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The term “uncertainty’ includes risk and ambiguity.

m Risk:
Uncertainty of relevant payoftfs whose
probability measure 1s given.

m  Ambiguity:
Uncertainty of probability measures.

Most decision makers prefer a risky bet over an
ambiguous one. =  Ellsberg (1961)
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Subjective Expected Utility: Savege (1954)

V(C) =E[u(C(w)] =} aigi; (@) u(C(0)))

Maxmin Utility: Gilboa and Schmeidler (1989)

V(C) =minE% [u(C (w))].

l

Smooth Ambiguity Preferences: Klibanoff et al.(2005)

V() =L ai6 (E%[u(C(w))]).

Skiadas (2013) shows that smooth ambiguity preferences
converge to the SEU 1n the continuous-time limit.
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Given powerful tools in the continuous-time financial
modeling, 1t would be of great use if we can combine
those with the smooth ambiguity preferences.

We apply Yaari’s (1987) “dual theory” to the KMM
model, and interchange the role of the second utility with
that of the second order probability.

= Iwaki and Osaki (2014), Atemporal Setting.

By using this trick, we can prevent DM’s ambiguity
attitude from disappearing in the continuous-time limit.
DM'’s preferences are eventually represented by the SEU
with distorted beliefs.

Our model replicates Ju and Miao’s (2012) asset pricing
results.
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Preferences
Atemporal | Gilboa and Schmeidler Klibanoft et al.
Model (1989) (2005)
Discrete-Time | Epstein and Schneider Klibanoft et al.
Model (2003) (2009)
Continuous- Chen and Epstein This Paper
Time Model (2002)
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DM’s time-t utility of the continuation consumption
stream, {C;}._,, is denoted by V;.
This paper considers the following recursive utility

proposed by Epstein and Zin (1989):

Vi = W(Cﬁml‘ (Vt+h))- (1)

my; (Vy4p,) 1s a time-t certainty equivalent for the uncertain
next period utility, V, .

Supposedly, Kreps and Porteus’s (1978) CE would be the
most commonly used in economics and finance studies.

mit (Vi) = u” ' (B [u(Visn)])

where u (-) is a von Nuemann-Morgenstern utility index.
It is assumed that V; (w) € (0,00) for V (¢, ®).
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There are multiple first order probability measures,
{@9 }9 > Where O 1s a parameter space.

One of QY is selected as DM’s reference probability
measure, [P.

DM attaches second order probability, 1, (0), for each

0 cO.

In KMM model, DM’s time-f CE has the following form:

M W) = v ([ (nf (Vi) i (0)a0),

where m? represents the KP CE conditional on QY.

The concavity of v (-) captures DM’s ambiguity aversion.
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Continuous-Time Limit of KMM CE

Proposition 1 (Skiadas (2013)) Under the discrete-time
) DiccreteTirme approximation of Brownian uncertainty, the KMM CE is
SO ALY expressed as follows:

Preferences
> Recursive Utility
without Ambiguity

MM (V) = (B2 [u (Vi) +o0 ()
Limit of KMM CE

3. Dual Theory of — m? (‘/Z‘—Fh) —|— 0 (h) ,

Smooth Ambiguity
Preferences

1. Introduction

4. Continuous-Time

Smooth Ambiguity where Et‘9 -] and mt6 () are, respectively, the time-t

Preferences

5. applicionoasset cOnditional expectation and the KP CE under the compound
e probability measure:

6. Conclusion

QY () = /@Qe(w)n(O)de.
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Atemporal setting with risky consumption, C(®).
Define the decumulative distribution function of C(w) as:

GC(Z)E/Q]I{C(CO) > 2V dP(w), for z € (0,),

Also define a continuous, strictly increasing function

Then, 1n Yaart’s dual theory, DM makes his/her decision
through:

| olGe(@)dz=~ [ zdplGe()] = [ Clw)d

where PP is a probability measure implied by ¢ [G¢(2)].
DM is risk-averse when ¢@(-) is convex.
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Iwaki and Osaki (2014) axiomatize the dual theory of
KMM model under ambiguity.

We apply their technique to the dynamic setting.

The decumulative distribution function of m? (V;, ) is:

G: (z) = /@]I{mte (Vitn) >z} n:(0)d0, for z€ (0,00).

We then propose the following CE:

P (Vi) = | 061 (2))dz
= [ mfVin i @)a0, @

where 7 is the second order probability implied by
0[Gi(2)].
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From V; =W (C,,mpP (Vi)

I’I’ZP (Vt—l—h) — H(Cl‘7vl‘7h)7

for some function H : (R+,R,(0,1)) — R;..
Then:

d (9H

— _f(Cta‘/t)a (5)

where f(c,v) = —dH (c,v,0) /dh is determined by the
functional form of W (-, -).

16 /25



Stochastic Differential Utilitz

B Consider Brownian uncertainty with k-dimensional BM,

1. Introduction 1 2 k T e
2 Discrete-Time B, = (B/,B;, - ,B;) , defined on (Q,.Z,P).
Smooth Ambiguity . . P
Preferences B Each QY is constructed through the Radon-Nikodym
3. Dual Th f : : .
Smooth Ambiguity derivative process:
Preferences
4. Continuous-Time 6 t t
Smooth Ambiguit d Q 1 2
P?;?eorencelgl i E— — é@ — eXp — ’93‘ dS _l_ OJdBS .
> Differential Form of d ]P) Z, 2 0 0
t

CE

> Stochastic
~ :
s amicaionoase. M QY is constructed through EP, where 6, = [ 6,7, (0)d#.

Pricing

6. Conclusion

Proposition 2 By assuming Vi = 0, ( f, mP) generates the
following utility process:

V, = E? [/Tf(CS,VS)dS] |
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Continuous-time analogue of Ju and Miao (2012).

Endowment economy with an infinitely lived agent.
Under (Q,.%#,{%:},Q°%), the fundamentals
(consumption and equity dividend) process 1s:

Y, \ G’ D

dY, (dC, dD,
Y,

.
) = (6 + k6" dt + kdB?",

BY": two-dimensional standard BM

6/ : two-dimensional .#; adopted process.

0 € {6',6%} follows continuous-time Markov chain
with the infinitesimal generator matrix:

—A2 A2
A= Ao A 0.
( 7(421 _7(421> . 12, /\21 >

We assume KCTOI > KEOz.
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The agent cannot observe 6;*.

By observing realized value of fundamentals, the agent
updates 17/ = 1,(60") by Bayesian.

Agent’s aggregator:

V)V}l_ﬁ;

Y—p )
I-y

B ) c'P —{(1

ren= (75 (-7}

Transform function:

which implies the following distorted second-order
probabilities:

i = (nf)aﬂ, i =1-1.
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Proposition 6 The equilibrium risk-free rate, r,, is given by:

— 1
= B+p{dc+ 10} —sy(r+ DKl +(r—p)L(n/)
—pKk: {6, -6},

where 6, = n'0' + 1?02 and 6, = 71! 0' + 71762,

Meanwhile, the equilibrium equity price is given by:
St — F (ntl) Dl‘;

where F (-) is a solution of the ODE (27):

(26)
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Calibration Parameter

1. Introduction 5(: 6D Kg Kl-)r
2. Discrete-Time 0.024 0.038 (0.031,0) (0.086,0.084)

Smooth Ambiguity

Preferences ( 0 1 ) T ( 6 2) T ),1 ) 121

3. Dual Theory of

Smooth Ambiguity (07 O) (_29357 0029) 0031 0675

Preferences

4. Continuous-Time
Smooth Ambiguity
Preferences

5. Application to Asset | Eel [dlnC] — 24%,E91 [dlnD] — 30%,

Pricing

> Basic Setting EGZ [dlnC] — _68%,E92 [dlnD] — —218%

> Continued

et brices | E[dlIlC] = E[dlnD] =1.9%, G(dlIIC) =3.1%,
5(dnD) = 12.0%,p(dInC,dn D) = 0.72.
> Calibration Result . [P{QIZQI}:96%

M Preferences parameters:

(B,p,7,o) = (0.023,1/1.5,2,1.3).

6. Conclusion
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E(r) o(r) E[RM) o(R9) E(7')

U.S. (1871-1993)  2.66 5.13 575  19.02 -

Ju and Miao (2012) 2.66 1.16 575  18.26 -

Our Model
(0,7, @)

(1/1.5,2,1.3) 2.66 1.22 575 1837 92.4
(1/1.5,2,0.5) 3.18 1.04 1.84  16.10 94.2
(1/1.5,2,0) 3.46 0.87 049  14.41 95.6
(2,2,0) 6.05 2.37 025  13.60 95.6
(3.5,3.5,0) 8.54 4.14 0.61  13.06 95.6
(3.5,3.5,1.3) 7.53 5.51 0.62 1231 92.4
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> Concluding Remarks

We succeed in representing DM’s smooth ambiguity
attitude under the continuous-time setting.

Our model replicates asset pricing results in Ju and Miao
(2012).

Therefore, our model could be regarded as a
continuous-time analogue of original KMM preferences.
Yaari’s dual theory 1s not a complete dual of the SEU
theory.

Economic consequence of this difference should be
examined more carefully.

Extend our model to incorporate Poisson process.
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