni − 1

ni + 1
z

)
+
∑
j:ij∈W

1

N

ni − 1

ni (ni + 1)
z =

2

N

ni − 1

ni + 1
z. (23)

In the above, both equalities are obtained as ni = nj because dealer i and dealer j have the
same number of links when they are connected in an equilibrium network (see Proposition
1).

Proposition 7 The more links a dealer has in an inter-dealer network, the more
trades he makes and the greater is his trading volume.

Proposition 7 states that more trades take place when the network becomes more
connected. This is not surprising, as more links increase a dealer’s probability of participating
in risk-sharing trades with other dealers.
To see if a more connected network improves risk-sharing, I examine the risk of a dealer’s

inventory in equilibrium. The expected risky holding for dealer i is

EH i =
1

N

{
I + z + xi

(
pi2
)}

+
∑
j:ij∈W

1

N

(
I + xi

(
pj2
))

+

(
1− 1

N
−
∑
j:ij∈W

1

N

)
I (24)

And the variance of the risky holding is

V H i =
1

N

{
I + z + xi

(
pi2
)}2

+
∑
j:ij∈W

1

N

(
I + xi

(
pj2
))2

(25)

+

(
1− 1

N
−
∑
j:ij∈W

1

N

)
I2 −

(
EH i

)2
.

Proposition 8 The variance of a risky holding decreases as the number of links a
dealer has increases.

Based on Proposition 8, a more connected network reduces dealers’ inventory risks.
Together, Proposition 7 and 8 imply that a more connected network achieves better risk-
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sharing among dealers, which accompanies higher trading volumes in the inter-dealer market.
The positive relationship between a dealer’s connectedness and his trading volume and the
negative relationship between a dealer’s connectedness and his inventory risks yield two
testable empirical predictions from our model.

4.3 The Connection between Local Properties and Global Prop-
erties

As discussed at the beginning of Section 4, changes in primitives have two layers of impacts
on equilibrium. One affects equilibrium outcomes directly, while the other exerts influence
through changing the equilibrium network’s structure. Because of the second impact, the
local property of the network is not stable. In other words, relationships between prices and
order sizes, or between prices and volatility, can exhibit structural breaks as variations in
order sizes and volatility can also change the structure of the equilibrium network.

Figure 5: The Relationship between Prices and Order Sizes

Note. Figure 5 depicts structural breaks in the negative relationship between inter-dealer prices
and order sizes, and the negative relationship between markups and order sizes. Parameters chosen
are m = 0.5, N = 8, ρ = 1, σ = 0.5, I = 1, v = 30, q = 0.5, M0 = 0, M1 = 4, and z ∈
{8, 10, 12}.

Figure 5 shows that the negative relationship between markups and order sizes exhibits

jumps as the order size increases. Such jumps occur when the network becomes more con-

nected, i.e., the number of a dealer’s links increases. As shown in Proposition 6, the
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markup and the inter-dealer price increase when the network becomes more connected, and

the jumps shown in Figure 5 reflect this increase. The same pattern exists in relationships

between prices and volatility (see Figure 6).

Figure 6: The Relationship between Prices and Volatility

Note. Figure 6 depicts structural breaks in the negative relationship between inter-dealer prices
and volatility, and the negative relationship between markups and volatility. Parameters chosen
are m = 0.5, N = 8, ρ = 1, σ∈{3, 7}, I = 1, v = 120, q = 0.5, M0 = 1, M1 = 0, and z = 10.

The above discussion suggests that empirical research on OTC markets should take into

account the stability of the underlying network. Otherwise, the regression model used runs

the risk of model misspecification, since the regression model may suffer from structural

breaks. For example, empirical research should include a measure of a network’s connected-

ness as an additional control variable interacting with other important explanatory variables

in a regression model. In Section 7, we discuss this empirical implication more thoroughly,

together with other implications of the model.

5 Core-Periphery Inter-Dealer Networks

In the previous model we assume that dealers are homogeneous. This assumption reduces

the model’s complexity. In the model dealers have to decide only how many links to make,
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but they do not have to decide with whom they should connect, since all dealers are the same

ex-ante. In this section, we introduce heterogeneity among dealers into the model. Dealers

are different in their capacity of providing liquidity to investors. Specifically, there are three

types of dealers. The first type consists of dealers with small capacity SS = z. Those dealers

are small or regional banks who can only accommodate retail-sized orders, i.e., the size of

the order is no larger than z. The second type consists of dealers with medium capacity

z + SM . The third type dealer has large capacity z + SL and SM < SL ≤ 1. Large-capacity

dealers are those big banks who are able to provide liquidity to both retail investors (with

small orders) and institutional investors (with huge orders).

In addition to introducing differences in dealers’capacity of liquidity provision, we relax

the assumption that the size of the investor order is constant. We assume that the size of the

investor order is random and follows a uniform distribution.11 This assumption together with

the above assumption that dealers have different capacity determines a dealer’s probability

of trading with an investor. Specifically, at date 1, an investor arrives and wants to trade

an order of size z ∼Uniform(z, z + 1). The investor meets with one dealer in the network

with probability 1
N
. If the order size z is smaller than the chosen dealer’s capacity, then the

dealer fills the investor order. Otherwise, no investor-dealer trade occurs. Hence, for a large-

capacity dealer, his probability of trading with an investor equals 1
N
×Pr (z ≤ z + SL) = SL

N
;

for a medium-capacity dealer, his probability of trading with an investor equals SM
N
; for a

low-capacity dealer, his probability of trading with an investor is zero.

11The assumption that the order size follows a uniform distribution does not affect any implication in
the model. For any distribution, large capacity dealers always have the highest probability of trading
with an investor, since large capacity dealers are able to accommodate any orders that medium or small
capacity dealers accommodate. The probability of trading is the key driver that gives rise to the asymmetric
equilibrium network (such as the coreperiphery network). That being said, using the uniform distribution
significantly reduces redundancy in the mathematical derivation.
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Figure 7: The Time Line of the Extended Model

Note. Figure 7 gives the timeline of the extended model. At date 0, dealers form an inter-dealer
network. At date 1, a randomly selected dealer meets with the investor. They trade if the order
size is smaller than the dealer’s capacity. Otherwise, they don’t trade. At date 2, the dealer who
fills the order at date 1 starts to re-trade through his interdealer network. At date 3, the asset’s
value is realized.

Figure 7 gives the timeline of this extended model. It is similar to the model in Section

3 except for two differences. The first difference is that the size of the investor order is

random, and it follows a uniform distribution. The second difference is that at date 1,

an investor-dealer trade occurs if the order size is smaller than the capacity of the selected

dealer. Otherwise, no investor-dealer trade occurs. All the rest is the same as the benchmark

model (see Figure 1).

With capacity as the only device of heterogeneity that differentiates dealers, we show

that the equilibrium network is asymmetric. An asymmetric network means that dealers do

not have the same number of links. The core-periphery structure is a special case of this

asymmetric network. Additionally, we show that differences in capacity create a vacillating

relationship between investor-dealer prices and dealers’centrality (measured by the number

of a dealers’links).

Denote m∗∗i = 3m
ρσSi

, m∗∗i is dealer i’s effective margin. Given a networkW, the payoff for
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dealer i is,

Ui (W) =

∫ z+1

z

i fills the order︷ ︸︸ ︷
1

N
1[z≤z+Si]u

(
v

(
I +

2z

ni + 1

)
+ f − pi2xi

(
pi2
))

(26)

+

i’s connected dealer fills the order︷ ︸︸ ︷∑
j:ij∈G

1

N
1[z≤z+Sj ]u

(
v

(
I +

nj − 1

nj (nj + 1)
z

)
+ f − pj2xi

(
pj2
))
dz

+

neither i nor his connected dealers fill the order︷ ︸︸ ︷(
1− Si

N
−
∑
j:ij∈G

Sj
N

)
u (vI + f)

−
∫ z+1

z

total cost of links︷ ︸︸ ︷
1

N
1[z≤z+Si]σz

ni − 1

ni + 1
mdz

=


ρσ2

3N

(
S3i (q −m∗∗i ) ni−1

2(ni+1)
+
∑

j:ij∈G

1
2
S3j

nj−1
n2j (nj+1)

1[nj≥2]

)
+ U0,

U0

ni ≥ 1,

ni = 0.

and where U0 is dealer i’s payoff when he has no link. U0 is defined as follows,

U0 =
S2i
2N

q
{
v − ρσ2I −

(
M0 −M1σ

2
)}

+ u (vI + f)− ρσ2qS3i
6N

(27)

Proposition 9 Let nSL, nSM , and nSS be the number of links for large-capacity deal-

ers, medium-capacity dealers, and small-capacity dealers, respectively. Then, in a strongly

stable network,

nSL ≥ nSM ≥ nSS (28)

Proposition 9 indicates that the equilibrium network when dealers have different capac-
ity in providing liquidity is asymmetric. Some dealers have more links than others. I show

that centrality measured by the number of links a dealer has is positively determined by the

dealer’s capacity. A dealer who has larger capacity and is more capable of accommodating

investors’ orders has more links. The dealer with large capacity has greater risk-sharing

needs, since he has a greater likelihood of facing a liquidity shock. Such a liquidity shock

occurs if the dealer fills the order from an incoming investor. As a result, the large-capacity

dealer is inclined to build more links. At the same time, connecting with the large-capacity
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dealer implies more chances for other dealers to participate in risk-sharing activities, which

means greater benefits. Hence, other types of dealers are also inclined to connect to the large-

capacity dealer. This mutual consent leads to the equilibrium in which the large-capacity

dealer has the greatest number of links.

Since the core-periphery network is a special case of the asymmetric network, Proposi-
tion 9 explains the core-periphery structure of the inter-dealer network found in empirical
studies (Hollifield, Neklyudov, and Spatt (2012) and Li and Schürhoff (2012)). In a core-

periphery network, some dealers operate at the core of the network, connecting to all dealers,

while peripheral dealers connect to no one but those at the core. Consequently, core dealers

have more links than peripheral dealers. Proposition 9 suggests that large-capacity dealers
comprise the core and have more links than peripheral dealers, who are those small-capacity

dealers.

As a large-capacity dealer has a higher probability of trading than other dealers, Propo-
sition 9 also justifies the model in Neklyudov (2012). In that paper, the author studies the
impact of the core-periphery structure using a dealer’s matching rate, which is essentially

a dealer’s probability of trading, as the proxy for a dealer’s centrality in the network. Our

model supports this idea of approximating a dealer’s centrality with his matching rate. We

show that dealers with high matching rates have higher centrality than dealers with low

matching rates, which is an equilibrium consequence of strategic network formation.

To focus on the core-periphery network and illustrate the vacillating relationship between

investor-dealer prices and dealers’centrality, we assume that SM < 3m
ρσq

< SL. This implies

that m∗∗SL < q < m∗∗SM . In addition, we assume that S
2
L

N−2
q(N−1)2N > S2M

(
3m
ρσq
− SM

)
. Let

NSL be the total number of large-capacity dealers, NSM = 2k (k > 1) be the total num-

ber of medium-capacity dealers, and NSM > NSL > 2, we characterize the core-periphery

equilibrium network as follows.

Proposition 10 When dealers have varying capacity SL, SM , and SS, a strongly

stable network in equilibrium is as follows. Dealers with the large capacity SL form the core of

the network and connect to all dealers; dealers with the small capacity SS form the periphery

and connect only to those at the core; dealers with the medium capacity SM connect to all

large-capacity dealers and other n∗SM −NSL medium-capacity dealers. n
∗
SM
is

n∗SM = arg max
nSM∈N

(
q −m∗∗SM +

nSM −NSL

n2SM

)
nSM − 1

nSM + 1
. (29)

Proposition 10 shows the equilibrium network that exhibits the core-periphery structure
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as found in empirical studies. Figure 8 gives an example of this core-periphery network. In

Figure 8, there are 20 dealers (3 large-capacity dealers, 8 medium-capacity dealers, and 9

small-capacity dealers). Only large-capacity dealers operate at the core of the network, while

small-capacity dealers are the periphery of the network.

Figure 8: A Core-Periphery Network

Note. Figure 8 shows a core-periphery network in which large-capacity dealers comprise the core
of the network and small-capacity dealers become the periphery. L represents the large-capacity
dealer, M represents the medium-capacity dealer, and S represents the small-capacity dealer. In
equilibrium, each L has 19 links, each M has 7 links, and each S has only 3 links.

In the core-periphery network, core dealers do not necessarily offer more favorable prices

to investors. Two opposite forces affect the investor-dealer price that a core dealer offers. On

one side, a core dealer has more links, thereby greater market power in inter-dealer trading.

Greater market power in the inter-dealer market enables the core dealer to sell at a higher

price, and hence to buy from an investor at a higher price. On the other side, a dealer becomes

the core because of his large capacity, which implies he fills larger orders than other dealers.

Larger orders overburden the dealer’s inventory rebalancing in inter-dealer trading, and hence

worsen the dealer’s price in the inter-dealer market. Consequently, the large-capacity dealer
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buys from an investor at a lower price. In short, the cross-sectional relationship between

investor-dealer prices and dealers’centrality is ambiguous. Proposition 11 illustrates this
undetermined relationship.

Proposition 11 Denote p0SL and p
0
SM
as the average investor-dealer price from large-

capacity dealers and medium-capacity dealers, respectively. If(
v − ρσ2I +

q

1− q
(
M0 −M1σ

2
))

(SL − SM) ≥ ρσ2

2

(
S2L
N
− S2M
n∗SM + 1

)
,

then p0SL ≥ p0SM . Otherwise, p
0
SL

< p0SM . In the above, n
∗
SM

is defined in Proposition 10
and N is the total number of dealers.

Proposition 11 gives the condition under which large-capacity dealers buy from in-

vestors at higher prices, and under which large-capacity dealers buy at lower prices. Since

a dealer’s capacity positively determines his centrality, Proposition 11 suggests that the
relationship between investor-dealer prices and dealers’centrality vacillates between positive

and negative. Figure 9 further illustrates this ambiguous relationship between investor-

dealer prices and dealers’centrality by following the example in Figure 8. In the figure, a

medium-capacity dealer has 7 links and a large-capacity dealer has 19 links in equilibrium.

The large-capacity dealer has higher centrality than the medium-capacity dealer. In the

upper panel of the figure, the relationship between investor-dealer prices and centrality is

positive. This occurs when the difference in capacity between high centrality dealers and

low centrality dealers is small. That is,{
v − ρσ2I +

q

1− q
(
M0 −M1σ

2
)}

(SL − SM) ≥ ρσ2

2

(
S2L
N
− S2M
n∗SM + 1

)
. (30)

However, when the difference in capacity is big, the relationship becomes negative, which is

illustrated in the bottom panel of the figure. This occurs when{
v − ρσ2I +

q

1− q
(
M0 −M1σ

2
)}

(SL − SM) <
ρσ2

2

(
S2L
N
− S2M
n∗SM + 1

)
. (31)
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Figure 9: The Relationship between Investor-Dealer Prices and Centrality

Note. Figure 9 shows that the relationship between average investor-dealer prices and dealers’
centrality (which measures how central a dealer is in the network) is undetermined. In the upper
panel of the figure, the relationship is positive. This occurs when the difference in capacity between
high centrality dealers and low centrality dealers is small, i.e., when Eq. (30) holds. On the other
hand, the lower panel shows that the relationship between investor-dealer prices and centrality
is negative when the difference in capacity is big, i.e., when Eq. (31) holds. Parameters chosen
are N = 20, NSL = 3, NSM = 8, m = 0.45, q = 2

3
, ρ = 1, I = 2, v = 26.25, M0 = 0,

M1 = 0.02, σ = 5, z ∼ Uniform(0, 1), SM = 0.4, SL (small) = 0.405 and SL (large) = 1. Based
on Proposition 10, this set of parameters implies that n∗SM = 7.

Though the relationship between investor-dealer prices and dealers’centrality is unde-

termined, the conditional relationship between them is determined. When conditioning on

the size of the investor order, high-centrality dealers offer better prices than low-centrality

dealers. That is, when zi is fixed, pi1 = (1− q)
{
v − ρσ2

(
I + zi

ni+1

)}
+ q (M0 −M1σ

2) is

positively determined by ni. This is consistent with Hollifield, Neklyudov, and Spatt (2012),

which shows that investors get more favorable prices when trading with core dealers. The

above suggests that the size of the investor order is an important control variable in deter-

mining how dealers’centrality is related to investor-dealer prices.
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6 “Hot Potato”Trading in an Inter-Dealer Market

So far in this study, transactions among dealers take place only when an order-filling dealer

initiates an auction in the inter-dealer market. This setup helps to demonstrate that risk-

sharing drives network formation, since the sole role played by dealers in the inter-dealer

market is risk-sharing. However, such one-shot trading limits the analysis of strategies that

could be deployed by dealers, since dealers who connect to the order-filling dealer can only

be end-users. In reality, one of the strategies deployed by dealers is intermediary or “hot

potato”trading. “Hot potato”trading occurs when a dealer who has traded with the order-

filling dealer continues to trade with other dealers who do not connect with the order-filling

dealer. In so doing, this dealer serves as the intermediary between the order-filling dealer

and dealers who are not in the order-filling dealer’s network.

To analyze “hot potato”trading in an inter-dealer network, we relax the one-shot trading

assumption, and allow dealers who trade with the order-filling dealer to also trade in their

own networks simultaneously. Specifically, let dealer i be the order-filling dealer and dealer

j be one of i’s connected dealers. When dealer i starts an auction, dealer j not only submits

his orders to i, he also solicits bids from his connected dealers j′ (to focus sharply on “hot

potato”trading, we consider only the case in which j′ does not connect to dealer i). Similarly,

dealer j′ submits his orders to j, and in the meantime solicits bids from his connected dealers,

and so forth. One can visualize this setup as consisting of multiple rounds of trading that

occur instantaneously. That is, in a short period of time the order-filling dealer trades with

his connected dealers in the first round, and then those order-filling-connected dealers trade

in their own networks in the second round, and so forth.

Unlike the model with one-shot trading only, the above setup allows dealers to continue

trading in an inter-dealer network. However, this general setup complicates the analysis of

the equilibrium at date 2. Since trades continue through the network, a dealer’s strategy

depends not only on who he connects to (as in the one-shot setup) but also on who his

connected dealers connect to and who his connected dealers connected dealers connect to,

and so forth. Fortunately, the equilibrium at date 2 is still solvable, and it is characterized on

another network derived from the inter-dealer network. Let us denote this derived network

as the “trading-sets network.”Definition 3 and 4 show how a “trading-sets network” is
derived from an inter-dealer network.

Definition 3 Given the flow of trades in an inter-dealer network, dealers in an inter-

dealer network are grouped into various trading sets. In each trading set, there is a dealer,

called the initiator, who trades in the previous round of trading, and there are other dealers,

called participants, who do not participate in previous rounds but participate in the current
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round initiated by the initiator. Furthermore, if a trading set has only one participant who

is not a participant in any other trading set, then the trading set is considered as an empty

set. If this unique participant in the trading set is also the only participant in other trading

sets, then these trading sets are grouped into one set consisting of only one participant but

many initiators.

Definition 3 indicates that a trading set can take only two forms. One form includes

many participants but a unique initiator; the other has many initiators but a unique partic-

ipant. Figure 10 provides an example of the grouping for a symmetric network with three

links. In those trading sets, numbers before the semicolons stand for initiators and numbers

after the semicolons stand for participants. In Figure 10, the arrow on a link indicates the

flow of trades.

Figure 10: Trading-Sets derived from a Symmetric Network with Three Links

Note. Figure 10 provides an example of dealers in an inter-dealer network that is grouped
into trading sets. In the figure, the arrow represents the direction of the flow of trades. The
thickest line represents the first round of trading. The dashed line represents the second round of
trading. The thinnest line represents the final round of trading. In the trading set brackets, the
numbers before the semicolons stand for the initiator and the numbers after the semicolons stand
for the participants.Figure 10 provides an example of dealers in an inter-dealer network that
is grouped into trading sets. In the figure, the arrow represents the direction of the flow of
trades. The thickest line represents the first round of trading. The dashed line represents
the second round of trading. The thinnest line represents the final round of trading. In
the trading set brackets, the numbers before the semicolons stand for the initiator and the
numbers after the semicolons stand for the participants.
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Figure 11: A “Trading-Sets Network"”derived from an Inter-Dealer Network

Note. Figure 11 shows a “trading-sets network”that is derived from the inter-dealer network
shown in Figure 8. In Figure 8, trading set 1 connects to trading set 2 but not to trading set 5, since
the intersection between trading set 1 and 2 contains a common dealer, dealer 2, but the intersection
between trading set 1 and trading set 5 is empty.Figure 11 shows a “trading-sets network”that is
derived from the inter-dealer network shown in Figure 8. In Figure 8, trading set 1 connects
to trading set 2 but not to trading set 5, since the intersection between trading set 1 and 2
contains a common dealer, dealer 2, but the intersection between trading set 1 and trading
set 5 is empty.

Definition 4 Two trading sets are connected if their intersection is not empty.

While Definition 3 defines how nodes (trading sets) in a “trading-sets network” are

derived from an inter-dealer network, Definition 4 defines how links in a “trading-sets

network”are derived. Figure 11 gives an example of a “trading-sets network”derived from an

inter-dealer network. It is obvious that with a given flow of trades in an inter-dealer network

the grouping of trading sets is unique. Since links between trading sets are determined only

by members of those sets, a “trading-sets network”is uniquely derived from an inter-dealer

network through Definition 3 and Definition 4. This means that characterizing the date 2
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equilibrium when dealers continually trade along an inter-dealer network is equivalent to

characterizing the equilibrium when dealers trade in the derived “trading-sets network.”

As in Section 3.2, initiators trade with participants strategically in each trading set.

When the market in each trading set clears, it generates a unique price associated with the

corresponding trading set. In other words, inter-dealer trading occurs in various fragmented

markets (trading sets), and these fragmented markets are linked when they have common

members (dealers).

In each of these trading sets dealers are divided into two classes, initiators and partici-

pants. This fits the model description in Malamud and Rostek (2013), in which exactly two

classes of dealers trade in each trading set.9 In fact, Definition 3 and Definition 4 map
the dealers’network into the “trading-sets network”which is first studied by Malamud and

Rostek (2013).

The equilibrium in inter-dealer trading is that every dealer (say dealer k) submits a vector

of demand schedules (xk) to all trading sets (say Mk sets) he belongs to, and his vector of

demand schedules is

xk
(
Λk
)

=
(
ρσ2IMk×Mk + Λk

)−1 (
vIMk×1 − PMk×1 − ρσ2I0IMk×Mk

)
,

where Λk is dealer k’s price impact and PMk×1 is a vector of equilibrium prices in Mk sets.10

To be more specific, Λk is the Mk ×Mk Jacobian matrix DqP, in which entry (r, s) stands
for the price change in set s caused by a demand change in set r. In equilibrium, Λk is

determined by the market-clearing condition. Although solving the equilibrium is equivalent

to finding every dealer’s price impact, the actual work of solving for those price impacts

(solving N matrices with Mk ×Mk dimensions) is non-trivial, let along specifying how the

network and Λk are jointly determined in the network formation process.

To circumvent this diffi culty, we focus on the property regarding “hot potato” trading

that is persistent in any strongly stable network. For a given dealer, we call his connected

dealers his neighbors.

Proposition 12 Denote a dealer as a monopolistic dealer if his connected dealers

belong to distinct connected components. In any strongly stable network, monopolistic dealers

always buy and sell at different prices gaining non-zero markups in “hot potato”trading. In

contrast, if a pair of dealers has more than two unconnected common neighbors, then this

pair of dealers and all their common neighbors receive zero markups in “hot potato”trading.

9See Example 1 (ii) in Malamud and Rostek (2013).
10IMk×Mk is an Mk by Mk matrix with all entries equal to 1.
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Proposition 12 identifies which dealer in the inter-dealer network receives non-zero
markups for “hot potato” trading. Interestingly, the dealer with the most links does not

necessarily enjoy non-zero markups. In fact, this dealer may receive zero markups for “hot

potato”trading. For example, in Figure 12, dealer 6 has the highest number of links but he

always receives zero markups since he has exactly two common neighbors with every dealer

he connects to. The dealer who always receives non-zero markups is the one who reaches

different groups of dealers, for example dealer 7 in Figure 12. This dealer is called the

monopolistic dealer, as his ability to access unconnected parts of the inter-dealer network

provides him with local monopoly power in “hot potato”trading.

Figure 12: An Inter-Dealer Network in which Dealer 7 is the Monopolistic Dealer

Note. In Figure 12, if there is “hot potato”trading, dealer 7 is the monopolistic dealer with non-
zero markups, even though he has fewer links than dealer 6. In fact, dealer 6 gets zero markups in
“hot potato”trading.Note. In Figure 12, if there is “hot potato”trading, dealer 7 is the monopolistic
dealer with non-zero markups, even though he has fewer links than dealer 6. In fact, dealer 6 gets
zero markups in “hot potato”trading.

Proposition 12 is an extension of the study by Malamud and Rostek (2013). Their
model implies that a dealer who acts as a “monopolistic bridge”in a “trading-sets network”

is the one with non-zero markups. Proposition 12 extends their results to identify the
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“monopolistic bridge”in an inter-dealer network. This helps empirical research to identify

which dealer has local monopoly power in “hot potato”trading.

7 Empirical Implications

Our model offers novel testable hypotheses in addition to confirming findings from past

empirical studies. As an inter-dealer network is formed to share risks among dealers, the

connectedness of the network is closely related to volatility and order sizes that characterize

dealers’inventory risks.

Hypothesis 1 An asset with high volatility has a more connected inter-dealer network

than an asset with low volatility.

Hypothesis 2 An asset traded in large order sizes has a more connected inter-dealer

network than an asset traded in small order sizes.

The above hypotheses are novel empirical predictions obtained from endogenizing the

formation of an inter-dealer network. However, the empirical design involved in testing those

hypotheses requires statistics that measure the connectedness of an inter-dealer network. In

the network literature, several statistics have been proposed to describe the connectedness of

a network including average path length, cliquishness, a clustering coeffi cient, cohesiveness,

etc.11 In econometrics, Diebold and Yilmaz (2011) propose statistics based on variance

decompositions to measure the connectedness of the network of financial firms.

Based on our model, the connectedness of an inter-dealer network determines prices and

trading volume in an inter-dealer market. In a more connected inter-dealer market, dealers

trade more and gain higher markups. This yields the following hypotheses:

Hypothesis 3 In a more connected inter-dealer network, dealers generate larger

trading volumes and face smaller inventory risks.

Hypothesis 4 In a more connected inter-dealer network, dealers earn higher markups.

Our model explains the observational finding regarding core-periphery networks in OTC

markets with varying capacity of providing liquidity among dealers. Dealers with large

capacity of providing liquidity are more central in a network than dealers with small capacity.

As a result, our model provides an additional testable implication:

11See Jackson (2008) and Easley and Kleinberg (2010) for more details.
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Hypothesis 5 A dealer with larger capacity of liquidity provision has higher cen-

trality.

As mentioned above, here the empirical design would entail constructing measures for

each dealer’s centrality in a network. Past studies in the network literature have used degree

centrality, closeness centrality, betweenness centrality, eigenvector related measures, etc., to

capture dealers’ centrality.12 One proxy for a dealer’s capacity would be the size of the

dealer. A large dealer is more likely to be capable of accommodating huge orders than a

small dealer.

An important empirical implication of the model pertains to sudden jumps in relation-

ships between prices and primitive parameters, e.g., volatility and order sizes. Such jumps

occur as an inter-dealer network changes along with continuous changes in primitive para-

meters (see Figures 5 and 6). This implies that when an asset whose volatility or order sizes

change over time is involved, empirical studies should consider testing for structural breaks

since the corresponding inter-dealer network may have changed over time. The potential

structural break in an interdealer network implies that time-series data on prices and trad-

ing volume may not be stationary. With respect to cross-sectional studies, our model implies

that an inter-dealer network entails another layer of heterogeneity that should be controlled

for. For example, assets traded in larger orders differ from assets traded in smaller orders not

only in terms of the order size but also in terms of the structure of corresponding inter-dealer

networks. Thus, statistics that describe inter-dealer networks, e.g., the clustering coeffi cient,

should be included as additional control variables in a regression model. In all, the structure

of the inter-dealer network is an important state variable that should not be overlooked in

empirical OTC studies.

8 Conclusion

In this paper, we investigate inter-dealer network formation in an OTC market. We assume

that dealers form inter-dealer networks to share inventory risks. In equilibrium, the benefit

from such risk-sharing and the funding cost of collateral determine the shape of a network. An

equilibrium network pins down outcomes such as prices and trading volume. Furthermore,

we show that differences in dealers’capacity of liquidity provision imply that dealers with

large capacity have high centrality, whereas dealers with small capacity have low centrality.

Hence, an equilibrium network exhibits the core-periphery structure. Our model not only

12Hollifield, Neklyudov, and Spatt (2012) and Li and Schürhoff (2012) use degree centrality, closeness
centrality, betweenness centrality, and eigenvector centrality to measure dealers’centrality in the inter-dealer
network. Refer to Jackson (2008) for further elaboration of centrality measures in network studies.
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matches empirical findings in OTC markets, it also generates novel empirical implications.

We demonstrate that empirical models that fail to control for the connectedness of an inter-

dealer network may suffer from structural breaks.

In our model, dealers strategically form an inter-dealer network to share inventory risks.

The inter-dealer network serves as the channel for dealers to rebalance their inventory. This

feature differs from Babus and Kondor (2012), in which they assume that dealers use the

network to share information. In reality, dealers are likely to use the inter-dealer network

for both risk-sharing and information-sharing purposes. As a result, future research should

emphasize the interaction between the inventory model and the information model in the

formation of an interdealer network as well as the trading in this network market.
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9 Appendix

Throughout this Appendix, a strongly stable network is referred to as an SSN.

Proof of Proposition 1
Proof.
Suppose that W is an SSN, in which dealers in the same component have uneven links.

Let dealer j be the one with the maximal number of links in this component. Then there
exists a pair of unconnected dealers i and i′, both of whom are connected with j and at least
one of whom has fewer links than j. Let i have fewer links than j. Consider a deviation such
that both i and i′ cut their connections with j and then build a link between themselves.
Denote the obtainable network via this deviation asW ′. Since 1 < ni < nj and 1 < ni′ ≤ nj,

Ui (W ′)− Ui (W) =
ρσ2z2

2N

{(
1

ni′ + 1
− 1

ni′ + 2

)
− nj
nj + 1

(
1

nj + 1
− 1

nj + 2

)}
≥ 0 (A1)

and

Ui′ (W ′)−Ui′ (W) =
ρσ2z2

2N

{
ni

ni + 1

(
1

ni + 1
− 1

ni + 2

)
− nj
nj + 1

(
1

nj + 1
− 1

nj + 2

)}
> 0.

(A2)
The deviation is an improving deviation, since i′ is strictly better off and i is weakly better
off. Hence, W cannot be SSN. This shows that dealers in the same component have the
same number of links.
Next, suppose that an SSN W̃ has components of varying sizes and also suppose that

Ui

(
W̃
)
> Ui′

(
W̃
)
for i and i′ from distinct components. Consider a deviation such that

i′ cuts all his links, all i’s connected dealers (denote them by y) cut their links with i, and
i′ then builds links with those y dealers. The deviation replaces i’s position in the network
with i′. The new network is called W̃ ′. Since nothing is changed for y, Uy

(
W̃ ′
)

= Uy

(
W̃
)
.

However, Ui′
(
W̃ ′
)
> Ui′

(
W̃
)
, because Ui

(
W̃
)
> Ui′

(
W̃
)
and i′ replaces i’s position in

the new network W̃. The deviation is an improvement, which contradicts to the proposition
that W̃ is an SSN. Q.E.D.

Proof of Proposition 2
Proof.
The following lemma is useful in the proof of Proposition 2.

Lemma A.1 In a SSN, no connected dealer has exactly one link.
Proof:
Based on Proposition 1, if a connected network is strongly stable and one dealer has

just one link, then the network consists of N
2
pairs. In this network, a dealer’s payoff equals

U0 (from Eq. (15)). Thus, a dealer is indifferent between getting connected with one link or
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not. In such a case, we say the SSN is the empty network, since an infinitesimal amount of
cost could make the dealer prefers the empty network to the one link network. Q.E.D.

Lemma A.1 implies that a connected SSN is such that all connected dealers have the
same number of links and this number n is greater than one. If W is an SSN, then Ui (W)
can be rewritten as

Ui (W) =

{
ρσ2z2

2N

(
q −m∗ + 1

n

)
n−1
n+1

+ U0,
U0

n ≥ 1,
n = 0,

(A3)

which implies

Ui (W)− U0 =
ρσ2z2

2N

(
q −m∗ +

1

n

)
n− 1

n+ 1
1[n≥1] (A4)

Based on Eq.(A4), for any n, when m∗ > q + 1, Ui (W)− U0 < 0. Thus, an SSN should be
an empty network when m∗ > q + 1.
Now suppose the SSN is an empty network when m∗ < q + 1. Consider an obtainable

deviation in virtue of which all dealers build two links. By setting n = 2in (A4), the change in
a dealer’s payoff is ρσ2z2

6N

(
q −m∗ + 1

2

)
> 0. Thus, the deviation is an improvement in those

dealers’payoffs. The discussion above proves that when m∗ < q + 1, the empty network
cannot be strongly stable. Together with the above paragraph, we show that m∗ > q + 1 is
the suffi cient and necessary condition for the SSN being empty.
To find out the equilibrium number of links for each dealer in a connected network (when

m∗ ≤ q + 1), we have to consider the following continuous function F (n):

F (n) =

(
q −m∗ +

1

n

)
n− 1

n+ 1
, n ∈ [1, N − 1] . (A5)

Taking the derivative of F (n),

dF (n)

dn
=

1

2

n2
(
q −m∗ − 1

2

)
+ n+ 1

2

n2 (n+ 1)2
. (A6)

When m∗ > q− 1
2
, F (n) achieves the maximum at n∗∗ ≡ 1+

√
2−2(q−m∗)

1−2(q−m∗) . When n∗∗ > N − 1,

that is, m∗ < q + 2N−1
(N−1)2 −

1
2
, then the SSN is the complete network.

Based on the analysis of F (n), when m∗ ∈
[
q + 2N−1

(N−1)2 −
1
2
, q + 1

]
, the SSN is such that

every dealer has bn∗∗c or bn∗∗c+1 links, whichever gives the dealer greater utility.13 Formally
speaking, the equilibrium number of links is

n∗ ≡ arg max
n∈{bn∗∗c,bn∗∗c+1}

F (n) . (A7)

To close the proof, we summarize the shape of the SSN and the corresponding condition as
follows. Ifm∗ < q+ 2N−1

(N−1)2−
1
2
, thenW is a complete network. Ifm∗ ∈

[
q + 2N−1

(N−1)2 −
1
2
, q + 1

]
,

13bxc is the largest integer n larger than x.
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then the SSN W has n∗ links. If m∗ > q + 1, then the SSN is an empty network. If none of
the above conditions is satisfied, there is no SSN. Q.E.D.

Proof of Proposition 3
Proof.
We first show that the equilibrium number of links weakly increases when the effective

margin m∗ decreases. From Proposition 2, we know when m∗ > q + 1, the SSN is an
empty network. When m∗ decreases such that m∗ < q+ 2N−1

(N−1)2 −
1
2
, the SSN is the complete

network. When m∗ ∈
[
q + 2N−1

(N−1)2 −
1
2
, q + 1

]
, every dealer has n∗ links. Thus, to show that

the equilibrium number of links weakly increases when the effective margin decreases, we
have to show only that n∗ weakly increases when m∗ decreases. Consider m∗1 < m∗0 and

corresponding n∗∗k =
1+
√
2−2(q−m∗k)

1−2(q−m∗k)
and n∗k ≡ arg max

n∈{bn∗∗k c,bn∗∗k c+1}
F (n) for k ∈ {0, 1}. Since

dn∗∗

dm∗
= −

√
2− 2 (q −m∗) + 3

2
− 2 (q −m∗)√

2− 2 (q −m∗) {1− 2 (q −m∗)}2
< 0, (A8)

m∗1 < m∗0 implies n
∗∗
1 > n∗∗0 and hence bn∗∗1 c ≥ bn∗∗0 c. Due to the definition of n∗ given in

(A7), bn∗∗1 c > bn∗∗0 c implies n∗1 > n∗0.
For the remaining case of bn∗∗1 c = bn∗∗0 c ≡ n̂ (i.e., a case where integer restriction is bind-

ing), we will prove the claim by contradiction. Suppose that whenm∗ ∈
[
q + 2N−1

(N−1)2 −
1
2
, q + 1

]
,

n∗ strictly increases in m∗. So m∗1 < m∗0 implies n
∗
1 < n∗0. Since bn∗∗1 c = bn∗∗0 c = n̂, it has to

be the case that n∗1 = n̂ and n∗0 = n̂ + 1. That is, the equilibrium number of links equals n̂
when the effective margin is m∗1, but it equals n̂ + 1 when the effective margin increases to
m∗0. This implies that(

q −m∗1 +
1

n̂

)
n̂− 1

n̂+ 1
>

(
q −m∗1 +

1

n̂+ 1

)
n̂

n̂+ 2
, (A9)

(
q −m∗0 +

1

n̂

)
n̂− 1

n̂+ 1
<

(
q −m∗0 +

1

n̂+ 1

)
n̂

n̂+ 2
. (A10)

Eq (A9) implies m∗1 > q−1+ 2
n̂
while Eq (A10) implies m∗0 < q−1+ 2

n̂
. Therefore, m∗0 < m∗1.

This is a contradiction.
Overall, Proposition 2 implies that an equilibrium network becomes increasingly con-

nected whenm∗ decreases. To prove Proposition 3, we have only to show thatm∗ decreases
when σ or z increases, and that m∗ decreases when m increases. This is true from the defi-
nition m∗ ≡ 2m

ρσz
. Q.E.D.

Proof of Proposition 4
Proof:
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Fixing an equilibrium network, we have

dpi2
dz

= − ρσ2

ni + 1
< 0,

dpi1
dz

= − (1− q) ρσ2

ni + 1
< 0,

d

dz
markupi = −q ρσ2

ni + 1
< 0.

Q.E.D.

Proof of Proposition 5
Proof:
Given a fixed equilibrium network, we have

dpi2
dσ

= −2ρσ

(
I +

z

ni + 1

)
< 0,

dpi1
dσ

= − (1− q) 2ρσ

(
I +

z

ni + 1

)
< 0,

d

dσ
markupi = −q2ρσ

(
I +

z

ni + 1

)
+ 2qM1σ.

If M1 ≥ ρ
(
I + z

ni+1

)
, then d

dσ
markupi ≥ 0. Otherwise, d

dσ
markupi < 0. Q.E.D.

Proof of Proposition 6
Proof:
We want to show that (pi2, p

i
1,markup

i) all increase in ni. Consider ni < n′i and write
associated pi2 as p

i
2 (ni) and pi2 (n′i). Then

pi2 (n′i)− pi2 (ni) =
ρσ2z

N

(
1

ni + 1
− 1

n′i + 1

)
> 0.

Since pi1 = (1− q) pi2 + q (M0 −M1σ
2) and markupi = q {pi2 − (M0 −M1σ

2)}, the results for
(pi1,markup

i) also hold. Q.E.D.

Proof of Proposition 7
Proof:
The number of trades is 1

N
+

∑
j:ij∈W

1
N

= ni+1
N
, which obviously increases in ni. In an

equilibrium network, when dealer i and dealer j are linked they have the same number of
links. Therefore, the expected volume of trades is

− 1

N
xi
(
pi2
)

+
∑
j:ij∈W

1

N
xi
(
pj2
)

= − 1

N
xi
(
pi2
)

+
∑
j:ij∈W

1

N
xj
(
pi2
)
,
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where −xi (pi2) is the amount sold when starting with initial position I + z and xi
(
pj2
)

=
xj (pi2) is the amount bought when starting with initial position I. Using xi (p

i
2) = −ni−1

ni+1
z

and xj (pi2) = ni−1
ni+1

z
ni
in the above expression,

1

N

{
ni − 1

ni + 1
+
ni − 1

ni + 1

ni
ni

}
z =

2

N

ni − 1

ni + 1
z,

which also increases in ni. Q.E.D.

Proof of Proposition 8
Proof:
The expected risky holding is

EH i =
1

N

{
I + z + xi

(
pi2
)}

+
∑
j:ij∈W

1

N

(
I + xj

(
pi2
))

+

(
1− 1

N
−
∑
j:ij∈W

1

N

)
I.

Using xi (pi2) +
∑

j:ij∈W
xj (pi2) = 0,

EH i =
1

N

{
z +

(
1 +

ni
N

)
I
}

+
1

N
(N − 1− ni) I

=
z

N
+ I.

And the variance of the risky holding is

V H i =
1

N

{
I + z + xi

(
pi2
)}2

+
∑
j:ij∈W

1

N

(
I + xj

(
pi2
))2

+

(
1− 1

N
−
∑
j:ij∈W

1

N

)
I2 −

(
EH i

)2
=

1

N

(
I +

2z

ni + 1

)2
+
ni
N

(
I +

ni − 1

ni + 1

z

ni

)2
+

(
1− 1

N
− ni
N

)
I2 −

( z
N

+ I
)2
.

Writing the above expression as V H (ni), we need to show V H (ni) > VH (ni + 1).

V H (ni)− V H (ni + 1) =
1

N

{(
I +

2z

ni + 1

)2
−
(
I +

2z

ni + 2

)2}

+
ni
N

{(
I +

ni − 1

ni + 1

z

ni

)2
−
(
I +

ni
ni + 2

z

ni + 1

)2}

− 1

N

(
I +

ni
ni + 2

z

ni + 1

)2
+

1

N
I2.
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Evaluating each term,(
I +

2z

ni + 1

)2
−
(
I +

2z

ni + 2

)2
= 2z

(
1

ni + 1
− 1

ni + 2

)(
2I + 2z

2ni + 3

(ni + 1) (ni + 2)

)
=

4z

(ni + 1) (ni + 2)

(
I + z

2ni + 3

(ni + 1) (ni + 2)

)
,

(
I +

ni − 1

ni + 1

z

ni

)2
−
(
I +

ni
ni + 2

z

ni + 1

)2
= z

(
ni − 1

ni + 1

1

ni
− ni
ni + 2

1

ni + 1

)(
2I + z

(
ni − 1

ni + 1

1

ni
+

ni
ni + 2

1

ni + 1

))
= z

(ni − 1) (ni + 2)− n2i
ni (ni + 1) (ni + 2)

(
2I + z

(ni − 1) (ni + 2) + n2i
ni (ni + 1) (ni + 2)

)
=

z

ni

ni − 2

(ni + 1) (ni + 2)

(
2I + z

2n2i + ni − 2

ni (ni + 1) (ni + 2)

)
,

− 1

N

(
I +

ni
ni + 2

z

ni + 1

)2
+

1

N
I2 =

z

N

ni
ni + 2

1

ni + 1

(
2I +

ni
ni + 2

z

ni + 1

)
.

Combining these terms,

V H (ni)− V H (ni + 1) =
z

N


4

(ni+1)(ni+2)

(
I + z 2ni+3

(ni+1)(ni+2)

)
+ ni−2
(ni+1)(ni+2)

(
2I + z

2n2i+ni−2
ni(ni+1)(ni+2)

)
− ni
(ni+2)(ni+1)

(
2I + z ni

(ni+2)(ni+1)

)


=
z2

N {(ni + 1) (ni + 2)}2
[
4 (2ni + 3) +

ni − 2

ni

(
2n2i + ni − 2

)
− n2i

]
=

z2

N {(ni + 1) (ni + 2)}2 ni

{
n3i + 5n2i + 8ni + 4

}
> 0.

Q.E.D.

Proof of Proposition 9
Proof:
A small-capacity dealer never connects to his own kind, as there is no risk-sharing benefit.

This implies that small-capacity dealers connect only to large-capacity or medium-capacity
dealers. Hence, nSS ≤ min {nSM , nSL}.
Now suppose that W is an SSN such that nSM > nSL > 2. Let dealer i be one of SM’s

connected dealers who does not connect to SL. Consider another network W ′ obtained via
replacing the SM i link with the SLi link. Since SM < SL, which implies m∗∗SM > m∗∗SL , we
have

Ui (W ′)− Ui (W) =
ρσ2

6N

(
S3L

nSL − 1

n2SL (nSL + 1)
− S3M

nSM − 1

n2SM (nSM + 1)

)
> 0,
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USL (W ′)− USL (W) =
ρσ2

3N

(
S3L
(
q −m∗∗SL

) nSL − 1

2 (nSL + 1)
+
S3i
2

ni − 1

(ni + 1)n2i

)
≥ ρσ2

3N

(
S3M
(
q −m∗∗SM

) nSM − 1

2 (nSM + 1)
+
S3i
2

ni − 1

(ni + 1)n2i

)
ForW to be an SSN, it has to be the case that cutting the link between SM and i cannot

make SM better off. This means that

ρσ2

3N

(
S3M
(
q −m∗∗SM

) nSM − 1

2 (nSM + 1)
+
S3i
2

ni − 1

(ni + 1)n2i

)
> 0,

which implies that USL (W ′) > USL (W). Thus, W ′ makes both SL and i better off, which
means W cannot be an SSN. Q.E.D.

Proof of Proposition 10
Proof:
Since m∗∗SL < q, a large-capacity dealer always wants to connect to an additional dealer.

As a small-capacity dealer never has the chance to trade with an investor and hence never
sells in the inter-dealer market, he does not pay any linking cost for preparing collateral.
Based on these two arguments, a large-capacity dealer always connects to its own type and
small capacity dealers.
A small-capacity dealer does not connect to his own type, as there is no risk-sharing

benefit.
For a medium-capacity dealer, he never connects to a small-capacity dealer because of

q < m∗∗SM . If S
3
L

N−2
q(N−1)2N > S2M

(
3m
ρσq
− SM

)
, then all medium-capacity dealer connect to all

large-capacity dealer because this condition implies that for any nSL , nSM ≤ N − 1,

S3M
(
q −m∗∗SM

) nSM − 1

2 (nSM + 1)
+
S3SL
2

nSL − 1

(nSL + 1)n2SL
> 0.

That is, a medium-capacity dealer is always better off connecting to a large-capacity dealer.
Since any medium-capacity dealer connects to all high-capacity dealers, all medium ca-

pacity dealers have at least NSL links. Since all medium-capacity dealers are identical,
Proposition 1 still applies. The payoff function for a medium-capacity dealer is

UM (W) =
ρσ2S3M

6N

(
q −m∗∗SM +

nSM −NSL

n2SM

)
nSM − 1

nSM + 1
.

The number of links a medium-capacity dealer has in equilibrium solves

n∗SM ≡ arg max
n∈N

(
q −m∗∗SM +

n−NSL

n2

)
n− 1

n+ 1
.

Q.E.D.

Proof of Proposition 11
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Proof:
Since

p0SL − p
0
SM

=

∫ z+SL

z

p0SLdz −
∫ z+SM

z

p0SMdz

= (1− q)


(
v − ρσ2I + q

1−q (M0 −M1σ
2)
)

(SL − SM)

+ρσ2

2

(
S2M

n∗SM
+1
− S2L

N

)  ,
it is obvious if(

v − ρσ2I +
q

1− q
(
M0 −M1σ

2
))

(SL − SM) ≥ ρσ2

2

(
S2L
N
− S2M
n∗SM + 1

)
,

then p0SL ≥ p0SM . Otherwise, p
0
SL
< p0SM . Q.E.D.

Proof of Proposition 12
Proof:
Definition A.1 A cycle in a “trading-sets network” is a path consisting of more

than two non-repeated trading sets and the starting set is the same as the ending set.

Lemma A.2 [Theorem 4.2 in Malamud and Rostek (2013)]
Any two trading sets in the “trading-sets network” have the same prices if and only if

these two sets are on the same cycle.
Proof:
See Malamud and Rostek (2013). Q.E.D.

Definition A.2 A link in a “trading-sets network” is a bridge if cutting it would
cause its ending points to lie in separate components.

Lemma A.3 A monopolistic dealer in an inter-dealer network is a bridge in the
“trading-sets network”derived from the inter-dealer network.
Proof:
Suppose that a monopolistic dealer is not a bridge in the “trading-sets network.”Then re-

moving the monopolistic dealer does not increase the number of components in the “trading-
sets network.”This means that all trading sets that include the monopolistic dealer are still
connected, even when the monopolistic dealer is removed. To see if dealers in those trading-
sets are connected in the inter-dealer network, we do the following.
i) Label those trading-sets in sequence from 1 to h.
ii) Start from set 1, and then find its connected sets.
iii) Start from those connected sets identified in step 2, and then find their connected

sets.
iv) Repeat step 3 until all trading sets are exhausted.
Based onDefinition 3 and 4, the above algorithm shows that dealers in the same trading

set are connected, and dealers in trading sets identified in step 3 are also connected. Since
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all those trading sets are connected, step 4 eventually ends, which means that all dealers in
those trading sets are connected. This contradicts the definition of the monopolistic dealer,
whose neighbors belong to separate components. Hence, a monopolistic dealer is a bridge in
the “trading-sets network.” Q.E.D.

Lemma A.2 is used to prove the second half of Proposition 12. If a pair of dealers
have more than two unconnected common neighbors, then in the “trading-sets network”this
pair of dealers and their unconnected common neighbors construct a cycle. By Lemma
A.2, prices along the cycle are the same, which means that any of those dealers buys and
sells at the same price in distinct trading sets. That is, the markup for “hot potato”trading
is zero. The first half of Proposition 12 is proved by Lemma A.3, which states that a
monopolistic dealer is a bridge in the “trading-sets network.”Hence, the monopolistic dealer
can never be in a cycle. Lemma A.2 then implies that the monopolistic dealer always
charges non-zero markups. Q.E.D.
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