
A Continuous-Time Asset Pricing Model with Smooth

Ambiguity Preferences∗

Masataka Suzuki †

January 28, 2016

Abstract

This study extends the smooth ambiguity preferences model proposed by Klibanoff et al. (2005, 2009)

to a continuous-time dynamic setting. It is known that these preferences converge to the subjective ex-

pected utility as the time interval shortens so that decision makers do not exhibit any ambiguity-sensitive

behavior in the continuous-time limit. Accordingly, this study proposes an alternative model of decision

making that applies Yaari’s (1987) dual theory to the original preferences and interchanges the role of

the second-order utility function with that of the second-order probability. We then formulate a recursive

utility of smooth ambiguity-sensitive decision makers in continuous-time. Our model is represented by the

stochastic differential utility with distorted beliefs so that most existing techniques in financial studies can

be made applicable together with these distorted beliefs. We give an asset-pricing example to demonstrate

the applicability of our model.
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1 Introduction

For a long time, the subjective expected utility (SEU) has been the standard theory of decision-making

under uncertainty. According to this theory, even when a decision maker (DM) does not know the objective

probability for uncertain payoffs, he/she makes a decision based on a unique subjective probability measure.

Therefore, the DM should be indifferent between a “risky” bet where the objective probability measure is

known and an “ambiguous” bet where that measure is unknown.

However, Ellsberg (1961) challenges the SEU as a normative theory of decision-making. Based on a

well-designed thought experiment, he argues that the DM would be ambiguity-averse in most cases; that is,

most DMs would prefer a risky bet over an ambiguous bet. Subsequent experimental studies have supported

Ellsberg’s conjecture, and many theoretical models incorporating DM’s attitude toward ambiguity as well as

risk have been developed.

Among these theories, Klibanoff et al. (2005) develop a so-called smooth ambiguity preferences model.1

Assuming multiple probabilities for relevant payoffs, they model the DM’s uncertainty attitude through dou-

ble expected utilities. In the KMM model, the DM subjectively estimates the relative likelihood of each prob-

ability measure being the true measure. These likelihoods are called the second-order probability, whereas

each probability measure for the relevant payoffs is called the first-order probability. In the first stage of the

KMM model, the DM calculates his/her expectations of the first utility function of the relevant payoffs under

each first-order probability. In the second stage, the DM employs the second-order probability to calculate

his/her expectation of the second utility function of the first-stage expected utilities. Klibanoff et al. (2009)

extended their KMM model to a dynamic model under a discrete-time setting.

However, Skiadas (2013) has shown that the KMM preferences converge to the SEU in the continuous-

time limit. An implication for Skiadas’s result is as follows: as the Arrow-Pratt risk premium depends on

the variance of risky payoffs, the ambiguity premium implied by the KMM preferences depends on the

variance of the first stage expected utilities. Because the latter variance is proportional to the square of the

time interval under both the Brownian and Poisson uncertainties, the ambiguity premium becomes negligible

when we consider the continuous-time limit.

1Other notable ambiguity-sensitive preferences include the maxmin utility of Gilboa and Schmeidler (1989), the Choquet expected

utility of Schmeidler (1989), the multiplier preferences of Hansen and Sargent (2001) and Hansen et al. (1999), and the variational

preferences of Maccheroni et al. (2006).
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Given that many powerful techniques are aligned with continuous-time financial modeling, this study

combines those with the KMM preferences. For this purpose, we apply Yaari’s (1987) “dual theory” to the

KMM model and interchange the role of the second utility in the original KMM preferences with that of

the second-order probability. Using this trick, we prevent the DM’s ambiguity attitude from disappearing in

the continuous-time limit. Then, by using the stochastic differential utility (SDU), we achieve a three-way

separation of the DM’s preferences: attitude toward risk, intertemporal substitution, and ambiguity. While

this study concentrates on the Brownian uncertainty case, our model could also incorporate Poisson jump

processes.

Gindrat and Lefoll (2011) also extend the KMM preferences to the continuous-time dynamic setting.

They achieve this extension by assuming that the DM’s ambiguity aversion coefficient becomes infinity as

the time interval shortens to zero. In contrast, the degree of the DM’s ambiguity aversion in our model can be

well defined independently from the time interval. We believe that this difference is critical because attitude

toward ambiguity as well as risk should be treated as the DM’s intrinsic nature. Therefore, a model that

enables us to conduct a frequency-independent comparative analysis of the DM’s ambiguity attitude would

be more reasonable.

The DM’s preferences in our model are eventually represented by the SEU with distorted beliefs.2 In par-

ticular, our ambiguity-averse DM behaves as an SEU agent with pessimistic beliefs. In this sense, our study

could possibly be classified according to the distorted beliefs models by Abel (2002) and Cecchetti et al.

(2000). However, the distorted beliefs in our model result from the DM’s rational response to ambiguity,

whereas those beliefs are completely exogenous in the other distorted beliefs models.

We apply our model to asset pricing and calibrate our model under a setting that is the continuous-time

analogue of Ju and Miao’s (2012) model. Under the discrete-time setting, Ju and Miao (2012) indicate that

the KMM preferences help resolve many asset pricing puzzles. Our calibration results reveal that our model

takes over these properties. Furthermore, owing to the continuous-time modeling, we can explicitly decom-

pose the equity premium into three parts: the risk premium, the premium for late resolution of uncertainty,

and the ambiguity premium.

The remainder of this study is constructed as follows. Section 2 introduces the recursive utility and the

2Gollier (2011) indicates that, at the optimum, the DM’s behavior under the KMM model is observationally equivalent to that under

the SEU model with distorted beliefs.
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KMM smooth ambiguity preferences under a discrete-time setting. Section 3 derives the continuous-time

smooth ambiguity preferences and formalize the DM’s ambiguity aversion in our model. Section 4 applies

our model to asset pricing and indicates that it generates very similar results to those of Ju and Miao (2012).

Section 5 concludes the study.

2 Discrete-Time Smooth Ambiguity Preferences

We first consider the DM’s preferences under a discrete-time setting to formulate our continuous-time model.

Time is indexed by t = 0,h,2h, · · · ,Nh, where h ∈ (0,1) represents the time interval. The state space and

filtration are denoted by (Ω,{Ft}
T
t=0), where T is the terminal date; that is, T = Nh.

2.1 Recursive Utility without Ambiguity

The DM ranks an adapted consumption process, Ct ∈ (0,∞), and his/her time-t utility of the continuation

consumption stream, {Cs}
T
s=t , is denoted by Vt . In particular, this study considers the following recursive

utility proposed by Epstein and Zin (1989):

Vt =W (Ct ,mt (Vt+h)) . (1)

In equation (1), mt (Vt+h) denotes a time-t certainty equivalent (CE) for the uncertain next period utility,

Vt+h. It is assumed that Vt (ω) ∈ (0,∞) for ∀(t,ω).

Supposedly, Kreps and Porteus’s (1978) form of CE would be the most commonly used in economics

and finance studies. Under the setting without ambiguity, this CE is described as follows:

mKP
t (Vt+h) = u−1 (Et [u(Vt+h)]) ,

where Et [·] ≡ E [ ·|Ft ] denotes the time-t conditional expectation under a probability measure, P, and u(·)

denotes a von Nuemann-Morgenstern utility index that determines the DM’s risk attitude. We assume that

u(·) is a strictly increasing, continuous, and three times continuously differentiable function. Meanwhile,

W (·, ·) is called the aggregator that represents the DM’s intertemporal attitude under the deterministic set-
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ting. Therefore, the recursive utility in equation (1) allows us to separate the DM’s intertemporal attitude

from his/her risk attitude.

2.2 Original KMM Model

Next, we introduce ambiguity, which is the key feature of this study. With ambiguity, the DM cannot

identify the true probability measure on (Ω,FT ). Instead, the DM assumes multiple first-order probability

measures on (Ω,FT ). We define ∆ as the set of the first-order probability measures,
{

Qθ
}

θ∈Θ
, where Θ is

a parameter space. It is assumed that all Qθ ∈ ∆ are mutually equivalent. For notational convenience, one

of the first-order probabilities is selected as the DM’s reference probability measure and is denoted by P.3

The conditional expectation under P is denoted by Et [·], whereas that under Qθ is denoted by Eθ
t [·]. The

Radon-Nikodým derivative process of Qθ with respect to P, denoted by ξ θ
t ≡ (dQθ/dP)

∣

∣

Ft
, depends on the

corresponding adapted parameter process, θ = {θt}
T
t=0, which generates the time-t conditional expectation

of any Fu-measurable random variable Xu (where u > t) under Qθ through Eθ
t [Xu] = Et

[

ξ θ
u Xu

]

/ξ θ
t .

Because the DM is uncertain about which probability measure, Qθ ∈ ∆, governs the real world, he/she

attaches at each t the subjective probability weights, ηt (θ )≥ 0, to each θ ∈ Θ, where
∫

Θ ηt (θ )dθ = 1.4 We

refer to ηt as the DM’s second-order probability. Given η0, the second-order probability, ηt , is the time-t

Bayesian update of η0; that is,

ηt

(

θ ′
)

=
ξ θ ′

t η0 (θ
′)

∫

Θ ξ θ
t η0 (θ )dθ

, for ∀θ ′ ∈ Θ.

From this update rule of ηt , the compound probability measure, Qθ (ω)
∣

∣

∣

Ft

≡
∫

ΘQθ (ω)ηt (θ )dθ for ∀ω ∈

Ω, could be well defined on (Ω,FT ).

Figure 1 illustrates the time period between t and t+h in the above setting. Suppose that the present time

is t and the DM’s current consumption and utility are Ct and Vt , respectively, and both are Ft -measurable.

For the moment, the number of states at time t + h that are accessible from the current state is assumed to

be finite and those states are denoted by st+h|t = 1,2, · · · ,J. We also temporarily assume that the parameter

3The choice of the reference probability measure is arbitrary, and P does not necessarily represent the true probability measure.
4When Θ is a finite space, ηt (·) can be interpreted as a probability mass function that satisfies ∑Θ ηt (θ ) = 1.
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space, Θ, is finite, and the parameters are indexed by θ = 1,2, · · · , I. In this illustration, the DM’s next-period

consumption and utility, (Ct+h,Vt+h) ∈
{(

c1,v1
)

,
(

c2,v2
)

, · · · ,
(

cJ ,vJ
)}

, depend on st+h|t . In addition, there

are multiple first-order probabilities, Qθ ,θ = 1,2, · · · , I, and the DM is uncertain about which probability is

the true measure for st+h|t . The DM then subjectively attaches the second-order probabilities, ηt (θ ), to their

respective first-order probabilities, Qθ .

At time t, there are multiple CEs for Vt+h that are conditional on which first-order probability, Qθ ,

is used for calculating the time-t conditional expectation. If the DM does not care about the variability

in these conditional CEs, he/she will average these CEs using the second-order probability, ηt . This is

equivalent to calculating the time-t CE for Vt+h directly through the compound probability,Qθ
(

st+h|t

∣

∣Ft

)

=

∑I
θ=1Q

θ
(

st+h|t

∣

∣Ft

)

ηt (θ ). In this case, the DM is an SEU agent and referred to as ambiguity neutral.

Meanwhile, if the DM is a maxmin utility agent, he/she will attach ηt(θ
′) = 1 to the Qθ ′

∈ ∆ that yields the

lowest conditional CE.

Klibanoff et al. (2005, 2009) axiomatize the smooth ambiguity preferences that could be considered as

an intermediate model between the two extremes, the SEU and the maxmin utility. In their model, the DM’s

time-t CE has the following form:

mKMM
t (Vt+h) = ν−1

(

∫

Θ
ν
(

mθ
t (Vt+h)

)

ηt (θ )dθ

)

, (2)

where ν (·) is a strictly increasing, continuous, and at least twice continuously differentiable function, and

mθ
t (Vt+h) = u−1

(

Eθ
t [u(Vt+h)]

)

, (3)

represents the Kreps and Porteus (KP) CE conditional on Qθ ∈ ∆.

In the KMM CE, the function ν (·), called the second-order utility, captures the DM’s ambiguity attitude.

It can be seen from equation (2) that the DM dislikes the variability in mθ
t (Vt+h) when ν (·) is concave.

Meanwhile, if ν (·) is a linear function, the KMM CE is equivalent to the KP CE calculated under Qθ . In

this case, the DM’s utility is reduced to the SEU. The KMM preferences enable us to separate the degree

of ambiguity measured by the variability in mθ
t (Vt+h) from the degree of the DM’s ambiguity aversion
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measured by the concavity of ν (·). Therefore, a comparative analysis of the DM’s ambiguity aversion under

the fixed degree of ambiguity can be conducted, which would be difficult in terms of the maxmin utility.

The KMM preferences are very flexible and tractable for representing the DM’s ambiguity attitude.

However, Skiadas (2013) reveals that the KMM CE degenerates into the KP CE as the time interval, h,

shortens to zero.

Proposition 1 (Skiadas 2013). Under the discrete-time approximation of Brownian uncertainty, the KMM

CE in equation (2) is expressed as follows:

mKMM
t (Vt+h) = mθ

t (Vt+h)+ o(h) ,

where mθ
t (·) is the time-t KP CE under the compound probability measure, Qθ .

Proposition 1 indicates that the role of the second-order utility, ν (·), vanishes as h goes to zero. Under

Brownian uncertainty, ambiguity is represented by multiple drifts of primitive processes; hence, a DM having

the KMM smooth preferences should not care about the negligible variance of these drifts in the continuous-

time limit.5

2.3 Dual Theory of a Dynamic KMM Model

The previous subsection indicates that the KMM preferences fail to capture the DM’s ambiguity attitude in

the continuous-time limit. We then propose an alternative dynamic smooth ambiguity preferences model

that interchanges the role of the second-order utility, ν (·), which is the key feature of the KMM model, with

that of the second-order probability, ηt .

Under an atemporal setting without ambiguity, Yaari (1987) axiomatizes an alternative, so-called, dual

theory of the SEU. Under the SEU model, the DM’s risk attitude is represented by the concavity of the

utility function u(·). In the dual theory, on the other hand, the DM’s utility function is linear, but he/she

evaluates its expected value using a distorted probability. Therefore, the DM’s risk-attitude is captured

through probability instead of a utility function in the dual theory. In particular, a risk-averse DM in the dual

5Skiadas (2013) also shows that the KMM CE degenerates into the KP CE under the Poisson uncertainty.

7



theory behaves like a pessimist in the sense that he/she distorts his/her subjective probabilities toward lower

payoffs.

Applying Yaari’s dual theory to an atemporal setting with ambiguity, Iwaki and Osaki (2014) developed

the dual theory of KMM preferences. In their dual theory, the DM first calculates the conditional KP CE

under each first-order probability by mθ (C) = u−1
(

Eθ [u(C)]
)

. The DM’s second-order utility, ν (·), is

linear in mθ (C), but he/she evaluates the expected value of mθ (C) using a distorted second-order probability,

denoted by η̃ . The difference between η and η̃ captures DM’s ambiguity attitude.

In the following, we apply Iwaki and Osaki’s (2014) atemporal model to our dynamic setting. First, from

the DM’s second-order probability, ηt , we can define the decumulative distribution function of the time-t

conditional KP CE, denoted by Gt (·), as follows:

Gt (z)≡

∫

Θ
I

{

mθ
t (Vt+h)> z

}

ηt (θ )dθ , for z ∈ (0,∞) ,

where I(·) is an indicator function. We also define a transformation function ϕ (·) : [0,1]→ [0,1] that is con-

tinuous and strictly increasing. Through the transformation function, our ambiguity-sensitive DM distorts

the decumulative distribution function of the time-t conditional KP CE by ϕ [Gt (z)]. We then propose the

following time-t CE in our dynamic setting:

mD
t (Vt+h) =

∫ ∞

0
ϕ [Gt (z)]dz

=−

∫ ∞

0
z dϕ [Gt (z)]

=

∫

Θ
mθ

t (Vt+h) η̃t (θ )dθ , (4)

where the second equality is obtained from integration by parts, and η̃t in the third line is the distorted

second-order probability implied by ϕ [Gt (z)].

In equation (4), the DM’s time-t CE under the dual theory can be expressed by the expected value of the

conditional KP CEs, mθ
t (Vt+h), where the expectation is calculated by η̃t , instead of ηt . It can be seen from

equation (4) that mD
t (Vt+h) < mθ

t (Vt+h) holds if ϕ (·) is a convex function. In this case, η̃t attaches larger

probability weights than ηt to Qθ ∈ ∆ that yield lower conditional KP CEs. Therefore, the DM dislikes any
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mean-preserving spread in the conditional KP CEs so that he/she is ambiguity averse.6 From this response,

the convexity of ϕ (·) represents the DM’s ambiguity attitude in the dual theory.

The CE in equation (4) preserves the important property of the KMM CE. Through the dual theory, we

can still separate the degree of ambiguity measured by the variability in mθ
t (Vt+h) from the degree of the

DM’s ambiguity aversion measured by the convexity of ϕ (·). Further, the dual theory as well as the KMM

model need not assume an extremely ambiguity-averse DM as the maxmin utility. The advantage of the dual

theory over the original KMM model is that η̃t does not degenerate into ηt even as h goes to zero because the

distortion depends on the time-t distribution of θt . In the next section, we derive the utility process implied

by the CE in equation (4) and show how well the dual theory can manage the DM’s smooth ambiguity

preferences under a continuous-time setting.

3 A Continuous-Time Smooth Ambiguity Preferences Model

This section develops a continuous-time smooth ambiguity preferences model. We consider a standard

k-dimensional Brownian Motion (BM), Bt =
(

B1
t ,B

2
t , · · · ,B

k
t

)T
, defined on a probability space (Ω,F ,P),

where P is a reference probability measure. The filtration {Ft}
T
t=0 is generated by Bt and P-null sets of

F , and we assume FT = F . As in the previous section, the DM ranks an adapted consumption process,

Ct ∈ (0,∞), and his/her time-t conditional utility of continuation consumption streams, {Cs}
T
s=t , is denoted

by Vt . The terminal value of utility is assumed to be zero; that is, VT = 0.

3.1 Continuous-Time Ambiguity

We first formalize ambiguity under the continuous-time setting. For this, we define Rk-valued adapted

processes, θ = {θt}
T
t=0, whose set is denoted by Θ. It is assumed that each θ satisfies the Novikov condition.

E0

[

exp

{

1

2

∫ T

0
|θs|

2
ds

}]

< ∞.

6We define the DM’s ambiguity aversion more precisely in the next section.
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For each θ , the Radon-Nikodým derivative process is defined as follows:

ξ θ
t = exp

{

−
1

2

∫ t

0
|θs|

2
ds+

∫ t

0
θT

s dBs

}

, ξ θ
0 = 1.

We can then construct the first-order probability measures, Qθ , corresponding to each θ by

dQθ

dP

∣

∣

∣

∣

Ft

= ξ θ
t , for θ ∈ Θ.

Then, Bθ
t ≡ Bt −

∫ t
0 θsds is a standard BM under

(

Ω,F ,Qθ
)

.

By defining θ t ≡
∫

Θ θtηt (θ )dθ as the time-t conditional expectation of θt under the second-order prob-

ability, we can construct the compound probability measure, Qθ , on (Ω,F ), through the Radon-Nikodým

derivative process, ξ θ
t . Then, Bθ

t ≡ Bt −
∫ t

0 θ sds is a standard BM under (Ω,F ,Qθ ).

Similarly, we can construct the distorted compound probability measureQθ̃ through the Radon-Nikodým

derivative process, ξ θ̃
t , where θ̃t ≡

∫

Θ θt η̃t (θ )dθ . Under (Ω,F ,Qθ̃ ), Bθ̃
t ≡ Bt −

∫ t
0 θ̃sds is a standard BM.

3.2 Constructing the DM’s Utility Process

This subsection extends Duffie and Epstein’s (1992) SDU to the smooth ambiguity preferences by taking

continuous-time limits of the discrete-time model in the previous section. Recall that the DM’s recursive

utility under the discrete-time setting is represented by equation (1), where the CE function in the dual theory

is mD
t (Vt+h) in equation (4). Applying the implicit function theorem to Vt =W

(

Ct ,m
D
t (Vt+h)

)

, mD
t (Vt+h) is

represented by

mD
t (Vt+h) = H (Ct ,Vt ,h) ,

for some function H : (R+,R+,(0,1))→ R+ that depends on the time interval, h.

Then, the differential of the CE with respect to h evaluated at h = 0 can be expressed as follows:

d

dh
mD

t (Vt+h)

∣

∣

∣

∣

h=0

=
∂H

∂h
(Ct ,Vt ,0)

=− f (Ct ,Vt) , (5)
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where f (c,v) ≡ −∂H (c,v,0)/∂h is determined by the functional form of W (·, ·). Once f (·, ·) and mD
t (·)

are given, we can construct the corresponding SDU process. The combination of these primitive functions,

(

f ,mD
t

)

, is called the aggregator of the SDU. It is assumed that f (·, ·) is Lipschitz in utility; that is, there

is a positive constant k such that | f (c,v)− f (c,w)| ≤ k |v−w| for all (c,v,w) ∈ R3
+. It is also assumed that

f (·, ·) satisfies a growth condition in consumption; that is, there are positive constants k1 and k2 such that

| f (c,0)| ≤ k1 + k2c for all c ∈ R+.

Because we consider only Brownian uncertainty, we conjecture that the SDU process, V = {Vt}
T
t=0, has

the following stochastic differential representation under the continuous-time setting:

dVt =
(

µt +σT

t θt

)

dt +σT

t dBθ
t (6)

=
(

µt +σT

t θ̃t

)

dt +σT

t dBθ̃
t , (7)

where µt and σt are both Ft -measurable. Given the aggregator,
(

f ,mD
t

)

, the volatility process, σ = {σt}
T
t=0,

of the SDU is endogenously determined.

First, we derive the continuous-time limit of the KP CE conditional on each Qθ , represented in equation

(3), by the following lemma.

Lemma 1. Given the utility process in equation (6), the differential of time-t conditional KP CE, mθ
t (Vt+h),

with respect to h is expressed by:

d

dh
mθ

t (Vt+h)

∣

∣

∣

∣

h=0

= µt +σT

t θt −
1

2
R(Vt) |σt |

2 , (8)

where R(Vt)≡−u′′ (Vt)/u′ (Vt) is the DM’s absolute risk aversion.

Proof. Using Ito’s lemma, we find from equation (6) that

u(Vt+h) = u(Vt)+
∫ t+h

t

{

u′ (Vs)
(

µs +σT

s θs

)

+
1

2
u′′ (Vs) |σs|

2

}

ds+
∫ t+h

t
u′ (Vs)σT

s dBθ
s .
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Then, applying the Taylor expansion, the conditional KP CE can be approximated as

mθ
t (Vt+h) =Vt +

{

(

µt +σT

t θt

)

−
1

2
R(Vt) |σt |

2

}

h+ o(h) .

Because mθ
t (Vt) =Vt ,

d

dh
mθ

t (Vt+h)

∣

∣

∣

∣

h=0

= lim
h→0

mθ
t (Vt+h)−mθ

t (Vt)

h

= lim
h→0

{

(

µt +σT

t θt

)

− 1
2
R(Vt) |σt |

2
}

h+ o(h)

h

= µt +σT

t θt −
1

2
R(Vt) |σt |

2 ,

and we obtain equation (8).

Using the conditional KP CE in equation (8), we can also derive the continuous-time limit of the time-t

CE under the dual theory, represented in equation (4), by the following lemma.

Lemma 2. The differential of the time-t CE under the dual theory, mD
t (Vt+h), with respect to h is expressed

by

d

dh
mD

t (Vt+h)

∣

∣

∣

∣

h=0

= µt +σT

t θ̃t −
1

2
R(Vt) |σt |

2 . (9)

Proof. From equations (4), (8), and mD
t (Vt) =Vt , equation (9) is obtained directly as follows:

d

dh
mD

t (Vt+h)

∣

∣

∣

∣

h=0

= lim
h→0

mD
t (Vt+h)−mD

t (Vt)

h

= lim
h→0

∫

Θ mθ
t (Vt+h) η̃t (θ )dθ −Vt

h

= lim
h→0

∫

Θ

{

mθ
t (Vt+h)−Vt

h

}

η̃t (θ )dθ

=

∫

Θ

{

d

dh
mθ

t (Vt+h)

∣

∣

∣

∣

h=0

}

η̃t (θ )dθ

=
∫

Θ

{

µt +σT

t θt −
1

2
R(Vt) |σt |

2

}

η̃t (θ )dθ

= µt +σT

t θ̃t −
1

2
R(Vt) |σt |

2 ,

12



where the fourth equality follows by Lebesgue’s convergence theorem.

Substituting equations (5) and (9) into equation (7), it can be seen that the SDU process, Vt , is the solution

of the following backward stochastic differential equation (BSDE):

dVt =−

{

f (Ct ,Vt)−
1

2
R(Vt) |σt |

2

}

dt +σT

t dBθ̃
t , VT = 0. (10)

The BSDE (10) implies that the DM’s time-t utility can be expressed as follows:

Vt = E θ̃
t

[

∫ T

t

{

f (Cs,Vs)−
1

2
R(Vs) |σs|

2

}

ds

]

, VT = 0,

where E θ̃
t [·] is the conditional expectation underQθ̃ . Finally, through the technique used by Duffie and Epstein

(1992), we can derive an ordinally equivalent SDU process of Vt by the following proposition.

Proposition 2. In regard to a given aggregator,
(

f ,mD
t

)

, and the corresponding SDU process, Vt , define an

alternative aggregator,
(

f̂ , m̂D
t

)

, that satisfies

mD
t (v) = u−1

[

m̂D
t (u(v))

]

, (11)

f (c,v) =
f̂ (c,u(v))

u′ (v)
. (12)

Assuming that u(0) = 0, an alternative SDU process, V̂t ≡ u(Vt), corresponding to the aggregator,
(

f̂ , m̂D
t

)

,

is obtained through

V̂t = E θ̃
t

[

∫ T

t
f̂
(

Cs,V̂s

)

ds

]

. (13)

Then, V̂t is ordinally equivalent to Vt in the sense that V̂t and Vt rank the same ordering among consumption

processes.

Proof. Applying the Ito’s formula to V̂t = u(Vt) and from equation (7), we can see that V̂t has the following

stochastic differential representation:

dV̂t =

{

u′ (Vt)
(

µt +σT

t θ̃t

)

+
1

2
u′′ (Vt) |σt |

2

}

dt + u′ (Vt)σT

t dBθ̃
t .
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In addition, from equations (11) and (12), the differential of m̂D
t

(

V̂t+h

)

with respect to h is

d

dh
m̂D

t

(

V̂t+h

)

∣

∣

∣

∣

h=0

= u′ (Vt)
d

dh
mD

t (Vt+h)

∣

∣

∣

∣

h=0

= u′ (Vt)

{

µt +σT

t θ̃t −
1

2
R(Vt) |σt |

2

}

=− f̂
(

Ct ,V̂t

)

.

From these relationships, it can be seen that V̂t is the solution of the following BSDE:

dV̂t =− f̂
(

Ct ,V̂t

)

dt + σ̂T

t dBθ̃
t , V̂T = 0,

where σ̂t ≡ u′ (Vt)σt . This implies that V̂t can be represented by equation (13). The equivalence between V̂t

and Vt results directly from the fact that u(·) is a strictly increasing function.

Because of its tractability, we develop the following analysis by mainly utilizing the ordinally equivalent

SDU process, V̂t . Accordingly, if there is no confusion, we only denote the ordinally equivalent SDU and

the corresponding aggregator by Vt and
(

f ,mD
t

)

, respectively.

We showed above that the SDU process for the smooth ambiguity preferences can be constructed sim-

ilarly as the original SDU without ambiguity, where the only difference is the probability measure used to

calculate expectation. Therefore, the SDU in this study takes over the properties of the original SDU; in-

cluding, continuity, monotonicity for consumption, time consistency, and concavity, once f (·, ·) satisfies the

adequate conditions provided by Duffie and Epstein (1992). In the following subsections, we assume that

these conditions are satisfied.

3.3 Ambiguity Aversion

In this subsection, we formalize the DM’s ambiguity aversion implied by the SDU in equation (13). First,

by following Chen and Epstein (2002), we define an unambiguous event, A ∈ F , as one whose probability

14



agrees among all first-order probabilities, Qθ ∈ ∆.7 Then, the class U of unambiguous events is defined as

U =
{

A ∈ F : Qθ (A) =Qθ ′
(A) for ∀θ ,θ ′ ∈ Θ

}

.

All other events are called ambiguous.

For the events class, U , we refer to a process, Cua = {Cua
t }T

t=0, as an unambiguous consumption process,

if Cua
t is U -measurable for each t ≤ T . We then compare the degree of ambiguity aversion between different

DMs by the following definition.

Definition 1. Given the unambiguous events class U , the utility V ∗ is more ambiguity-averse than V if

V (C)≤V (Cua) ⇒ V ∗ (C)≤V ∗ (Cua) ,

holds for an arbitrary consumption process, C, and any unambiguous one, Cua.

Definition 1 states that whenever a DM having utility V prefers an unambiguous consumption process,

Cua, over a possibly ambiguous one, C, then a more ambiguity-averse DM having utility V ∗ should also

prefer the former over the latter. Note that we can compare the degree of DMs’ ambiguity aversion under

the fixed class of unambiguous events. Therefore, unlike the definition by Chen and Epstein (2002), we

can manage the degree of the DM’s ambiguity aversion separately from the degree of ambiguity that he/she

subjectively perceives.

Given Definition 1, the following proposition confirms that the degree of the DM’s ambiguity aversion

is determined by the convexity of the transformation function, ϕ (·), in equation (4).

Proposition 3. For fixed f (·, ·) and u(·), consider two CEs, mD1
t (·) and mD2

t (·), generated by transforma-

tion functions, ϕ1 (·) and ϕ2 (·), respectively. Denote the SDUs corresponding to each aggregator, ( f ,mD1
t )

and ( f ,mD2
t ), as V 1

t and V 2
t . Then, V 2 is more ambiguity-averse than V 1 if there is some strictly increasing,

continuous, and convex function J (·) : [0,1]→ [0,1] such that

ϕ2 = J(ϕ1).

7Note that ∆ includes the reference probability measure, P.
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Proof. We consider pre-normalized SDU processes, V 1
t and V 2

t , corresponding to aggregators, ( f ,mD1
t ) and

( f ,mD2
t ), respectively, that satisfy the following BSDEs:

dV i
t = ς i

(

V i
t ,σ

i
t ,ω , t

)

dt +
(

σ i
t

)T

dBt , V i
T = 0, for i = 1,2,

where

ς i
(

V i
t ,σ

i
t ,ω , t

)

=−

{

f
(

Ct (ω) ,V i
t

)

+
(

σ i
t

)T

θ̃ i
t −

1

2
R
(

V i
t

) ∣

∣σ i
t

∣

∣

2
}

,

and θ̃ i
t =

∫

Θ θt η̃
i
t (θ )dθ is the time-t conditional expectation of θt under the distorted second-order prob-

ability, η̃ i
t , implied by the distorted decumulative distribution function, ϕ i[Gt (·)]. Obviously, V 1 (Cua) =

V 2 (Cua) holds for an unambiguous consumption process, Cua.

Meanwhile, for a given decumulative function, Gt (·) : R+ → [0,1], we can obtain the following relation

from the convexity of J (·):

ϕ2 [Gt (z)] = J
(

ϕ1 [Gt (z)]
)

≤ ϕ1 [Gt (z)] , for ∀z ∈ (0,∞) .

Therefore, from equation (4), mD2
t (Vt+h)≤ mD1

t (Vt+h) holds for some common Vt+h. By noting mD1
t (Vt) =

mD2
t (Vt) =Vt , this implies that

d

dh
mD2

t (Vt+h)

∣

∣

∣

∣

h=0

= µt +σT

t θ̃ 2
t −

1

2
R(Vt) |σt |

2

≤ µt +σT

t θ̃ 1
t −

1

2
R(Vt) |σt |

2

=
d

dh
mD1

t (Vt+h)

∣

∣

∣

∣

h=0

∴ σT

t θ̃ 2
t ≤ σT

t θ̃ 1
t ,

where σt is the volatility process of Vt .

The above inequality in turn implies that ς2 (Vt ,σt ,ω , t) ≥ ς1 (Vt ,σt ,ω , t). Then, by El Karoui et al.’s

(1997) comparison theorem for BSDE (Theorem 2.2 in their study), V 1
t ≥V 2

t for almost every t ∈ [0,T ]. This

implies that V 1 (C) ≥ V 2 (C) holds for an arbitrary consumption process, C, so that V 2 is more ambiguity-
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averse than V 1.

Proposition 3 shows that our model enables us to change the degree of the DM’s ambiguity aversion

without affecting his/her attitude toward intertemporal substitution or risk. That is, we can achieve a three-

way separation of the DM’s preferences: intertemporal substitution, risk aversion, and ambiguity aversion.

Next, we provide the condition under which a given SDU, Vt , is ambiguity averse in an absolute sense.

Therefore, we consider a consumption process, C = {Ct}
T
t=0, having the following stochastic differential

representation:

dCt =
(

µC,t +σT

C,tθt

)

dt +σT

C,tdBθ
t , C0 = c, for θ ∈ Θ. (14)

If there are multiple θ = {θt}
T
t=0 in Θ, then C is an ambiguous consumption process. For the consumption

process in equation (14), we define the corresponding unambiguous consumption process, denoted by C
ua

,

whose stochastic differential representation is

dC
ua
t =

(

µC,t +σT

C,tθ t

)

dt +σT

C,tdBt , C
ua
0 = c. (15)

Note that both the expected increment and volatility of C
ua

under the reference probability measure, P, are

identical to those of C under the compound probability measure, Qθ . With these notations, we define the

DM’s ambiguity aversion as follows.

Definition 2. For the consumption processes in equations (14) and (15), the DM is ambiguity averse if

his/her SDU, V , satisfies

V (C)≤V (C
ua
).

This would be a natural definition to describe the DM’s ambiguity aversion in our setting. From equa-

tions (14) and (15), the unconditional moments of Ct under Qθ and those of C
ua
t coincide for every t ∈ [0,T ].

Under this condition, Definition 2 states that an ambiguity-averse DM would never prefer the possibly am-

biguous consumption process, C, over the unambiguous consumption process, C
ua

. From this definition, we

can consider the DM’s ambiguity attitude in the absolute sense and the following proposition provides the

condition under which the DM is ambiguity averse.
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Proposition 4. For fixed f (·, ·) and u(·), consider the CE, mD
t (·), generated by a transformation function

ϕ (·). If ϕ (·) is a convex function, then the SDU corresponding to the aggregator,
(

f ,mD
t

)

, is ambiguity

averse.

Proof. If a transform function, ϕ1 (·), is a linear (hence identity) function, then ϕ1 [Gt (z)] = Gt (z) holds

for any decumulative function, Gt (·). In this case, the DM’s time-t CE is the KP CE under Qθ ; that is, the

aggregator ( f ,mθ
t ) derives the SDU, V 1, that satisfies the following:

V 1 (C) = Eθ
0

[

∫ T

0
f (Cs,Vs)ds

]

= E0

[

∫ T

0
f

(

C
ua
s ,Vs

)

ds

]

=V 1
(

C
ua
)

.

Meanwhile, for a given convex transform function, ϕ2 (·), there should be some strictly increasing, con-

tinuous, and convex function, J (·) : [0,1]→ [0,1], such that ϕ2 = J(ϕ1). We denote the SDU corresponding

to ( f ,mD2
t ) by V 2, where mD2

t (·) is the time-t CE generated by ϕ2 (·). Then, from Proposition 3, V 2 is more

ambiguity averse than V 1, which implies that V 2 (C)≤V 2(C
ua
).

4 Application to Asset Pricing

In this section, we illustrate how our model can be applied to asset pricing. Under the discrete-time setting,

Ju and Miao (2012) apply the original KMM model to asset pricing and show that KMM preferences can

help resolve many asset-pricing puzzles, including the equity premium puzzle, the equity-volatility puzzle,

and the risk-free rate puzzle. Their model can also replicate counter-cyclical variations in equity premium

and equity volatility. For a comparison between the original KMM model and our dual theory, we derive

asset prices under a setting that is a continuous-time analogue of Ju and Miao’s model. We then examine

whether our asset pricing result is compatible with theirs.
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4.1 The Economy

We consider an endowment economy inhabited by an infinitely lived representative agent. Under a prob-

ability space (Ω,F ,{Ft},Q
θ∗
), the aggregate consumption, C = {Ct}

∞
t=0, and the equity dividend, D =

{Dt}
∞
t=0, are governed by the following stochastic process:

dYt

Yt

≡

(

dCt

Ct

,
dDt

Dt

)

T

= (δ +κθ ∗
t )dt +κdBθ∗

t , (16)

where Bθ∗

t is a two-dimensional standard BM under Qθ∗
. δ = (δC δD)

T is a constant 2×1 vector and κ is a

constant 2× 2 matrix. The first row of κ is denoted by κC, while the second row of κ is denoted by κD. θ ∗
t

is a two-dimensional Ft adopted process.

In this economy, θ ∗
t takes one of two possible outcomes, θ ∗

t ∈ {θ 1,θ 2}, that follows the two-states

continuous-time Markov chain, also defined on
(

Ω,F ,{Ft},Q
θ∗)

with the infinitesimal generator matrix

Λ =







−λ12 λ12

λ21 −λ21






, λ12,λ21 > 0.

Intuitively, the transition probability of θ ∗
t from θ i to the other θ j in infinitesimal time is λi jdt. It is assumed

that the evolution of θ ∗
t is independent of Bθ∗

t .

In terms of ambiguity, the representative agent cannot observe θ ∗
t , and his/her information set at time

t is generated by the observed fundamentals process up to t, denoted by FY
t ⊂ Ft . Therefore, from the

agent’s point of view, there are two alternative first-order probability measures, ∆ = {Qθ 1
,Qθ 2

}, under each

of which the fundamentals process is expressed as follows:

dYt

Yt

=
(

δ +κθ i
)

dt +κdBθ i

t , for i = 1,2.

where Bθ i

t is a two-dimensional standard BM under (FY ,Qθ i
). It is assumed that κCθ 1 > κCθ 2. That is,

Qθ 1
is a more favorable probability measure for the agent than Qθ 2

. Without loss of generality, we set
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θ 1 = (0,0)T so that Qθ 1
is selected as the reference probability measure, i.e., Qθ 1

= P.

With this ambiguity, the agent subjectively assigns the second-order probabilities for each θ i. We denote

the time-t second-order probability for each θ i by η i
t ≡ ηt

(

θ i
)

and represent the time-t conditional expec-

tation of θ ∗
t by θ t ≡ η2

t θ 2. Using the FY
t adapted process θ t , we can construct the compound probability

measure, Qθ , through the Radon-Nikodým derivative process with respect to the reference measure, ξ θ
t .

In particular, if the agent is a Bayesian, the stochastic process of η i
t can be obtained through the standard

filtering theory.

Lemma 3. Given the true fundamental process of equation (16) and a prior probability, η1
0 , the updated

Bayesian second-order probability η1
t is governed by the following process:

dη1
t =

{

λ21 − (λ12 +λ21)η1
t

}

dt −η1
t

(

1−η1
t

)(

θ 2
)T

dBθ
t , (17)

where Bθ
t is a two-dimensional standard BM under {FY ,Qθ}. The second-order probability for θ 2 is

obtained by η2
t = 1−η1

t for ∀t ∈ [0,∞].

Proof. See, for example, Liptser and Shiryaev (2001).

4.2 The Agent’s Preferences

Next, we assume the following transform function

ϕ(g) = gα+1,

to represent the agent’s ambiguity attitude. The DM is ambiguity averse if α ≥ 0, and the value of α repre-

sents the degree of the DM’s ambiguity aversion. In this case, the time-t distorted second-order probabilities

are η̃1
t =

(

η1
t

)α+1
and η̃2

t = 1− η̃1
t .

Under the distorted second-order probability, the time-t conditional expectation of θ ∗
t is calculated as

θ̃t = η̃2
t θ 2. The FY

t adapted process θ̃t generates the distorted compound probability measure, Qθ̃ , through
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the following Radon-Nikodým derivative process with respect to the reference measure:

ξ θ̃
t = exp

{

−
1

2

∫ t

0

∣

∣θ̃s

∣

∣

2
ds+

∫ t

0
θ̃sdBs

}

, ξ θ̃
0 = 1. (18)

Then, Bθ̃
t ≡ Bt −

∫ t
0 θ̃sds is a two-dimensional standard BM under {FY ,Qθ̃}. Using the relation that Bθ̃

t =

Bθ∗

t −
∫ t

0

(

θ̃s −θ ∗
s

)

ds = Bθ
t −

∫ t
0

(

θ̃s −θ s

)

ds, we can rewrite the stochastic processes in equations (16) and

(17) as follows:

dYt

Yt

=
(

δ +κθ̃t

)

dt +κdBθ̃
t , (19)

dη1
t = ζ

(

η1
t

)

dt + χ
(

η1
t

)

dBθ̃
t , (20)

where

ζ
(

η1
t

)

= λ21 − (λ12 +λ21)η1
t −η1

t

(

1−η1
t

)(

θ 2
)T{

θ̃t −θ t

}

,

χ
(

η1
t

)

=−η1
t

(

1−η1
t

)

(θ 2)T.

For the agent’s SDU process, we assume that the normalized aggregator,
(

f ,mD
t

)

, has the following

form:8

f (c,v) =

(

β

1−ρ

)

c1−ρ −{(1− γ)v}
1−ρ
1−γ

{(1− γ)v}
γ−ρ
1−γ

,

mD
t (w) = E θ̃

t (w) .

β ≥ 0 represents the subjective discount rate of the agent. γ ≥ 0 represents the agent’s relative risk aversion

(RRA), while ρ ≥ 0 represents the inverse of the agent’s intertemporal elasticity of substitution (IES). When

γ = ρ , the corresponding SDU is reduced to the time-additive power utility.

Although the explicit expression for the corresponding SDU process, Vt , cannot be obtained, its numeri-

cal solution is easily found by the following proposition.

8While this functional form of f (·, ·) violates the Lipschitz condition for utility, the existence and uniqueness of the SDU process

are discussed in Duffie and Lions (1992) and Schroder and Skiadas (1999).
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Proposition 5. In this economy, the agent’s SDU process, Vt , is expressed by

Vt = A
(

η1
t

) C
1−γ
t

1− γ
, (21)

where A(·) is a solution of the following ordinal differential equation (ODE):

0 = β

(

1− γ

1−ρ

)

{A(η)}
ρ−γ
1−γ +(1− γ)

{

δC +κCθ̃ (η)−
1

2
γ |κc|

2 −
β

1−ρ

}

A(η)

+
{

ζ (η)+ (1− γ)κCχ (η)T
}

A′ (η)+
1

2
|χ (η)|2 A′′ (η) . (22)

Proof. From the homotheticity of f (c,v), we first guess that the functional form of Vt is represented by

equation (21). Then, from equation (13), we obtain the following expression for Vt :

0 = f (Ct ,Vt)dt +E θ̃
t (dVt)

=





(

β

1−ρ

)

1−
{

A
(

η1
t

)}

1−ρ
1−γ

{

A
(

η1
t

)}

γ−ρ
1−γ

C
1−γ
t



dt +E θ̃
t (dVt) . (23)

Meanwhile, applying the Ito’s formula to Vt in equation (21), it can be seen that Vt has the following stochas-

tic differential expression:

dVt =C
1−γ
t

{

A
(

η1
t

) dCt

Ct

−
1

2
γA

(

η1
t

)

(

dCt

Ct

)2

+
A′
(

η1
t

)

1− γ
dη1

t +
1

2

A′′
(

η1
t

)

1− γ

(

dη1
t

)2
+A′

(

η1
t

) dCt

Ct

·dη1
t

}

.

Substituting this expression and equations (19) and (20) into equation (23), we obtain the ODE (22).

4.3 Asset Pricing

This subsection derives asset prices in our economy. The economy contains two assets: a risk-free asset

with zero net supply and equity. The risk-free rate and equity price at time t are denoted by rt and St ,

respectively. To facilitate asset pricing, we define an adapted process, π θ̃
t , as the stochastic discount factor

(SDF) under Qθ̃ , which relates the time-t price of an arbitrary asset, denoted by pt , and its continuation
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dividend sequence, z = {zs}
∞
s=t , through

π θ̃
t pt = E θ̃

t

[

∫ ∞

t
π θ̃

s zsds

]

.

Following Duffie and Skiadas (1994), the SDF in this economy has the following form:

π θ̃
t = exp

{

∫ t

0
fV (Cs,Vs)ds

}

fC (Ct ,Vt) ,

where fC (c,v) and fV (c,v) represent partial derivatives of f (c,v) for c and v, respectively. Then, applying

the Ito’s formula to π θ̃
t and using equations (19), (20), and (21), its stochastic process is obtained as follows:

−
dπ θ̃

t

π θ̃
t

=

{

β +ρ
(

δC +κCθ̃t

)

−
1

2
γ (γ + 1) |κC|

2 +(γ −ρ)L
(

η1
t

)

}

dt

+

{

γκC +

(

γ −ρ

1− γ

)

A′
(

η1
t

)

A
(

η1
t

) χ
(

η1
t

)

}

dBθ̃
t , (24)

where

L(η) = δC +κCθ̃ (η)+
β

1−ρ

[

{A(η)}
− 1−ρ

1−γ − 1

]

+
1

1− γ

{

ζ (η)− γκCχ (η)T
} A′ (η)

A(η)

−
|χ (η)|2

2(1− γ)

[

(

1−ρ

1− γ

){

A′ (η)

A(η)

}2

−
A′′ (η)

A(η)

]

.

It is well known that the drift term of equation (24) is equal to the equilibrium risk-free rate, whereas the

diffusion term of equation (24) is equal to the equilibrium market price of uncertainty under Qθ̃ . Using these

facts, we obtain asset prices in this economy through the following proposition.

Proposition 6. From the SDF process in equation (24), the equilibrium risk-free rate is given by

rt = β +ρ
(

δC +κCθ t

)

−
1

2
γ (γ + 1) |κC|

2 +(γ −ρ)L
(

η1
t

)

−ρκC

(

θ t − θ̃t

)

. (25)
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Meanwhile, the equilibrium equity price is given by

St = F
(

η1
t

)

Dt , (26)

where F (·) is a solution of the following ODE:

− 1 = F (η)

[

δD +κDθ̃ (η)−κD

{

γκC +

(

γ −ρ

1− γ

)

A′ (η)

A(η)
χ (η)

}

T

− r (η)

]

+F ′ (η)

[

ζ (η)+ χ (η)

{

κD − γκC −

(

γ −ρ

1− γ

)

A′ (η)

A(η)
χ (η)

}

T
]

+
1

2
F ′′ (η) |χ (η)|2 . (27)

Proof. From the drift term of the SDF process in equation (24), the risk-free rate in equation (25) is obtained

immediately. As to the equity price, we conjecture that St has the form of equation (26). Then, applying the

Ito’s formula to St , the equity return process is given by

dSt

St

+
Dt

St

dt = δS

(

η1
t

)

dt +κS

(

η1
t

)

dBθ̃
t ,

where

δS

(

η1
t

)

= δD +κDθ̃t +
F ′

(

η1
t

)

F
(

η1
t

)

{

ζ
(

η1
t

)

+κDχ
(

η1
t

)T
}

+
1

2

F ′′
(

η1
t

)

F
(

η1
t

)

∣

∣χ
(

η1
t

)∣

∣

2
+

1

F
(

η1
t

) , (28)

κS

(

η1
t

)

= κD +
F ′

(

η1
t

)

F
(

η1
t

) χ
(

η1
t

)

. (29)

Because the diffusion term of equation (24) represents the market price of uncertainty, the time-t equity

premium under Qθ̃ is calculated by

δS

(

η1
t

)

− rt = κS

(

η1
t

)

{

γκC +

(

γ −ρ

1− γ

)

A′
(

η1
t

)

A
(

η1
t

) χ
(

η1
t

)

}

T

.

Substituting equations (28) and (29) into the above expression and rearranging terms, we obtain the ODE

(27).

From equation (25), we can decompose the risk-free rate into three components. The first three terms on
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the right side, β +ρ
(

δC +κCθ t

)

− 1
2
γ (γ + 1)|κC|

2
, are the sum of the agent’s subjective discount rate, in-

tertemporal substitution of consumption, and precautionary saving rate. If the agent’s utility is time-additive

(i.e., γ = ρ) and he/she is ambiguity neutral (i.e., θ̃t = θ t ), the risk-free rate would be determined by only

these three terms. The fourth term in equation (25), (γ −ρ)L
(

η1
t

)

, captures the effect of separation of the

agent’s risk attitude from his/her intertemporal attitude. The last term in equation (25), −ρκC

(

θ t − θ̃t

)

, rep-

resents the effect of the agent’s ambiguity aversion on the risk-free rate. It shows that the agent’s ambiguity

aversion (i.e.,θ̃t ≤ θ t ) lowers the risk-free rate in equilibrium. Because an ambiguity-averse agent behaves

like a pessimist, he/she saves more by consumption smoothing.

The equity premium depends on the probability measure. Because we want to examine the effect of

the agent’s ambiguity aversion on the equity premium, it would be natural to express that effect under the

compound probability measure, Qθ , instead of Qθ̃ . Accordingly, we express the market price of uncertainty

under Qθ by the following proposition.

Proposition 7. The time-t market price of uncertainty under Qθ , denoted by φ t = φ
(

η1
t

)

, is given by

φ
(

η1
t

)

= γκC +

(

γ −ρ

1− γ

)

A′
(

η1
t

)

A
(

η1
t

) χ
(

η1
t

)

+
(

θ t − θ̃t

)

. (30)

Proof. Define πθ
t ≡ π θ̃

t ξ θ̃
t /ξ θ

t as the SDF under Qθ . Applying the Ito’s formula to πθ
t and using equations

(18), and (24), its stochastic differential representation is obtained as

−
dπθ

t

πθ
t

= rt dt +φ
(

η1
t

)T

dBθ
t ,

where rt and φ (·) are equal to equation (25) and equation (30), respectively. Therefore, the stochastic

process φ t in equation (30) serves as the market price of uncertainty under Qθ .

Proposition 7 indicates that we can also decompose the equity premium into three components. The

first term on the right side of equation (30) corresponds to the market price of risk when the agent’s utility is

time-additive. The second term represents the premium for the late resolution of uncertainty in equity. When

γ > ρ , the agent prefers an earlier resolution of uncertainty; therefore, he/she hesitates to hold equity whose

payoffs depend on the persistent fluctuation in θt . The third term represents the ambiguity premium. As the
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agent is more ambiguity averse, he/she requires more premium for equity that yields ambiguous dividends.

4.4 Calibration

In this subsection, we calibrate our continuous-time model and compare the asset pricing result with that

in the study by Ju and Miao (2012). They use the U.S. annual data set of real returns for the S&P 500

and the six-month commercial paper from 1871 to 1993, which was originally examined by Cecchetti et al.

(2000). In their sample period, the historical averages of the risk-free rate which were approximated by

the returns on the six-month commercial paper and the equity premiums of the S&P 500 are 2.66% and

5.75%, respectively. Meanwhile, the historical standard deviations of risk-free rate and equity premiums are

5.13% and 19.02%, respectively. These unconditional moments of asset returns are the main targets of our

calibration.

Table 1 presents the parameter values used to simulate the fundamentals process. We select each value so

that the moments of our fundamentals process match those in the study by Ju and Miao (2012). The values of

λ12 and λ21 imply that θ ∗
t is highly persistent in θ 1. If θ ∗

t = θ 1, the probability of θ ∗
t having the same value

more than one year is e−0.031 = 0.97. Meanwhile, if θ ∗
t = θ 2, this probability is only e−0.675 = 0.51. The

unconditional probability of θ ∗
t being θ 1 is calculated by λ21 (λ12 +λ21)

−1 = 0.96. The parameter values

in Table 1 also imply that the expected log growth rates of consumption and dividends are 2.3% and 3.0%,

respectively, under Qθ 1
, but −6.8% and −21.8%, respectively, under Qθ 2

. Therefore, the unconditional

expected log growth rates of consumption and dividends are both approximately 1.9%. From the values of

κC and κD, the standard deviations of log growth rates of consumption and dividends are 3.1% and 12.0%,

respectively, and the instantaneous correlation between the two rates is 0.72.

For the agent’s preferences parameters, Ju and Miao (2012) set (ρ ,γ) = (1/1.5,2) for their recursive

utility. They use the KMM CE in equation (2) with the following form of the second-order utility:

ν (m) =
m1−ψ

1−ψ
.

In their model, the parameter ψ determines the degree of the agent’s ambiguity aversion. They set (β ,ψ) =

(0.025,8.864) to match the first moments of the risk-free rate and equity premium. We set the same values of
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(ρ ,γ) and choose other parameter values by (β ,α) = (0.023,1.3) to match the first moments of the risk-free

rate and equity premium.

In our simulation, we discretize our model by Euler approximation. The time interval ∆t = 0.001 is set to

generate a sequence of 1,000,000 (1,000 years) artificial fundamentals. We then derive asset prices through

Proposition 6 and calculate annualized returns of risk-free assets and equities.

Table 2 presents our simulation results. The third row indicates the simulation result for our baseline case.

With these parameter values, our model nearly completely replicates the unconditional simulated moments

of the asset returns in Ju and Miao’s baseline case. On the other hand, the degree of agent’s ambiguity

aversion can be interpreted more intuitively in our model through the value of E(η̃1). In our baseline case,

the agent decreases the second-order probability for Qθ 1
from 0.96 to 0.92 on average. This degree of agent

pessimism is sufficient to replicate the U.S. historical moments of asset returns.

The third to fifth rows examine the effect of the agent’s ambiguity aversion, α , on asset returns. Com-

paring simulated moments among rows, it can be seen that α plays a critical role in our asset pricing. In

particular, when the agent is ambiguity neutral (i.e., α = 0), our model cannot replicate the U.S. historical

equity premium at all. When we shift the agent’s preferences from the SDU to the time-additive power

utility (see the changes between the fifth and sixth rows), the asset pricing results worsen. The increase

in the agent’s RRA, γ , or in his/her ambiguity-aversion, α , has little effect in improving the asset pricing

results under the time-additive power utility (see the changes from the sixth to the seventh and eighth rows,

respectively). This result suggests that the separation of the agent’s RRA from IES combined with his/her

ambiguity aversion is crucial in our model.

Besides the unconditional moments of asset returns, Ju and Miao’s model also succeeds in explaining

the dynamic phenomena of asset-return moments, including counter-cyclical variations in equity premium

and equity volatility. As a continuous-time counterpart of their model, our model should also replicate

these dynamic properties. To confirm this, Figure 2 presents the equity premium (left panel) and the equity

volatility (right panel) conditional on the second-order probability, η1
t . As can be seen from the figure,

both conditional moments are increasing in the degree of the agent’s ambiguity aversion. Furthermore, the

peaks of both curves shift toward the right side as the degree of the agent’s ambiguity aversion increases.

When the economy is in a good state (i.e., θ ∗
t = θ 1), η1

t stays at or near one, and both conditional moments
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are relatively low. However, when θ ∗
t switches from θ 1 to θ 2, η1

t decreases and both conditional moments

increase. In particular, the conditional moments increase more sharply as the agent becomes more ambiguity

averse. Therefore, our model can also capture counter-cyclical variations in equity premium and equity

volatility.

5 Conclusion

In this study, we apply Yaari’s (1987) dual theory to the KMM model, and succeed in representing the DM’s

smooth ambiguity preferences under a continuous-time setting. The calibration results of asset pricing in-

dicates that our continuous-time model replicates most properties of asset prices implied by Ju and Miao’s

(2012) discrete-time model. Therefore, our model can be considered as a continuous-time counterpart of the

original KMM preferences. Using the techniques in this study, we can combine the smooth ambiguity pref-

erences with powerful tools developed in continuous-time financial studies, including optimal consumption-

portfolio choice, equilibrium asset pricing, and derivative pricing.

Meanwhile, Yaari’s (1987) dual theory is not a complete “dual” of the SEU theory. Indeed, the dual

theory is derived by replacing the independence axiom postulated in the SEU theory with the so-called dual

independence axiom. From this perspective, the DM’s behavior under the dual theory is not necessarily

identical to that under the original SEU theory. The same argument should be true of the relation between

our model and the KMM model. Therefore, the consequence of this difference should be examined more

carefully, and this task will be a future focus of our research.

While this study concentrates on Brownian uncertainty, it would be straightforward to incorporate jump

processes into our model. Because it is very difficult to determine the distributions of rarely occurring events,

a model including jump processes might be more suited to represent the ambiguity surrounding the DM than

a model including only Brownian uncertainty. Another objective of our future research is to incorporate

jump processes into our continuous-time smooth ambiguity preferences model.
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δC δD κC κD

(

θ 1
)

T
(

θ 2
)

T
λ12 λ21

0.024 0.038 (0.031,0) (0.086,0.084) (0,0) (−2.935,0.029) 0.031 0.675

Table 1: Parameter values of the fundamentals process used in our calibration.

Unconditional Moments E(r) σ(r) E(Req) σ(Req) E(Req)/σ(Req) E
(

η̃1
)

U.S. Historical (1871-1993) 2.66 5.13 5.75 19.02 0.30 -

Ju and Miao (2012) 2.66 1.16 5.75 18.26 0.31 -

Our Model

(ρ ,γ,α)
(1/1.5,2,1.3) 2.66 1.22 5.75 18.37 0.31 92.4

(1/1.5,2,0.5) 3.18 1.04 1.84 16.10 0.11 94.2

(1/1.5,2,0) 3.46 0.87 0.49 14.41 0.03 95.6

(2,2,0) 6.05 2.37 0.25 13.60 0.02 95.6

(3.5,3.5,0) 8.54 4.14 0.61 13.06 0.05 95.6

(3.5,3.5,1.3) 7.53 5.51 0.62 12.31 0.05 92.4

Table 2: Simulated moments of annualized asset returns. E(·) and σ(·) represent the unconditional mean

and standard deviation of the simulated moments, respectively. Req represents the equity-premium. Except

for E (Req)/σ (Req), the Sharpe-ratio of equity return, each number represents a percentage. The first row

shows the historical moments of U.S. asset returns from 1871 to 1993 estimated by Cecchetti et al. (2000).

The second row shows the simulated moments in the study by Ju and Miao (2012) with the parameter values

of (β ,ρ ,γ,ψ) = (0.025,1/1.5,2.0,8.864). The third to eighth rows show the simulated moments using our

model according to various parameter values of (ρ ,γ,α). In our simulations, the value of β is fixed at 0.023.
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Figure 1: An illustration of the dynamic structure of ambiguity under the discrete-time setting that is faced

by the decision maker at time t.
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Figure 2: The equity premium (left panel) and equity volatility (right panel) conditional on η1. The solid,

broken, and dotted lines in each panel represent the corresponding conditional moments under α = 1.3,

α = 0.5, and α = 0, respectively. Other preference parameters are fixed at (β ,ρ ,γ) = (0.023,1/1.5,2).
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