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Abstract

The Beveridge-Nelson (BN) decomposition using an estimated autoregressive
(AR) model of U.S. real GDP growth produces an output gap with small amplitude
and a lack of persistence. We demonstrate such attributes are because the estimated
AR coefficients imply a high signal-to-noise ratio for output growth. We show how to
impose a low signal-to-noise ratio for an AR model, with the BN decomposition from
this model producing an output gap that is both large in amplitude and persistent.
Our estimated output gap also moves closely with the NBER-dated expansions and
recessions and leads to better out-of-sample forecasts of output growth and inflation
than output gaps based on other methods that impose a low signal-to-noise ratio,
including deterministic detrending using a quadratic trend, the Hodrick-Prescott fil-
ter, and the bandpass filter. Most importantly, our estimated output gap is subject
to smaller ex post revisions than other measures, yet maintains a stronger relation-
ship to inflation for revised estimates, thus addressing the well known critique that
output gap estimates are unreliable in real time.
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1 Introduction

The output gap is often conceived of as encompassing transitory movements in log real

GDP. The Beveridge and Nelson (1981) (BN) definition of the trend of a time series is

the long-run conditional forecast, so suggesting a natural approach to computing output

gaps, as long as the researcher specifies a reasonable forecasting model. An autoregressive

(AR) model for output growth is sensible place for a researcher seeking a reasonable

forecasting model. The top panel of Figure 1 presents estimates of an output gap from a

BN decompsition of an AR(1) forecasting model for the growth of U.S. real GDP.1 The

output gap from an AR(1) forecasting model is small in amplitude, lacks persistence,

and does not match up well with the NBER chronology of expansions and recessions.

The bottom panel of Figure 1 presents output gap estimates from the Greenbook and

the output gap implied from the Congressional Budget’s Office’s estimate of potential

output. Compared to the output gap obtained from a BN decomposition of an AR(1),

these output gap estimates have higher persistence and are of larger amplitude. They

are also pro-cyclical, if one matches these estimates against the NBER’s chronology of

recessions and expansions. While the estimates of the output gaps from the Greenbook

and CBO do not neccessarily imply output gaps need to the described features, it does

suggest that large amplitude and persistence are features that one may find consistent

with a concept such as the output gap. Therefore, despite the BN decomposition providing

a useful definition of the trend of a time series and an AR forecasting for output growth is

a reasonable forecasting model, it is little wonder that one finds the output gap estimates

of a BN decomposition of an AR forecasting model confronting. The output gap from the

BN decomposition of a simple AR model possesses features such as a lack of persistence

and has small amplitude because it has a high signal-to-noise ratio. That is, fluctuations

of the trend are more variable than the cycle. The output gaps which features larger

amplitudes will have a low signal-to-noise ratio, because the implied fluctuations of the

trend are less variable than the cycle.

Our main contribution is to show that one can alter the signal-to-noise ratio of a

simple AR forecasting model once one is armed with the insight that the signal-to-noise

ratio of output gaps estimated from AR models is mechanically linked to the estimated

AR coefficients. We therefore propose applying the BN decomposition based on Bayesian

estimation of an autoregressive model with a pre-specified signal-to-noise ratio which

corresponds with calibrating the sum of the autoregressive coefficients. Our approach is

easy to implement in comparison to estimating UC models with an explicit prior on the

signal-to-noise ratio (e.g., Harvey et al. (2007)). When applied to US quarterly log real

GDP, our approach produces an output gap that is highly persistent, has large amplitude,

1An AR(1) for U.S. output growth is a natural reasonable forecasting model a researcher can choose,
given it is obtained using the Bayesian Information Criteria, a common means of selecting a parsimonious
forecasting model.
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and match up with NBER-dated expansions and recessions. Our approach also reasonably

well in out-of-sample forecasts of output growth and inflation at short to medium term

horizons and is little revised compared to well known alternatives. Most importantly,

our approach is reliable in a real time environment, to the extent that it is often little

revised ex post. Our approach thus addresses a key critique by Orphanides and van

Norden (2002) that common output gaps estimates in real time, like the HP filter, are

often heavily revised and thus unreliable for real time analysis.

Being able to adequately address Orphanides and van Norden (2002) critique is a key

result for the paper. That Orphanides and van Norden find common approaches to the

output gap are unreliable in real time undermines the usefulness of the output gap in

real time policy environments and forming an accurate gauge of current economic slack.

The fact that our approach produces an output gap is little revised, and thus reliable,

is not coincidental but a product of our choice of working with a simple AR model.

In principle, the BN decomposition can be applied to any forecasting model, including

multivariate time series models, such as Vector Autoregressions, structural models such

as DSGE models, or nonlinear time series models with features such as Time Varying

Parameters or Markov Switching. Our choice to alter the humble AR forecasting model is

deliberate. Because the output gap from a BN decomposition are based on the estimated

parameters of the forecasting model, it is thus mechanically that any instability in the

estimated parameter in real time will produce output gaps that are heavily revised. The

choice to alter the simple AR forecasting is precisely because the estimates of the AR

coefficients are likely to be stable, unlike more complex forecasting models. Therefore, a

natural outcome of our choice is an output gap that is little revised and thus reliable.

It is also worth noting that our approach does address the omission of multivariate

information in the forecasting model and a structural breaks in the long-run growth rate,

thus addressing issues with trend-cycle decomposition raised by Evans and Reichlin (1994)

and Perron and Wada (2009). At the same time, because we use a BN decomposition,

our approach takes explicit account of a stochastic trend in U.S. real GDP unlike existing

methods like the HP filter or Bandpass filter, where addressing of the stochastic trend, if

any, can be less obvious.

The rest of this paper is structured as follows. Section 2 presents our proposed ap-

proach and applies it to US real GDP. Section 3 presents analyses the revision properties

of our approach and assesses the reliability of our approach, relative to other existing

methods. Section 4 provides a thorough motivation for our approach, in particular why

one might choose to lower the signal-to-noise ratio of the AR forecasting model. Section

5 presents a formal pseudo-real time forecast comparison for output growth and inflation.

We then address some robustness issues and conceptual issues with our approach before

concluding.

3



2 A Reliable Output Gap

2.1 The Beveridge-Nelson Decomposition and the Signal-to-Noise

Ratio

Beveridge and Nelson (1981) define the trend of a time series as its long-run conditional

expectation minus any a priori known (deterministic) future movements in the time series.

In particular, letting {yt} denote a time series process with a trend that follows a random

walk with drift, the BN trend, τt, at time t is

τt = lim
j→∞

Et [yt+j − j · E [∆y]] .

The simple intuition behind the BN decomposition is that the long-horizon conditional

expectation of a time series is the same as the long-horizon conditional expectation of

its trend under the assumption that the long-horizon conditional expectation of the cycle

is equal to zero. By removing the deterministic drift from the long-horizon forecast, the

conditional expectation remains finite and becomes an optimal estimate of the random

walk trend for a UC process (see Watson, 1986; Morley et al., 2003).

To implement the BN decomposition, it is typical to specify a forecasting model for

the first differences {∆yt} of the time series. First differencing explicitly deals with the

stochastic trend in the time series as it models for permanent shocks. We therefore will

intepret the permanent component of the BN decomposition as the trend.

Based on the sample autocorrelations of many macroeconomic time series, including

the first differences of log real GDP, it is natural when implementing the BN decomposition

to consider an AR(p) forecasting model:

∆yt = c+

p∑
j=1

φj∆yt−j + et, (1)

where the forecast error et ∼ N(0, σ2
e). For convenience when determining the signal-to-

noise ratio below, let φ(L) ≡ 1−φ1L−. . .−φpLp denote the autoregressive lag polynomial,

where L is the lag operator.

Although the AR(1) might seem a reasonable forecasting model, we have already

shown in Figure 1, and argued in the Introduction, a key misgiving with a BN decompo-

sitions based on a simple autoregressive model. In particular, the output gap does not

match up at all with the NBER chronology of recessions and expansions. The output gap

is also small in amplitude, suggesting that most of the fluctuations in U.S. real GDP have

been driven by trend.

To understand why the BN decomposition based on Maximum Likelihood Estimation

(MLE) for an AR(1) forecasting model of output growth produces an output gap with

4



such features, it is useful to define a signal-to-noise ratio for output growth as the ratio

of the variance of shocks to trend to the variance of the overall forecast error for output

growth:

δ ≡ σ2
∆τ/σ

2
e = ψ(1)2, (2)

where ψ(1) ≡ limj→∞
∂yt+j

∂et
is the long-run multiplier for a forecast error and is the key

summary statistic for a time series process when calculating the BN trend based on a

forecasting model. In particular, ∆τt = ψ(1)et. For an AR(p) model, this long-run

multiplier has the simple form ψ(1) = φ(1)−1 and, based on the estimated AR model

for postwar US real output growth data, φ̂(1)−1 > 1.2 Therefore, the implied signal-to-

noise ratio δ is large and greater than unity, corresponding to the estimated trend being

more volatile than the time series itself. The counterintuitive positive sign of the estimated

output gap during NBER recessions reflects the positive persistence in the output growth,

with a negative shock in a recession implying further below-average growth, meaning that

the series is above the long-run conditional forecast minus deterministic drift.

The insight that the signal-to-noise ratio is mechanically linked to the sum of the

AR coefficients is a powerful one. Many implementations of using a direct signal-to-

noise prior require some form of posterior simulation using a Bayesian approach (see,

e.g. Harvey et al., 2007). We now show that implementing a signal-to-noise ratio can be

trivially achieved through a suitable manipulation of Equation 3 through the insight that

the signal-to-noise ratio is linked to the sum of the AR coefficients. We first transform

the AR(p) model to its Dickey-Fuller representation:

∆yt = c+ ρ∆yt−1 +

p−1∑
j=1

φ∗j∆
2yt−j + et (3)

where ρ ≡ φ1 + φ2 + . . .+ φp = 1− φ(1) and φ∗j ≡ −(φj+1 + . . .+ φp). The Dickey Fuller

representation reduces specification of the signal-to-noise ratio to a single parameter, ρ.

Once one specifies, δ, this maps into a corresponding ρ. Equation 3 can then be estimated

and a BN decomposition is performed to obtain the output gap.

Estimation is straightforward without the need of using complicated posterior simu-

lators or complicated nonlinear restrictions. MLE estimation entails a single parametric

restriction on ρ. While it is possible to implement our approach using MLE, we will opt

for a Bayesian approach, mainly because this allows utilising a shrinkage prior on the

higher lags to prevent overfitting of the higher lags, reducing the issue of specifying the

lag order into an irrelevant one. Because Equation 3 is just a linear regression, we can

implement estimation using a Bayesian approach by fixing a dogmatic prior on ρ through

2This is because the sum of the autoregressive coefficients of an AR model of real GDP growth is
always estimated to be positive.
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a pre-specified signal-to-noise ratio and a shrinkage prior which tightens around zero with

each lag to avoid overfitting. Readers familiar with the Minnesota class of priors will

recognise that the posterior distribution of Equation (3) has a closed form solution, and

the posterior mode can be easily obtained without the need for a posterior simulator.

Regardless of one’s modelling persuasion, our proposal allows computation of an out-

put gap in a parsimonious and straightforward manner, which should appeal to practition-

ers. We relegate specifics about the implementation of our procedure, as well as details

about the degree of shrinkage, to an appendix.

Figure 2 presents the output gap based on an estimated Bayesian AR(12) of U.S. real

GDP growth with δ = 0.1, which is comparable to an HP filter with λ = 1600. We refer to

our method as BN Bayes. A cursory glance at the estimated output gap suggests that our

approach is more successful than the standard BN decomposition in producing an output

gap that is consistent with policymakers’ beliefs. In particular, we are able to capture the

turning points of all the NBER dated recessions. The amplitude of the output gap is also

large and persistent, as per our expectation from imposing a low signal-to-noise ratio.

2.2 Revision Properties

Having demonstrated our approach of utilising the insight of linking the signal-to-noise

ratio with the AR coefficients, we now assess the revision properties of our proposed

estimated output gap. In motivating our approach, we had explicitly set out to address

Orphanides and van Norden (2002) critique that methods of estimating the output gap

are not reliable in real time. Orphanides and van Norden (2002) show most real time

revisions of the output gap are due to the lack of information about the future, rather

than data revisions. That is, it the the method of extracting the output gap in real time

that is deficient, and not the ability of the models to predict revisions. We thus consider

a pseudo-real-time exercise using final vintage data (2015Q3) rather than do a real time

analysis. The pseudo-real time exercise is also appropriate because our approach is not

designed to model data revisions, but rather a demonstration of a method of circumventing

deficiencies in current methodological approaches.

We lay out several existing and widely-used alternatives. We first consider BN de-

composition on various ARIMA forecasting models and Unobserved Components (UC)

models estimated using MLE. As it is well known, the reduced form of a UC model is

an ARIMA model, and thus under certain conditions, both will imply exactly the same

decomposition for trend and cycle (see Morley et al., 2003). We consider BN decompo-

sitions of an AR(1), an AR(12) and an ARMA(2,2) estimated on real output growth.

We also look at a UC model like the one estimated by Harvey (1985) and Clark (1987).

The ARMA(1) is selected based on the Bayesian Information Criteria (BIC) on ARMA

models of various AR and MA lag orders. The AR(12) is used to understand the effect
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of imposing a long lag order on an autoregressive model. Note that using standard in-

formation criteria will almost certainly preclude a researcher from selecting an AR(12)

model ahead of more parsimonious specifications. The ARMA(2,2) is considered as it is

shown by Morley et al. (2003) to be an unrestricted version of a popularly used UC model

by Watson (1986). The Watson UC model features a random walk trend and an AR(2)

cycle. As Morley et al. show, the restrictions implied by the Watson (1986) UC model are

rejected by the data, suggesting an ARMA(2,2) is a good starting point when considering

UC models that feature a random walk trend and an AR(2) cycle. We also consider the

Harvey and Clark type UC model, similar to that considered by Orphanides and van

Norden (2002). The Harvey-Clark UC model differs from the Watson (1986) model to

the extent it features a time varying drift. To complete the set of alternative approaches

we consider, we look at deterministic trends and non-parametric filters, as they are often

used in practice. We therefore compare against a model with both a deterministic linear

and quadratic trend, the Hodrick and Prescott (HP) (1997) filter, and the Bandpass (BP)

filter by Baxter and King (1999) and Christiano and Fitzgerald (2003). For the HP filter,

we set a smoothing parameter, λ = 1600, as is commonly done for quarterly data. For

the BP filter, we target frequencies between 6 and 32 quarters, as is commonly done in

business cycle analysis. It is worth noting whatever documented misgivings about the HP

and BP filters (e.g. Cogley and Nason, 1995; Murray, 2003; Phillips and Jin, 2015), they

remain perhaps the most commonly used approaches in practice.

Figure 3 compares the pseudo-real-time output gap estimate and the current measure

of the output gaps as of the 2015Q3 vintage of real GDP data. In the top panel, we

evaluate the revision properties of our proposed approach. The remaining subplot presents

the other approaches. We first focus on the various BN decompositions. Of all the BN

models considered, the AR(1) and ARMA(2,2) suggest a BN cycle which is be non-

persistent, small in amplitude and not procyclical. Adding additional lags appears to

help as the AR(12) appears to be pro-cyclical as it does appear to coincident with the

NBER classification of business cycles. Even so, the AR(12) has low amplitude, consistent

with our observation that AR forecasting models have a signal-to-noise ratio much larger

than 1. One striking observation is that all the approaches using a BN decomposition

are less revised. A key reason why real-time estimates of the BN approach are hardly

revised is because the estimated coefficients of the forecasting model hardly change when

an additional data point is added in real time. Our approach, being derived from a

BN decomposition of an AR(p) model, is thus hardly revised. Even though approaches

using BN decompositions appear little revised, a striking observation within the class

of BN decompositions is that the more highly parameterised models like the AR(12)

and ARMA(2,2) are more heavily revised relative to the AR(1) model. This observation

suggests overparameterisation and overfitting compromises the real time reliability of

BN approaches. This is a crucial reason why we specify an arbitrary long lag order
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as well as impose a shrinkage prior. The shrinkage prior prevents overfitting, but the

long lag order allows for the modelling of richer dynamics, if present in the data. The

revision properties of our approach suggests our modelling approach achieves a reasonable

compromise between overfitting and considering richer dynamics.

We turn our attention to the other approaches. As mentioned, the non-BN approaches

are considerably revised ex post, and thus less reliable. The HP and BP filters are two-

sided filters, whose estimate of trend is contingent on future data. The arrival of additional

data point thus heavily alters the gap, as shown in the Figure.

While the results from eyeballing Figure 3 suggests our approach should be appealing

from a reliability perspective, we quantify these revision properties by calculating revision

statistics, similar to the exercise by Orphanides and van Norden (2002) and Edge and

Rudd (forthcoming). Therefore, similar to them, we calculate similar revision statistics.

First, we calculate the correlation between the pseudo-real time estimate of the output

gap and the final estimate of the output gap. We also consider two different measures

of the revisions, namely the standard deviation and the root mean squre (RMS). The

RMS approach is designed to penalise persistently large revisions more heavily relative

to the standard deviation approach. Both the standard deviation and RMS measures

are normalised by the standard deviation of the final estimate of the respectively output

gaps to enable comparison as all the different methods produce output gap with differing

amplitudes.3 Finally, we also compute the number of times the pseudo-real time estimate

produces an output gap which produces the same sign as the final estimate. We define for

the final estimate of the output gap as the output gap estimated from 1970Q1-2012Q4 on

the most recent vintage of real GDP data which we use for the main empirical analysis (i.e.

2015Q3) as the more recent estimates near the end of the sample may end up becoming

more heavily revised in the future.

Table 1 reports the revision statistics. As one gathers from eyeballing Figure 3, the BN

approaches produce a pesudo-real-time output gap which is highly correlated with the final

estimate. Once again, the more highly parameterised the forecasting model used for the

BN decomposition, the lower the correlation with the final estimate, suggesting once more

that overfitting can be an issue. Our approach, which also utilises a shrinkage prior does

relatively well with a correlation of 0.99 with the final estimate. The other approaches can

be quite mixed, from a low of 0.55 for the HP filter to 0.75 for the Harvey-Clark UC model.

Our proposed approach also does well in terms of size of revisions, with these revisions less

than a quarter of a standard deviation of the final estimate of the output gap. Some of

these approaches have revisions which are of the magnitudes comparable to one standard

of the final estimate of the output gap. Even the highly parameterised BN approaches do

3Note these statistics are referred to by Orphanides and van Norden (2002) as noise-to-signal ratios,
but apart from the labelling, have nothing to do with our approach of imposing a signal-to-noise ratio.
We will use the terms standard deviation and RMS of the revisions in order to circumvent any confusion.
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poorly on the revision metric, with the BN decomposition of an ARIMA(2,2) featuring

revisions roughly about half a standard deviation of the final estimate of its respectively

output gap. Finally, we turn our attention to whether the sign of the output gap changes,

once one is endowed with future information. Once again, the BN decomposition of the

various forecasting models tend to do much better. In fact, the BN decompositions as a

whole do much better than alternatives, where an excess of 75% of the sign of the real

time estimates are never revised. Within the class of BN decompositions, our approach

still does relatively well, being able to infer the correct sign as the final estimate almost

90% of the time.

To summarise, BN decompositions of ARMA forecasting models can be fairly reliable

in a pseudo-real time environment. This is because the addition of an additional data

point does not drastically alter the estimates of the forecasting model. Therefore, they are

more reliable than approaches such as HP and BP filters and deterministic detrending.

Even so, within the class of BN decompositions of ARMA models, parsimony seems to

be key for reliability of the estimated output gap. This is not so much a surprise, given

models which are highly parameterised models, such as the AR(12), or feature Moving

Average (MA) terms like the ARMA(2,1,2), will tend to feature coefficient estimates that

can be more unstable with the addition of future data. The AR(12) is likely to overfit

and the ARIMA(2,2), as we will argue later, is likely to suffer from weak identification

due to the small sample size.

Our approach to impose a signal-to-noise ratio in a simple AR(p) model in addition

to a shrinkage prior helps in producing a more reliable output gap. Within the class of

models which feature a highly persistent output gap, with large amplitude and is pro-

cyclical, our analysis suggest our approach is best. While our alteration of an AR model

does not seem to compromise the reliability of the estimates of the output gap, he AR(1)

does best on the reliability metrics which we have shown so far. Why then should one

impose a signal-to-noise ratio, given the BN decomposition of an AR(1) model appears to

be extremely reliability, albeit confronting as it lacks features one is familiar with, such

as persistence, amplitude and pro-cyclicality? We address this issue in the next section

of why one might find it desirable to impose a low signal-to-noise ratio.

2.3 Robustness

To explore the sensitivity of our approach of estimating the output gap, we first address

Perron and Wada’s (2009) claim that U.S. GDP should be modelled with a break in the

trend growth rate in 1973Q1. In our approach, because we estimate an AR(p) model on

output growth, we assume U.S. GDP evolves as a random walk with drift. We therefore

we estimated our model, with the addition of a dummy in the drift term to account for a

break in the trend in 1973Q1. The left panel of Figure 6 presents results with and without
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accounting for the structural break. There is a very slight shift upwards in the output gap

estimates after the 2000s if one accounts for a break in 1973Q1, but the differences are

trivial. We therefore conclude our approach of estimating the output gap is insensitive to

a break in U.S. GDP growth in 1973Q1.

We also studying the sensitivity of our approach by varying the signal-to-noise ratio.

The bottom panel of Figure 6 presents a moderate signal-to-noise ratio, δ = 0.3, and a high

signal-to-noise ratio, δ = 0.6, alongside our benchmark choice of δ = 0.1. Not surprisingly,

increasing the signal-to-noise ratio mechanically reduces the amplitude of the output gap.

Apart from a mechanical reduction in the amplitude, we note the shape of the estimated

output gap is little changed, with the persistence profile virtually unaltered.4 Because

the profile of fluctuations in the estimated output gap are unaltered even as we increase

the signal-to-noise ratio, observations of turning points, revision properties and real time

forecast performance are insensitive to the choice of δ. Finally, we wish to understand

if our choice to calibrate the signal-to-noise ratio has any effect, beyond that of just

the change in amptitude. We therefore compare relative to the BN decomposition of an

AR(12). Based on the coefficients estimated for an AR(12) for our sample, δ̂ is roughly

2. We can see that there are some differences in the profile of fluctuations in the output

gap, beyond that of the different amplitude of the estimated output gap. In particular,

the correlation is about 0.34, which is indicative that the imposition of a signal-to-noise

ratio is altering the AR(12) forecasting beyond that that already in the standard.

3 General Discussion

3.1 Motivation for Imposing a Low Signal-to-Noise Ratio when

Estimating the Output Gap

To recap, we have laid out a proposal for estimating output gaps by imposing a low signal-

to-noise ratio. Our proposal output gap are reliable in the Orphanides and van Norden

(2002) sense, in the sense that our approach of estimating the output gap features smaller

data revisions. Our approach does well compared to many well known alternatives, apart

form having marginally poorer revision properties compared to a BN decomposition of a

simple AR(1) model for output growth. The BN decomposition of an AR(1) has a high

signal-to-noise ratio. To the extent that one is agnostic about the signal-to-noise ratio,

there is little reason to deviate from the BN decomposition of the AR(1) model, especially

if real time reliability is the sole criteria of selecting an approach to estimate the output

gap. In other words, one can only really justify using our approach to estimating a reliable

output gap if there is reason to believe that a low signal-to-noise ratio represents the true

4We note correlation of the different estimated output gaps by varying the signal-to-noise ratio is more
than 0.95.
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state of the world. Whether a low or high signal-to-noise ratio represents the true state of

the world remains unresolved. While considerable empirical research has found evidence

for the presence of a volatile stochastic trend in real GDP (e.g. Nelson and Plosser, 1982;

Morley et al., 2003), this view does not go unchallenged (e.g. Cochrane, 1994; Perron and

Wada, 2009). Also, there is some evidence that transitory movements in real GDP are

asymmetric (e.g. Kim and Nelson, 1999; Sinclair, 2009; Morley and Piger, 2012; Morley,

2014). To the extent that real GDP is generated univariate with a volatile stochastic

trend represents the true state of the world, any imposition of a low signal-to-noise ratio

must necessarily imply a deliberate model misspecification, and thus cannot be defended.

One can therefore only defend our approach of imposing a low signal-to-noise ratio if

there is reason to believe that a low signal-to-noise ratio represents the true state of the

world. A legitimate reason to believe the signal-to-noise ratio is much lower than that

given by unrestricted AR models is that the forecasting model could be misspecified. It is

known that the BN decompositions of a univariate AR model yield a high signal-to-noise

ratio because estimated univariate ARMA model imply little forecastability for output

growth (see, e.g. Nelson, 2008). It is known, at least since the work of Evans and Reichlin

(1994), that the addition of multivariate information which can forecast output growth

mechanically lowers the signal-to-noise ratio. In other words, the unrestricted AR model

implies little forecastabilty for output because relevant information for forecasting output

growth has been omitted. To the extent that the univariate ARMA forecasting model

omits relevant variables which aid in forecasting output growth, the ARMA forecasting

model is misspecified. If one takes this perspective, then the high signal-to-noise ratio

one obtains from unrestricted ARMA forecasting models is a mere artefact of model

misspecification. This line of argument suggests that if the world was not one where

real GDP was generated univariate with a volatile stochastic trend, then the imposition

of a low signal-to-noise ratio in a univariate model of real GDP merely corrects for the

misspecification because the forecasting model is multivariate.

To the extent the underlying process generating output growth is multivariate offers

the modeller three choices in terms of estimating the output gap using BN decompositions.

First, if one knew the true nature of the multivariate model, the most straightforward

solution must be to estimate that correctly specified multivariate model. This point is

obvious if one ever knows the true state of the world. The second approach is to model

MA terms. If the true multivariate process was multivariate, like a vector autoregression

(VAR), then the omission of the multivariate information and modelling real GDP uni-

variate would mean the VAR forecasting model can be cast into an ARMA forecasting

model, with the MA terms proxy for the omitted information. The final option is our

approach. Our approach is to recognise that relevant multivariate information lowers the

signal-to-noise ratio, as per the insight by Evans and Reichlin (1994). Therefore, to model

a univariate model requires one to lowers the signal-to-noise ratio as we have done.
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We therefore conduct a Monte Carlo simulation to better understand how missing

multivariate information may give rise to a low signal-to-noise ratio and whether our

approach, vis-a-vis the approach of modelling MA terms can help recover the true state

of the world. We consider a simple bi-variate VAR of lag order 4 featuring output growth

and unemployment. Using U.S. data from 1948Q1-2015Q3, the null of unemployment does

not Granger causes output growth can be easily rejected at 1%, suggesting unemployment

as relevant multivariate information for forecasting output growth. As unemployment is

relevant information to forecast output growth, the signal-to-noise ratio from an estimated

AR(4) for output growth falls from 2.30 to 2.04 when the extra information is modelled as

a bivariate VAR(4), as per the insight by Evans and Reichlin (1994). We therefore use a

VAR(4) of output growth and unemployment as a Data Generating Process (DGP), with

the parameters in the DGP set to that which is estimated from the sample. We obtain

output gaps using BN decompositions using our simulated data first using our approach.

We then compare against using an AR(1) as a forecasting model and a forecasting model

which uses the BIC to choose the ARMA order. We do both Monte Carlo simulations

of 2000 artifical datasets each with sample sizes of 250 and population analysis. As the

DGP is a bivariate VAR, the true output gap is a multivariate BN decomposition, using

a VAR(4) as the forecasting model.

The top panel of Table 2 first presents correlation of the various estimated output

gap relative to the true output gap. Our proposed approach of calibrating the signal-

to-noise ratio does reasonably well whether with repeated sampling in small samples, or

in population. Note that these results are reasonably good even though the true signal-

to-noise ratio is 2.04, but we calibrate ours to 0.1.5 We observe the BN decomposition

of a simple AR(1) bears little resemblance to the true output gap, suggesting that there

is possible merit to the claim that the output gaps one gets from BN decompositions of

low order AR models is perhaps due to model misspecification of omitting the relevant

multivariate information. Relative to using an AR(1), allowing the possibility of MA terms

helps mitigate multivariate information. This can be seen from the higher correlation with

the true multivariate cycle once one considers the ARMA forecasting model. However,

the gain from considering MA terms in the ARMA forecasting model seems only modest

in small samples, but does very relatively well in population.

While it appears MA terms help mitigate the omission of multivariate information, as

we expect theoretically, this seems to only work best in large samples. In small samples,

our approach appears to still do better than modelling MA terms. A key reason for this is

that there is weak identification of the MA terms in small samples. This is illustrated in

the bottom panel of Table 2. In our repeated sampling of the small sample, whenever MA

5The main reason, as will be clear in the robustness analysis, is because fluctuations in the estimated
output gap in our approach are very robust across different values of δ, therefore implying the only real
difference is the amplitude of the cycle.
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terms are chosen by the information criteria, over a quarter features near cancellation of

the MA roots.6 If we look at the proportion of Monte Carlo draws that fit no MA terms

or features near cancellations, this ratio rises to 65%. This result explains why MA terms

seem to do well in population, but not in small samples. The weak identification of MA

terms means that in sample sizes typical for quarterly macroeconomic time series, the

econometrician will find it challenging to fit meaningful MA terms.

The Monte Carlo simulation somewhat justifies the scepticism of BN decomposition

based on MLE of univariate ARMA models and why small amplitude and non-persistent

output gaps can be somewhat confronting. If the true economic environment were indeed

multivariate, the BN decomposition based on MLE would produce very poor estimates

of the permanent component, and thus the output gap. A direct solution to the prob-

lem illustrated above is to of course estimate a multivariate model. Indeed, if one knew

the correct specification of the multivariate model, then one should directly estimate the

said model. In practice, one will not be endowed with the knowledge of the true multi-

variate model. The precise nature of the multivariate information could be unobserved,

unmeasured or mismeasured. A more subtle implication is that adding more multivariate

information in empirical work also risks overfitting, and therefore compromise the real

time reliability, as we have seen in the previous section. Moreover, the Evans and Reich-

lin (1994) result shows the inclusion of more (Granger Causing) variable will mechanically

lower the signal-to-noise ratio, implying any choice variable set in multivariate system is

an implicit calibration of the signal-to-noise ratio. Our approach of imposing a prior in the

signal-to-noise ratio explicitly specifies the signal-to-noise ratio in a transparent manner

and can also be seen as an attempt to incorporate multivariate information. Indeed, one

can think of our approach as reducing the signal-to-noise ratio, as the Evans and Reichlin

(1994) approach does, but bypassing the need to specify or choose the precise nature of the

multivariate information. The latter point is especially relevant if one desires univariate

detrending techonology without fully specifying an entire multivariate system.

Finally, we wish to make two comments on our results on weak identification and

contrast our approach of working with a pure AR model relative to a UC model. Note

the reduced form of a UC model is an ARMA forecasting model of output growth with non-

trivial MA terms. First, as we have shown MA terms may suffer from weak identification,

it is easy to reconcile why our previous results of the Harvey-Clark UC model and the

ARMA(2,2), which is an unrestricted Watson UC model, are not reliable in real time.

Second, from the perspective of UC models, we allow for correlation between the trend

and cycle, which Morley et al. (2003), Dungey et al. (2015) and Chan and Grant (2015)

have shown to be important empirically for U.S. real GDP. Without estimating the UC

model, but directly estimating a long order AR(p) model, which is approximately the

6We classify a near cancellation if the absolute value of the largest inverted AR and MA root differs
by less than 0.08.
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reduced form of a UC model, we allow for this correlation without the need to specify

the form of this correlation, as one would need to in the UC model. In choosing to work

with a long order AR(p) model, we obviate the issues associated with weak identification

of the MA terms, but allow the long AR lag order to mimic non-trivial MA dynamics, if

they are indeed present in the data.

3.2 Pseudo-Real-Time Forecast Evaluation

We now conduct pseudo-real-time forecasting exercises. Naturally, if the output gap we

propose has useful information to allow one to gain a good reading of the current state

of the business cycle, then this useful information should manifest itself in its ability to

forecast certain macroeconomic variables associated with the state of the business cycle.

We compare our proposed output gap measure by appealing to two forecast evalua-

tion metrics previously established by the literature, namely future output growth and

inflation. All of our forecasts are once again pseudo-real-time (i.e. we use the final vin-

tage data). Our forecast evaluation starts in 1970Q1. We use an expanding window for

estimation. The first estimate of an output gap we have is 1947Q2. We use the full extent

of the data sample for our forecast evaluation after adjusting for the number of lags in

the forecasting equation.

Output Growth Forecast Nelson (2008) argues for using future growth forecasts as

a metric to evaluate competing estimates of the output gap. The underlying intuition

is that if the output gap suggests output is below trend, this should imply faster future

output growth as output returns towards the trend to close the gap. Conversely, if output

is above trend, one should forecast slower output growth for output to return back towards

the trend. The point is that the cycle of a time series must necessarily return to zero in the

long run, and a good estimate of the output gap should be able to forecast this reversion.

For a h period ahead output growth forecast, we consider a forecasting equation similar

to Nelson (2008),

yt+h − yt = α + βgapt + εt (4)

where y is the natural log of real GDP, gap is the output gap measure under consid-

eration, ε is a residual distributed under all the standard assumptions and α and β are

coefficients estimated using least squares. Therefore, for a good measure of the output

gap, we expect β < 0 and the inclusion of the output gap in the forecast equation to

provide a better forecast for h period ahead growth.

We first confirm that β is the correct sign for all the different output gap measures, be-

fore proceeding to do our out of sample forecasting exercise. Figure 4 presents the pseudo

out-of-sample forecasting results. The Relative Root Mean Squared Errors (RRMSE) are
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relative to our proposed approach. The results of the out-of-sample RRMSE includes 90%

confidence bands obtained by inverting the Diebold and Mariano (1995) test.

We make two key observations. First, the output gaps constructed using the BN

decomposition are better than using filters and UC models. This further vindicates our

choice to work with a BN decomposition as our proposed approach inherits these good

features. Second, within the class of BN models, similar to that of the revision statistics,

parsimony seems to be the important. In particular, the AR(12) and ARMA(2,2) both

do worse than our approach. Therefore, the growth forecasting exercise mimics many of

the results we see for the revisions and reliability statistics that were presented earlier. In

particular, BN approaches do well, and more parsimonious forecasting models using the

BN decomposition do even better. It follows that our approach using a BN decomposition

and a shrinkage prior does well on the output growth metric.

Inflation Forecast We also consider a Phillips Curve type inflation forecasting equation

to evaluate our proposed output gap measure. Similar to, among others, Stock and Watson

(1999, 2008) and Clark and McCracken (2006), we use a fairly standard specification in

the inflation forecasting literature. We specify the following autoregressive distributed lag

(ADL) representation for our psuedo-real- time h period ahead Phillips Curve inflation

forecast

πt+h − πt = γ +

p∑
i=0

θi4πt−i +

q∑
i=0

κigapt−i + υt. (5)

We choose the lag orders of the forecasting equation, namely p and q above, using the

BIC.7 As commonly done (see, e.g. Stock and Watson, 1999, 2008; Clark and McCracken,

2006), we apply the information criteria to the entire sample and run the pseudo real-time

exercise using the same number of lags, implicitly assuming the inflation analyst a priori

knows the optimal lag order. The set of lag orders we consider for our ADL forecasting

equation are p ∈ [0, 12] and q ∈ [0, 12].

Figure 5 presents the out-of-sample RRMSE of the pseudo-real-time inflation fore-

casting exercise relative to our proposed output gap measure. Once again, like with the

output growth forecasting, we compute bounds on the 90% interval of the Diebold and

Mariano (1995) test. We note that our proposed output gap measure does well. In partic-

ular, calibrating the signal-to-noise ratio allows us to out-perform all other models based

on the BN decomposition. We also generally do better than the HP filter, BP filter and

deterministic trend. Even so, we state the differences in inflation forecast performance

using the different output gap estimates are fairly similar other, with most RRMSE within

the 1 to 1.05 range, indicating the gains in changing the output gap measure for forecast-

7The specification imposes a unit root in inflation and so implies an accelerationist view of the Phillips
Curve. The forecasting equation though is standard, as per the references listed above.
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ing inflation can be marginal. In particular, most of these RRMSE are not statistically

significant. To some extent, this is not entirely surprising. Contributions such as Atkeson

and Ohanian (2001) and Stock and Watson (2008) show that real-activity based Phillips

Curve type forecast may not be useful for forecasting inflation. In some sense, our results

are somewhat a manifestation of what is commonly found in the inflation forecasting

literature. However, we note that our approach is still reasonably competitive and may

be slightly better than competing options in terms of being a good real-time measure

of economic slack. In particular, we do produce statistically significantly better Phillips

Curve forecasts at some horizons relative to approaches such as the HP filter and the

deterministic trend. It is noteworthy that none of the alternative output gap measures

outperform our approach in a statistically significant way.

3.3 Are Revisions Useful in Understanding History?

If objection to the output gap is its real time unreliability, as is the central claim of the

influential work by Orphanides and van Norden (2002), the ideas developed in this paper

should suffice as a useful address of their critique. In this section, we wish briefly address

whether an output gap that is little revised is necessarily better in understanding history.

However, in the presence of new information, is our output gap little revised because

there is little incorporate beyond the real time view, or is it because the other methods

are systematically incorporating new information to produce a more accurate ex post view

of the output gap?

4 Conclusion

The Beveridge-Nelson trend-cycle decomposition, while conceptually elegant, is used in-

frequently because it produces an estimated output gap may appear confronting because

it ascribes more variation to fluctuations in the trend than to the cycle because it has a

high signal-to-noise ratio. In this paper, we use the insight that the signal-to-noise ratio

is mechanically linked to the AR coefficients of the forecasting model and use this insight

to lower the signal-to-noise ratio of the estimated output gap when applying applying

the BN decomposition. This approach produces a more intuitive output gap, with larger

amplitude and coherence with recessions and expansions. Crucially, in contrast to other

methods that impose a low signal-to-noise ratio, this approach also produces an output

gap with similar good forecasting properties to the standard BN decomposition. The

approach is also simple to implement.

There is much room to expand our analysis. We plan to extend our analysis to real

GDP for other economies and also to study the use of our approach in a real-time policy

environment. It is also an open question what the optimal signal-to-noise ratio should be
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and how should one choose an optimal lag length for the forecasting model. These are all

issue that we will address in future work.

Appendix

A1 Specification of the Prior

To recap our approach, we estimate the following AR(p) model with a dogmatic prior on

the sum of the autoregressive coefficients:

∆yt = c+

p∑
j=1

φj∆yt−j + et, (A1)

where the forecast error et ∼ N(0, σ2
e). For convenience when determining the signal-to-

noise ratio below, let φ(L) ≡ 1−φ1L−. . .−φpLp denote the autoregressive lag polynomial,

where L is the lag operator. We wish to put a prior on the sum of the autoregressive

coefficients φ(1). The signal-to-noise ratio, δ, is defined as the ratio of the variance of

shocks to trend to the variance of the forecast error, σ2
4τ/σ

2
e . As shown in the paper, the

AR(p) model has a simple relation between the signal-to-noise ratio and the sum of the

autoregressive coefficients where φ(1) = δ−2. In our benchmark results, we set δ = 0.1.

To also recap, estimating the AR(p) model directly often implies no close form solution.

However, we can transform the above model to Dickey-Fuller form:

∆yt = c+ ρ∆yt−1 +

p−1∑
j=1

φ∗j∆
2yt−j + et (A2)

where ρ ≡ φ1 + φ2 + . . . + φp = 1 − φ(1) and φ∗j ≡ −(φj+1 + . . . + φp). Equation A2 is

just a linear regression with the first lag of output growth and the lagged difference of

output growth as covariates. If we treat the posterior variance of the forecasting model,

εe, as fixed at the least square estimate, like how one would do in the case of a Minnesota

prior, we can estimate Equation A2 without a posterior simulator by specifying a prior

on ρ and φ∗j .

We specify the prior consistent with our chosen prior on the signal-to-noise, δ and an

AR(2) model with stationary dynamics. Consistent with AR(2) dynamics, the prior on

φ∗j = 0, j ∈ [2, 3, p− 1]. For an AR(2) model to be stationary, the three conditions are

| φ2 | < 1 (A3)

φ1 + φ2 < 1 (A4)

φ2 − φ1 < 1. (A5)
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It is easy to verify our prior on the signal-to-noise ratio cannot fall below 0.07 as this

will violate (A3). We assume δ < 1 as we wish to specify a prior where trend fluctuations

are less viable than the forecast error itself. Given φ(1) = δ−2, through our definition of

a signal-to-noise ratio, it is easy to verify (A4) will be satisfied as long as δ < 1. Finally

given φ(1), we can solve for a prior on φ2 to satisfy (A5). Defining ζ as an arbitrarily

small positive constant. It is straightforward to verify φ2 = (1 + φ(1))/2− ζ is sufficient

to satisfy (A5).

To specify the posterior variance, given we effectively calibrate the signal-to-noise ratio

ρ, so the prior variance on ρ is zero. The prior variance on ρ∗j shrinks tighter around zero

with every lag to prevent overfitting and thus acts as a shrinkage prior. Specifying an

arbitrary long lag order p = 12 allows the model to capture dynamics if they are present

at longer lags, while at the same time allows the shrinkage prior to effectively prevent

overfitting. At the same time, specifying a longer lag order in the forecasting model

relative to the AR(2), as per the prior, the model is allowed to fit richer dynamics than

an AR(2) if they are present in the data, but still retain the pre-specified signal-to-noise

ratio as long as the sum of the autoregressive coefficients ρ is fixed. Finally, we keep the

prior on the constant as uninformative as a normal distribution with an arbitrarily large

variance centred around zero. We summarise the priors of the autoregressive coefficients

as follows.

ρ ∼ N (1− δ−2, 0)

φ∗1 ∼ N (
ρ+ 1

2
+ 0.01, 0.5)

φ∗j ∼ N (0,
0.5

j2
)j ∈ [2, 3, . . . p− 1]
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Figure 1: Estimated U.S. Output Gaps

Notes: Percent deviation from trend. Shaded areas represent NBER recession dates.
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Figure 2: Output Gap Estimated Using BN Bayes, δ = 0.1

Notes: Percent deviation from trend. Shaded areas represent NBER recession dates.
Forecasting model is an AR(12) process for U.S. GDP growth using a prior on the
signal-to-noise ratio, δ = 0.1.
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Figure 3: Revision properties of estimated output gaps

Notes: Percent deviation from trend. Shaded areas represent NBER recession dates.
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Figure 4: Sensitivity Analysis

Notes: Percent deviation from trend. Shaded areas represent NBER recession dates.
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Figure 5: Output growth forecasts relative to BN Decomposition with smoothing prior

Notes: The left graph presents in-sample Relative Root Mean Square Errors (RRMSE)
relative to the BN decomposition with a smoothing prior. The right four graphs presents
out-of-sample RRMSE relative to the BN decomposition with a smoothing prior. Out of
sample evaluation begins in 1970Q1. The bands are 90% intervals from the Diebold and
Mariano (1995) test of equal forecast accuracy.
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Figure 6: Inflation forecasts relative to BN Bayes

Notes: Out-of-sample Relative Root Mean Squared Error relative to the BN decomposition
with a smoothing prior. Out-of-sample evaluation begins in 1970Q1. The bands are 90%
intervals from the Diebold and Mariano (1995) test of equal forecast accuracy.
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Table 1: Revision Statistics, 1970Q1 - 2012Q4

Correlation Size of Revisions Same
Std RMS Sign

BN Bayes 0.99 0.14 0.23 0.88
BN, AR(1) MLE 1.00 0.12 0.16 0.95
BN, AR(12) MLE 0.74 0.96 1.11 0.75
BN, ARMA(2,2) MLE 0.81 0.59 0.60 0.84
Harvey-Clark 0.75 0.66 1.00 0.66
Deterministic Trend 0.70 0.78 0.81 0.70
HP Filter 0.55 0.97 0.97 0.59
BP Filter 0.77 0.65 0.67 0.74

Notes: Correlation refers to the correlation of the psuedo-real time estimate to the final
estimate of the output gap. Std and RMSE refers respectively to the standard deviation
and root mean square of revisions to the psuedo-real time estimate of the output gap, with
both subsequently normalised by the standard deviation of the final estimate of the output
gap. Same sign refers to the proportion of psuedo-real time estimates which shares the
same sign as the final estimate of the output gap.

Table 2: Simulation Results

(a) Correlation with True Output Gap
Monte Carlo Population

BN Bayes 0.32 0.48
BN, AR(1) 0.14 0.14
BN, ARMA(p,q) 0.22 0.54

(b) Roots
Near Cancellation 26%
Redundant MA terms 65%

Note: (a) Monte Carlo refers to the mean correlation obtained from 2000 artificial datasets
with a sample size of 250 generated from the DGP. Population is based on one long sample
from the DGP. BN Bayes refers to our proposed approach to estimate the output gap. BN,
AR(1) is based on a BN decomposition from an AR(1) forecasting model. BN, ARMA(p,q)
is a BN decomposition from an ARMA model where the lag order p and q are chosen using
the BIC. (b) Near cancellation is the proportion of Monte Carlo trials where there is a
near cancellation of the MA roots. The AR and MA lag order are chosen using BIC. A
Monte Carlo trial is classified as a near cancellation if the absolute value of the difference
between the largest inverted AR and MA roots are within 0.08. Redundant MA terms is
the proportion of Monte Carlo trials with near cancellations or if the BIC does not fit any
MA terms.
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