
A Reliable Output Gap from the
Beveridge-Nelson Decomposition Imposing a Low

Signal-to-Noise Ratio
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Introduction

I The output gap is often conceived of as transitory movements in log
real GDP at business cycle frequencies

I Methods like the Hodrick-Prescott (HP) filter that impose a low
signal-to-noise ratio are convenient and produce intuitive results
(similar to policymakers’ estimates)

I But these methods are subject to a number of problems

I “end point” problem for two-sided filters
I “spurious cycles” in the presence of a stochastic trend



What we do

I Beveridge-Nelson (1981) trend-cycle decomposition, but with one
major modification

I We impose a low signal-to-noise ratio for output growth
(corresponds to a smoothing prior on trend)

I Our approach is easy to implement and produces intuitive estimates
of the output gap

I Relatively small revisions over time and better out-of-sample
forecasts of output growth and inflation than other methods



Greenbook and CBO



Figure: Cycle from HP (1600) US Real GDP



Beveridge-Nelson (BN) Decomposition

I “Why not define trend as simply the long-horizon forecast? Rather
than being fixed and pre-determined, this trend will shift as each
new data point reveals new information about the future.” - Nelson
(2008, JoE)

I In the long run, any current transitory dynamics are expected to die
off and all that will be left is the trend

I Trend is the long-horizon conditional forecast (minus any
deterministic drift) of a time series {yt}:

τt = lim
j→∞

Et [yt+j − j · E [∆y ]]

I Avoids spurious cycles given unbiased forecasts

I One-sided filter not subject to large revisions as long as the
forecasting model is stable



Beveridge-Nelson (BN) Decomposition based on an
estimated AR(1) Model



Figure: Real Time Gap, BN decomposition based on an estimated AR(1) model



Figure: Real Time Gap, HP filter (λ = 1600)



Conceptually appealing and reliable, but...

BN decomposition based on an estimated AR(1) model produces an
output gap that does not fit with most economists’ beliefs

1. Amplitude is too small (i.e., implied trend is too volatile)

2. Does not capture any of the NBER recessions



Outline

1. Our proposed approach

2. Real-time evaluation (i.e., are the output gap estimates reliable?)

3. Ex post evaluation

4. Conclusions



The BN Decomposition

Suppose 4yt follows an AR(1) process, then

(4yt − µ) = φ(4yt−1 − µ) + εt

Et [(4yt+1 − µ)] = φ(4yt − µ)

Et [(4yt+2 − µ)] = φ2(4yt − µ)

...
...

Et [(4yt+j − µ)] = φj(4yt − µ)

To work out the long run forecast for yt , note that

∞∑
i=1

Et [(4yt+i − µ)] = (φ1 + φ2 + . . .)(4yt − µ)

= φ(I − φ)−1(4yt − µ)



The BN Decomposition

BN trend
t = yt + φ(I − φ)−1(4yt − µ)

BNcycle
t = −φ(I − φ)−1(4yt − µ)

Why does the BN decomposition based on an AR(p) model produce a
counterintuitive output gap?

I According to MLE estimates, output growth is positively serially
correlated with little persistence implying,

1. cycle is small as |φ| → 0
2. trend is volatile as φ > 0

φ is linked to the signal-to-noise ratio (δ = σ2
∆τ/σ

2
ε )



The BN Decomposition

Large and persistent cycles with smooth trends are clearly at odds with
the data from the perspective of a BN decomposition based on an
estimated AR(1) model.

1. If we don’t believe the BN cycle, then we have a prior about φ
(possibly a very tight one)

2. We should be able to quantify this prior and compute cycle
accordingly

3. Prior is linked to δ, the signal-to-noise ratio



Imposing a low signal-to-noise ratio

I We consider the BN decomposition, but place an implicit smoothing
prior on trend when estimating forecasting model

I Bayesian estimation of an AR(p) model of output growth restricting
the sum of AR coefficients

I Corresponding signal-to-noise ratio δ = σ2
∆trend/σ

2
error set to much

less than one
I Shrinkage prior (à la Minnesota) also placed on lags to avoid

overfitting



Implementation

I Consider an AR(p) forecasting model:

∆yt = c +

p∑
j=1

φj∆yt−j + et , et ∼ N(0, σ2
e )

I Let ρ ≡ φ1 + φ2 + . . .+ φp and φ∗j ≡ −(φj+1 + . . .+ φp)

I Transform AR(p) model into its Dickey-Fuller representation:

∆yt = c + ρ∆yt−1 +

p−1∑
j=1

φ∗j ∆2yt−j + et

I Define signal-to-noise ratio δ ≡ σ2
∆τ/σ

2
e = (1− ρ)−2

I For quarterly data, we set δ = 0.1, fixing ρ accordingly



Figure: BN-Bayes estimate of US output gap for 1951-2014 (p = 12, δ = 0.1)



Figure: BN-MLE



Figure: Different signal-to-noise ratios



Is it reasonable to restrict the signal-to-noise ratio?

I Signal-to-noise ratio decreases with more multivariate information
(Evans and Reichlin, 1994)

I Economic slack is unobservable, which is why we are estimating the
output gap



Figure: BN decomposition based on a VAR model (4Y,U)



Figure: BN decomposition based on a VAR model (4Y,CAPU)



Figure: BN decomposition based on a VAR model (4Y,4C)



Shortcut

I Imposing a signal-to-noise ratio provides a shortcut to capturing
beliefs about economic slack without needing the right multivariate
information

I Easy to implement and works better than relying on observable
multivariate information or MA terms



Real Time Evaluation of Reliability

I Why not use other methods that impose a low signal-to-noise ratio?

I Revisions and reliability (Orphanides and van Norden, 2002)

I Out-of-sample forecasts (expanding window estimation, with
evaluation sample beginning in 1970Q1)

I The output gap should forecast future output growth (Nelson, 2008)
I yt+h − yt = α+ βgapt + εt , where β < 0

I ARDL inflation forecast (Stock and Watson, 1999, 2008; Clark and
McCracken, 2006)

I πt+h − πt = γ +
∑p

i=0 θi4πt−i +
∑q

i=0 κigapt−i + υt



Revisions

Figure: Ex post versus real-time US output gap 1968-2015, BN-Bayes estimate
(p = 12, δ = 0.1)



Revisions

Figure: Ex post versus real-time US output gap 1968-2015, BN-Bayes estimate
(p = 12, δ = 0.1)



Table: Revision Statistics, 1970Q1 - 2012Q4

Correlation Size of Revisions Same
Std RMS Sign

BN Bayes 0.99 0.14 0.23 0.88
BN, AR(1) MLE 1.00 0.12 0.16 0.95
BN, AR(12) MLE 0.74 0.96 1.11 0.75
BN, ARMA(2,2) MLE 0.81 0.59 0.60 0.84
Harvey-Clark 0.75 0.66 1.00 0.66
Deterministic Trend 0.70 0.78 0.81 0.70
HP Filter 0.55 0.97 0.97 0.59
BP Filter 0.77 0.65 0.67 0.74

Notes: Correlation refers to the correlation of the psuedo-real time estimate to the

final estimate of the output gap. Std and RMSE refers respectively to the standard

deviation and root mean square of revisions to the psuedo-real time estimate of the

output gap, with both subsequently normalised by the standard deviation of the final

estimate of the output gap. Same sign refers to the proportion of psuedo-real time

estimates which shares the same sign as the final estimate of the output gap.



Figure: Out of Sample Relative RMSE to BN-Bayes: yt+h − yt = α+ βgapt + εt



Figure: Out of Sample Relative RMSE to BN-Bayes:
πt+h − πt = γ +

∑p
i=0 θi4πt−i +

∑q
i=0 κigapt−i + υt



Ex Post Evaluation

I Are revisions useful even if they reduce reliability?

1. In sample inflation fit

2. Correlation with an independent measure of slack (Chicago Fed
National Activity Index)



Figure: In Sample Inflation Fit Relative RMSE to BN-Bayes:
πt+h − πt = γ + κgapt + υt





Figure: Scatter Plot against CFNAI



Conclusions

I When imposing a low signal-to-noise ratio, the BN decomposition
can produce an intuitive and reliable estimate of output gap

I Estimated output gap consistent with most economists’ beliefs about
amplitude, persistence, and direction of transitory movements in log
real GDP

I Estimated output gap are reliable in the sense of not being subject to
large revisions


