Monopolistic Dealer versus Broker: Impact of Proprietary Trading with Transaction Fees

Katsumasa Nishide^(a) Yuan Tian^(b)

(a) Yokohama National University(b) Ryukoku University

The latest version of this study is available at http://ssrn.com/abstract=2470355.

Plan of Talk

Introduction

2 Model Setup

- 3 Equilibrium Solutions
- 4 Numerical Analysis

6 Conclusion

Introduction

Nishide and Tian (YNU and Ryukoku U.) Monopolistic Dealer versus Broker

Background

Two types of trading system:

- Dealer market:
 - Dealer (market maker) trades with other market participants with his/her own account (proprietary trading).
- Brokered market:
 - Broker sets price just to clear orders from other market participants (no proprietary trading).
- Unclear which system is better for investors from the viewpoint of market activity, market liquidity, welfare of investors, etc.
- To answer the above question, the effect of proprietary trading needs to be examined.

Literature review (1)

Theoretical papers:

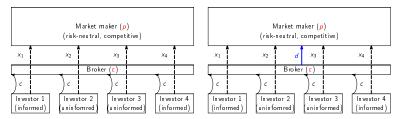
- Röell (1990), Fishman and Longstaff (1992), Sarkar (1995), Viswanathan and Wang (2002), Bernhardt and Taub (2010).
 - Agent setting the price is different from the one collecting transaction fees.
 - Price setter is risk-neutral and perfectly competitive, implying that $p = \mathbb{E}[v|\mathscr{F}_M].$
 - Transaction fees are independent of the order amount.

Empirical papers:

- Pagano and Röell (1992, 1996), Huang and Stoll (1996), Heidle and Huang (2002).
 - Result depends on the papers.

Literature review (2)

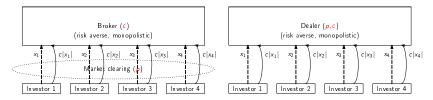
Sarkar (1995): Dual trading of investment banks, securities houses, etc.,



• In the dual trading, the broker is allowed to trade with his own account *d*.

Literature review (3)

Our study: Market system (dealer versus broker).



• In the dealer market, the dealer can trade with his own account with the price set by the dealer himself.

Aim of this study

In this paper, we

- construct a one-shot CARA-Normal model with
 - infinitely many investors,
 - a monopolistic and risk-averse dealer/broker who collects transaction fees.
- examine the effect of proprietary trading on equilibrium solutions.

Main results:

- Proprietary trading always increases total welfare of investors.
- Economic interpretation:
 - dealer sets a favorable price for investors to seek profits by proprietary trading.

Model Setup

Nishide and Tian (YNU and Ryukoku U.) Monopolistic Dealer versus Broker

Financial Market

- There is only one risky asset.
- Risk-free interest rate is assume to be zero for simplicity.
- v: (random) payoff of the risky asset.
- Two types of market participants:
 - investors,
 - a dealer or a broker.

Investors

- Let \mathscr{I} denote the set of investors.
- {ω_i}_{i∈𝒯} ~ IIDN(ω̄, σ_ω²): initial endowment of investors (Kim and Verrecchia, 1991).
- \mathscr{F}_i : information set of investor *i*.

$$v\Big|_{\mathscr{F}_i} \sim N(\mu_i, \sigma_v^2).$$

Beliefs are heterogeneous with respect to the mean of v.

• Utility of investor *i*:

$$U_{i} = -\frac{1}{a} \log \left(\mathbb{E} \left[e^{-aY_{i}} \middle| \mathscr{F}_{i} \right] \right)$$

where Y_i is the final wealth of investor i.

Dealer or broker

- Monopolistic.
- Collects transaction fees (\$c per unit trade).
- Sets the price *p* for investors.
- \mathscr{F}_M : information set of dealer/broker.

$$v\Big|_{\mathscr{F}_M}\sim N(\mu_M,\sigma_M^2).$$

• Utility function:

$$U_{M} = -\frac{1}{\gamma} \log \left(\mathbb{E} \left[e^{-\gamma R(p,c)} \middle| \mathscr{F}_{M} \right] \right)$$

where R(p,c) is the final wealth of the dealer (broker).

Investor's utility maximization

- x_i: trading amount of investor i.
- Y_i is given by

$$Y_i = v \omega_i + (v - p) x_i - \operatorname{sgn}[x_i] x_i c,$$

where sgn is the sign function.

• Since only v is random in Y_i with respect to \mathscr{F}_i , x_i can be solved as $\begin{aligned} x_i^*(p,c) &= \underbrace{-\omega_i}_{\text{risk hedging}} + \underbrace{\frac{\mu_i - p - \text{sgn}[x_i^*(p,c)]c}{a\sigma_v^2}}_{\text{profit seeking}}.\end{aligned}$ • Let $\zeta_i &= \mu_i - a\sigma_v^2 \omega_i$. Then, we can rewrite $x_i^*(p,c) &= \mathbf{1}_{\{\zeta_i > p+c\}} \frac{\zeta_i - (p+c)}{a\sigma_v^2} + \mathbf{1}_{\{\zeta_i < p-c\}} \frac{\zeta_i - (p-c)}{a\sigma_v^2}.\end{aligned}$

• ζ_i : investor *i*'s subjective belief adjusted by inventory risk.

Broker's utility maximization

Assumption 1

The broker sets (p_b, c_b) to satisfy

$$\sum_{i\in\mathscr{I}}x_i^*(p,c)=0$$

and to maximize

$$U_{M} = -\frac{1}{\gamma} \log \left(\mathbb{E} \left[e^{-\gamma R(p,c)} \middle| \mathscr{F}_{M} \right] \right)$$

where

$$R(p,c) = \sum_{i \in \mathscr{I}} c |x_i^*(p,c)|.$$

Dealer's utility maximization (2)

Assumption 2

The dealer sets (p_d, c_d) to maximize

$$U_{M} = -\frac{1}{\gamma} \log \left(\mathbb{E} \left[\left. e^{-\gamma R(\rho, c)} \right| \mathscr{F}_{M} \right] \right)$$

where

$$R(p,c) = \sum_{i \in \mathscr{I}} \left\{ (v-p) \times (-x_i^*(p,c)) + c |x_i^*(p,c)| \right\}.$$

Remark

- The utility of the dealer is higher than the one of the broker:
 - Dealer has an additional control variable (the price *p*).
- The effect of proprietary trading by the dealer on investors is not so apparent:
 - Dealer has a monopolistic power and may set an unfavorable price and transaction fees for investors.

Equilibrium Solutions

Nishide and Tian (YNU and Ryukoku U.) Monopolistic Dealer versus Broker

Infinitely many small investors

- To simplify the analysis, we assume a (continuously) infinite number of investors ($\mathscr{I} = R$).
- We also assume that

$$\mu_{\it i} \sim {\it N}(\mu_{\it I},\sigma_{\it I}^2)$$
 in ${\mathscr I}$

and independent of $\{\omega_i\}$.

• Can be justified by the central limit theorem if the belief biases of investors are IID (Hellwig, 1980).

• We defined
$$\zeta_i = \mu_i - a\sigma_v^2 \omega_i$$
:

$$\zeta_i \sim N(\underbrace{\mu_l - a\sigma_v^2 \bar{\omega}}_{=\mu_\zeta}, \underbrace{\sigma_l^2 + a^2 \sigma_v^4 \sigma_\omega^2}_{=\sigma_\zeta^2}).$$

• (risk-adjusted) belief ζ_i solely represents heterogeneity in the model.

Total order amount

• Let

$$q_I(\zeta) = \frac{1}{\sqrt{2\pi\sigma_{\zeta}^2}} e^{-\frac{(\zeta-\mu_{\zeta})^2}{2\sigma_{\zeta}^2}}.$$

• Under this setting, the total amount of orders is not random:

$$\sum_{i \in \mathscr{I}} x_i^*(p,c)$$

$$= \int_{-\infty}^{p-c} \frac{\zeta - (p-c)}{a\sigma_v^2} q_I(\zeta) d\zeta + \int_{p+c}^{\infty} \frac{\zeta - (p+c)}{a\sigma_v^2} q_I(\zeta) d\zeta$$

$$= \frac{\sigma_{\zeta}}{a\sigma_v^2} \Big[(\phi(d_+) + d_+ \Phi(d_+)) - (\phi(d_-) + d_- \Phi(d_-)) \Big]$$

where Φ and ϕ are the distribution and density functions of a standard normal, respectively, and

$$d_{\pm}=\pm\frac{\mu_{\zeta}-(p\pm c)}{\sigma_{\zeta}}.$$

Nishide and Tian (YNU and Ryukoku U.)

Monopolistic Dealer versus Broker

Equilibrium in brokered market

• Market clearing implies $p_{
m b}=\mu_{\zeta}$, and thus

$$R(\mu_{\zeta},c) = \frac{2}{a\sigma_{v}^{2}} \left[\sigma_{\zeta} c \phi \left(-\frac{c}{\sigma_{\zeta}} \right) - c^{2} \Phi \left(-\frac{c}{\sigma_{\zeta}} \right) \right] = U_{M}.$$

Proposition 1

The equilibrium price in the brokered market, p_b , is given by

$$p_{\rm b} = \mu_I - a\sigma_v^2 \bar{\omega}$$

and the per-unit fee by $c_b=-\sigma_\zeta z,$ where z<0 is the solution of the equation

$$z+\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}z}\log\Phi(z)=0.$$

Equilibrium in dealer market (1)

• The final wealth of the dealer is given by

$$R(p,c) = \sum_{i \in \mathscr{I}} \left\{ (v-p) \times (-x_i^*(p,c)) + c |x_i^*(p,c)| \right\} \\ = -(v-p-c) \frac{\sigma_{\zeta}}{a\sigma_v^2} [\phi(d_+) + d_+ \Phi(d_+)] \\ + (v-p+c) \frac{\sigma_{\zeta}}{a\sigma_v^2} [\phi(d_-) + d_- \Phi(d_-)].$$

• Utility of dealer:

$$U_{M} = (\mu_{M} - \rho) \frac{\sigma_{\zeta}}{a \sigma_{v}^{2}} \Big[\Big(\phi(d_{-}) + d_{-} \Phi(d_{-}) \Big) - \Big(\phi(d_{+}) + d_{+} \Phi(d_{+}) \Big) \Big] \\ + c \frac{\sigma_{\zeta}^{2}}{a \sigma_{v}^{2}} \Big[\Big(d_{+} \phi(d_{+}) + d_{+}^{2} \Phi(d_{+}) \Big) + \Big(d_{-} \phi(d_{-}) + d_{-}^{2} \Phi(d_{-}) \Big) \Big] \\ - \frac{\gamma}{2} \frac{\sigma_{\zeta}^{2} \sigma_{v}^{A}}{a^{2} \sigma_{v}^{4}} \Big[\Big(\phi(d_{+}) + d_{+} \Phi(d_{+}) \Big) - \Big(\phi(d_{-}) + d_{-} \Phi(d_{-}) \Big) \Big]^{2}.$$

Equilibrium in dealer market (2)

Proposition 2

The equilibrium price and the per-unit fee in the dealer market, p_d and c_d , satisfy the simultaneous equation system

$$\begin{aligned} &(\mu_{\zeta}-\mu_{M})\Phi(\hat{d}_{\pm})\mp\sigma_{\zeta}[\phi(\hat{d}_{\pm})+2\hat{d}_{\pm}\Phi(\hat{d}_{\pm})]\\ &-\frac{\gamma\sigma_{\zeta}\sigma_{M}^{2}}{a\sigma_{v}^{2}}\Phi(\hat{d}_{\pm})\Big[\Big(\phi(\hat{d}_{+})+\hat{d}_{+}\Phi(\hat{d}_{+})\Big)-\Big(\phi(\hat{d}_{-})+\hat{d}_{-}\Phi(\hat{d}_{-})\Big)\Big]=0,\end{aligned}$$

where

$$\hat{d}_{\pm} = \pm rac{\mu_I - a\sigma_v^2 \bar{\omega} - (p_\mathrm{d} \pm c_\mathrm{d})}{\sigma_I^2 + a^2 \sigma_v^4 \sigma_\omega^2}.$$

Relationship between the two systems

Corollary 1

$$\begin{pmatrix} p_{d} \\ c_{d} \end{pmatrix} \rightarrow \begin{pmatrix} p_{b} \\ c_{b} \end{pmatrix} \text{ as } \gamma \rightarrow \infty.$$

Proof.

Note that

$$R(p,c) = (p-v)\sum_{i\in\mathscr{I}}x_i^*(p,c) + c\sum_{i\in\mathscr{I}}|x_i^*(p,c)|$$

and $\mathbb{V}[R(p,c)]$ must be zero if $\gamma \rightarrow \infty$.

Numerical Analysis

Nishide and Tian (YNU and Ryukoku U.) Monopolistic Dealer versus Broker

Welfare analysis

Basecase parameters:

а	σ_{ω}	σ_v	μ_I	σ_l	μ_M	$\bar{\omega}$	γ	σ_M
1	1	0.5	1	1	1	1	0.5	0.25

Note that

$$\mu_{\zeta} = .75 < \mu_M = 1.$$

• X: trading volume defined by

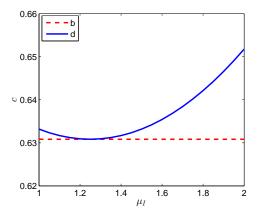
$$X = \sum_{i \in \mathscr{I}} |x_i^*| = \int_{\mathscr{I}} |x_i^*(\zeta)| q_I(\zeta) \mathrm{d}\zeta.$$

• We define the total welfare of investors by

$$U_I=\int_{\mathscr{I}}U_i(\zeta)q_I(\zeta)\mathrm{d}\zeta.$$

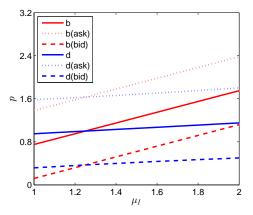
Effect of μ_l (1)

 μ_i : mean of $\mathbb{E}[v|\mathscr{F}_i]$, *c*: per-unit fee.



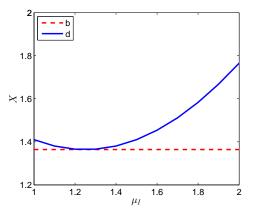
Effect of μ_l (2)

 μ_i : mean of $\mathbb{E}[v|\mathscr{F}_i]$, p: asset price.



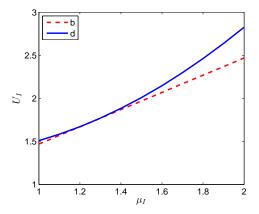
Effect of μ_l (3)

 μ_i : mean of $\mathbb{E}[v|\mathscr{F}_i]$, X: trading volume.



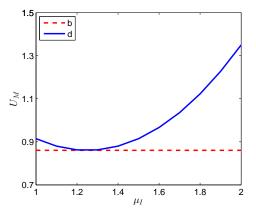
Effect of μ_l (4)

 μ_I : mean of $\mathbb{E}[v|\mathscr{F}_i]$, U_I : total welfare of investors.



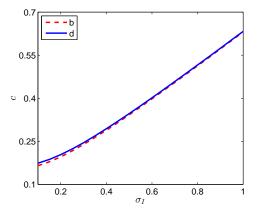
Effect of μ_l (5)

 μ_I : mean of $\mathbb{E}[v|\mathscr{F}_i]$, U_M : utility of dealer/broker.



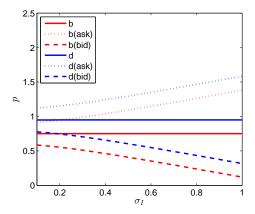
Effect of σ_l (1)

 σ_i^2 : variance of $\mathbb{E}[v|\mathscr{F}_i]$, *c*: per-unit fee.



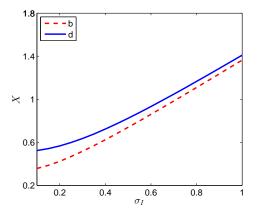
Effect of σ_l (2)

 σ_i^2 : variance of $\mathbb{E}[v|\mathscr{F}_i]$, p: asset price.



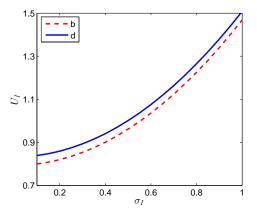
Effect of σ_l (3)

 σ_l^2 : variance of $\mathbb{E}[v|\mathscr{F}_i]$, X: trading volume.



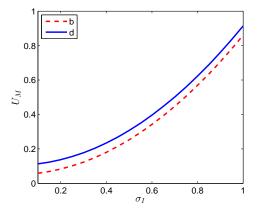
Effect of σ_l (4)

 σ_I^2 : variance of $\mathbb{E}[v|\mathscr{F}_i]$, U_I : total welfare of investors.



Effect of σ_l (5)

 σ_l^2 : variance of $\mathbb{E}[v|\mathscr{F}_i]$, U_M : utility of dealer/broker.



Comparison with Sarkar (1995)

	Sarkar (1995)	our study
Fee	$c_{\rm b} > c_{\rm d}$	$c_{\rm b} < c_{\rm d}$
Trading volume	$X_{ m b} > X_{ m d}$	$X_{\rm b} < X_{\rm d}$
Welfare	$U_{Ib} > U_{Id}$ (if informed)	$U_{Ib} < U_{Id}$ (on average)
	$U_{Ib} < U_{Id}$ (if uninformed)	

Implication

• The final wealth of dealer/broker:

$$\mathsf{R}(p,c) = \underbrace{(p-v)\sum_{i\in\mathscr{I}}x_i^*(p,c)}_{\mathsf{random payoff}} + \underbrace{c\sum_{i\in\mathscr{I}}|x_i^*(p,c)|}_{\mathsf{certain payoff}}$$

- Profit by proprietary trading (random payoff) can have a positive effect on the ex-ante utility of an investor, while fee revenue (certain payoff) always has a negative effect.
- Proprietary trading is always beneficial to investors in average.
 - Dealer sets a favorable price for investors to seek profits by proprietary trading.

Conclusion

Nishide and Tian (YNU and Ryukoku U.) Monopolistic Dealer versus Broker

Conclusion

• Research question:

How does proprietary trading affects a financial market with a monopolistic dealer/broker?

Answer:

It has a positive effect on both a monopolistic dealer and investors.

• Why?

Profit seeking by dealer with proprietary trading induces a more favorable price for the average investor.

References

References I

- Bernhardt, D. and B. Taub (2010), "How and When Is Dual Trading Irrelevant?", Journal of Financial Markets, 13(2), 295–320.
- Heidle, H.G. and R.D. Huang (2002), "Informed-Based Trading in Dealer and Auction Markets: An Analysis of Exchange Listings", *Journal of Financial and Quantitative Analysis*, **37**(3), 391–424.
 - Hellwig, M.F. (1980), "On the Aggregation of Information in Competitive Markets", Journal of Economic Theory, 22(3), 477–498.
 - Huang, R.D. and H.R. Stoll (1996) "Dealer versus Auction Markets: A Paired Comparison of Execution Costs on NASDAQ and the NYSE", Journal of Financial Economics, 41(3), 313–357.
- Kim, O. and R.E. Verrecchia (1991), "Trading Volume and Price Reaction to Public Announcement", *Journal of Accounting Research*, 29(2), 302–321.

References

References II

- Pagano, M. and A. Röell (1992), "Auction and Dealership Markets. What Is the Difference?", *European Economic Review*, **36**(2-3), 613–623.
- Pagano, M. and A. Röell (1996), "Transparency and Liquidity: A Comparison of Auction and Dealer Markets with Informed Trading", *Journal of Finance*, **51**(2), 579–611.
 - Röell, A. (1990), "Dual-Capacity Trading and the Quality of the Market", Journal of Financial Intermediation, 1(2), 105–124.
 - Sarkar, A. (1995), "Dual Trading: Winners, Loser, and Market Impact", *Journal of Financial Intermediation*, **4**(1), 77–93.
 - Viswanathan, S. and J.J.D. Wang (1995), "Market Architecture: Limit-Order Books versus Dealership Markets", Journal of Financial Markets, 5(2), 127–167.

Thank you for your attention

Nishide and Tian (YNU and Ryukoku U.)

Monopolistic Dealer versus Broker

March 21, 2016 42 / 42