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Critically Assessing Estimated DSGE Models: A Case

Study of a Multi-Sector Model∗
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Abstract

We describe methods for assessing estimated Dynamic Stochastic General Equilib-
rium (DSGE) models. One involves the computation of alternative impulse responses
from models constrained to have an identical likelihood and the same contemporaneous
signs as responses in the DSGE model. Others ask how well the model matches the
data generating process; whether there is weak identification; the consequences of in-
cluding measurement error with growth rates of non-stationary variables; and whether
the model can reproduce features of the data that involve combinations of moments.
The methods are applied to a large-scale small-open economy DSGE model, typical of
those used at policy institutions.

1 Introduction

Estimated Dynamic Stochastic General Equilibrium (DSGE) models today are commonplace
both in academia and in policy institutions, such as central banks. There are standard ways
in which these models are used, such as the production of impulse response functions and a
decomposition of the observed variables used in estimation into the contributions from each
of the structural shocks. Arguably, there is often much less attention paid to assessing the
output of these DSGE models post-estimation. This paper presents a collection of methods
that can be used to do so.

Throughout the paper we focus our analysis on a multi-sector model of the Australian
economy (MSM in this paper) which has been developed by Rees et al (2016) at the Reserve
Bank of Australia. This DSGE model features seventeen shocks and three production sectors:
(i) non-traded commodities and services, (ii) traded non-resource commodities and services,
and, (iii) traded resources. It has a unit root process for the log of technology so that some
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of the variables in the model follow integrated processes that are also co-integrated. What
makes the model innovative is the presence of three sectors, and in many ways it can be seen
as an extension of the dependent economy model whose origins are strongly Australian - see
Metaxas and Weber (2016). A key element in it is a real exchange rate, but it also allows
for nominal rigidities, so it is potentially a very useful model for policy analysis.1

Data on seventeen variables were used to estimate the parameters of MSM. In addition
to those commonly used for small-open economy DSGE models, such as GDP growth, in-
flation, the real exchange rate and the policy rate, a variety of others included reflecting
sector-specific variables. The foreign sector was captured through three core variables -
GDP growth, inflation and a policy rate.2 An extra variable in MSM that is external to the
Australian economy is the price of resources. The foreign variables (and resource prices) are
strictly exogenous to the Australian economy and so the model is of a small dependent econ-
omy. Estimation was performed with Bayesian methods, requiring some prior distributions
for the DSGE model parameters to be stated. After estimation some experiments were done
with the model in order to assess features such as the impact of monetary and risk premium
shocks.

There are many issues raised when assessing output from any DSGE model such as
MSM.3 Section 2 looks at one of these - whether there are other models which have the same
generating process for the variables as that given by the estimated DSGE model, but which
have different impulse responses to shocks. We find such alternative models, after imposing
two restrictions. First the alternative model must fit the data equally well as the DSGE
model. Secondly, the impulse responses to the named shocks from any alternative model
must have the same contemporaneous signs as those given by the estimated DSGE model,
in this case the MSM. To perform this task we utilize the fact that a structural model like
a DSGE model solves for a Vector Autoregression in the variables, and this can be written
in such a way as to highlight the structural shocks from the DSGE model. We refer to the
resulting representation as a semi-structural VAR (SSVAR) model. Because many DSGE
models, including MSM, imply that there is co-integration between certain variables, Section
3 considers different representations of the basic SSVAR from MSM, moving towards a semi-
structural Vector Error Correction. Such a representation is useful for a number of analyses
of MSM output.

Another reason it might be possible to find multiple models with the same generating
process is that there could be many values for the estimated parameters which produce the
same likelihood. If so, then there would be many different values for impulse responses. This
would be an example of a failure of structural identification of the DSGE model parameters,

1Another reason for studying MSM is that its documentation is outstanding.
2Throughout this paper we try to use the same notation as in the MSM, with ∗ denoting the foreign

sector; for example p and p∗ would be the logs of the domestic and foreign price levels respectively. The
complete list of variables whose data are used in estimation includes the growth rates in GDP (Δyva),
consumption (Δc), investment (Δi), public demand (Δg), resource exports (Δzx), non-resource exports
(Δyxm), non-tradeable value added Δyvan , non-resource tradeable value added (Δyvam ), resources valued added
(Δyvaz ), domestic inflation πt, non-tradeable inflation (πn), the Australian cash rate (r) and the change in
the nominal exchange rate (Δs). There are also data on growth in foreign GDP (Δy∗), inflation (π∗), a
short term interest rate (r∗) and resource price inflation (Δp∗z).

3The approaches adopted here are not meant to be exhaustive - see, for example, Schorfheide (2013) for
an earlier discussion. The methods we advance can be thought of as complements to existing techniques.

2



and so it is important is to check for such problems. Basically one wants to check the shape
of the likelihood (or whatever function is being optimized to produce parameter estimates).
Some identification measures are now in Dynare and these were set out in Ratto and Iskrev
(2010). In Section 4 we discuss these measures and apply them to the MSM model. Another
approach, described in Koop et al (2013), uses a convergence rate indicator to flag parameters
that are possibly only weakly identified. This involves simulation of the estimated DSGE
model and, in Section 4, we suggest another way that the simulated data can be fruitfully
used to judge identification issues. It appears that some of the crucial parameters in the
MSM, namely the slopes of Phillips curves, may be weakly identified.

Finally, we have the fundamental question of how the generating process of the selected
DSGE model (the model generating process MGP) matches the data generating process
(DGP). That there can be a gap between these comes from the fact that some of the DSGE
model variables may be unobserved i.e. do not have an exact analogue in the data. In that
situation, although the MGP for all variables may be a VAR, this may not be true of the
DGP for the observed variables. Section 5 looks at this in a number of stages. Given a
distinction between the data and the model generated variables, it seems natural to ask how
one might bridge these? In many DSGE models, including MSM, reconciling the model and
data is often partially done by allowing for “measurement error” in the data. Section 5.1
examines how productive this approach is, pointing out the difficulties with it when data is
measured as growth rates in I(1) variables.

Section 5.2 moves on to ask whether dropping the unobservable variables means that the
form of the MGP for the complete MSM differs from the format of the generating process
for a reduced number of variables. Using impulse responses to measure the correspondence
between these two generating mechanisms we find that the SSVAR(2) implied by the MSM
is reasonably well approximated by an SSVAR(2) in just the observable variables. In Section
5.3 we ask how well certain features of the MGP match the DGP of the observable variables.
This is a quantitative test. Simple statistics such as moments can be informative about
this question, and more complex ones, such as business cycle outcomes, can be important
for conceptualizing what any failure to match the data means. Finally, at various times we
utilize the different representations of Section 3 in order to shed light on a failure of data
and the MSM model moments to match.

Many of the issues we will address are common to a large number of DSGE models. What
made the MSM an attractive vehicle for analysis is that it is a fairly large model, and so
poses questions that don’t arise to the same degree for many of the smaller New Keynesian
models one sees in use in academia, largely because they feature only one sector. But there
is a great need to develop multi-sector models for policy analysis, as seen by the use of large
scale computable general equilibrium models in analyzing many issues such as the shifting of
taxes, carbon pricing etc.; Murphy (2017) has a good discussion of these uses. Hence there
seems to be a need to have methods that can analyze the answers provided by such models
to policy-type questions. In DSGE models these typically revolve around impulse response
functions, and so our paper essentially examines how robust these are to the assumptions
employed in constructing the models they are derived from as well as the quality of the
match with the data.
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2 Examining the Model Generating Process of MSM

2.1 Generating a Range of Models Compatible with a Given Model
Generating Process

Let the DSGE model have parameters θ. Then its variables, zt, will be generated using the
model with these parameters set to some estimated values θ∗. We will call this the Model
Generating Process (MGP). Suppose there are other models that have the same generating
process as that found with θ∗, i.e. the MGP, but with different impulse responses to shocks.
In that case, the location of the responses of the DSGE model in this range is a useful
indicator of the uncertainty surrounding such responses when used for policy analysis. This is
different to the statistical uncertainty coming from the fact that the parameters are estimated.
Rather it is model uncertainty, reflecting the fact that there are other models compatible with
the MGP but which produce different reactions to shocks. The focus of this sub-section is to
demonstrate how it is possible to quantify the extent of model uncertainty.4 In particular,
we show how to produce such a range of models and define what we mean by compatibility.

Variables in DSGE models can be taken to be I(0), perhaps after some transformation.
The most common transformation needed is to convert I(1) variables into I(0) variables by
de-trending them with the level of technology. We will focus on this later but, for now,
assume that the zt in a DSGE model are all I(0) variables. In most instances the DSGE
model has the structural equations5

A0zt = CEt(zt+1) + A1zt−1 +Hut, (1)

where ut are shocks possibly following a VAR(1), ut = Φut−1+ εt, and εt is a vector of white
noise structural shocks with covariance matrix Ω that is diagonal. The latter are generally
referred to as innovations to the structural shocks and we will use that terminology here.
A0, C, A1 and H are matrices which are functions of θ. This system can then be solved for
zt by using (for example) the method of undetermined coefficients. This produces a solution

zt = Bzt−1 +Gut.

Binder and Pesaran (1995) present the two relevant conditions for this solution to exist,
namely a rank condition and the Blanchard-Kahn stability conditions. Hence

zt = Bzt−1 +G(Φut−1 + εt)

= Bzt−1 +GΦ(G+(zt−1 − Bzt−2)) +Gεt

= (B +GΦG+)zt−1 −GΦG+Bzt−2 +Gεt

= B1zt−1 +B2zt−2 + et,

where et ≡ Gεt are the VAR error terms, G+ is the (possibly generalised) inverse of G,
B1 ≡ (B + GΦG+) and B2 ≡ −GΦG+B. This is a VAR(2) in which the VAR errors have
been written as functions of the structural shocks εt. For convenience we will refer to this

4The presentation of the solution of the DSGE model draws on Pagan and Robinson (2016).
5DSGE models with long lags can be accommodated by expanding zt to include lagged variables. The

subsequent analysis is similar; the current values of variables would have to be selected from zt.
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as a semi-structural VAR (SSVAR). As we will see later the MSM can be expressed in this
form.

Now let us write

zt = B1zt−1 +B2zt−2 +GΣΣ−1εt

= B1zt−1 +B2zt−2 +GΣηt,

= B1zt−1 +B2zt−2 + Fηt,

where Σ is a diagonal matrix containing the standard deviations of εt and F ≡ GΣ. The
resulting ηt will have unit variances but the impulse responses to ηt are the same as those
for a one standard deviation perturbation to whatever the shocks εt are named.

That there are other models with different structural impulse responses can be seen by
writing

zt = B1zt−1 +B2zt−2 + FQ′Qηt
= B1zt−1 +B2zt−2 +Dη̃t,

where Q is a matrix with the property that QQ′ = Q′Q = I,D = FQ′ and η̃t = Qηt.
6 Then

the new shocks η̃t will be uncorrelated and the impulse responses to them will also be to to a
one standard deviation perturbation in whatever they are named. So the contemporaneous
impulse responses have been changed from F to D, i.e. we have a new model.

In what sense is the new model compatible with the MGP of the original model with
shocks ηt? The answer is that, since the cov(et) = cov(GΣηt) = cov(GΣQ′η̃t), the model
with η̃t shocks produces the same covariance matrix for the VAR errors. Because B1 and
B2 have not changed, the density function for zt must be the same for both models i.e. the
likelihood has not changed. The new and existing model fit the data equally as well.7

Alternative Q matrices will therefore be the approach used to study the range of impulse
responses that are compatible with the MSM model, which is a way to quantify the extent
of model uncertainty present. The nature of this analysis with the semi-structural VAR has
strong parallels with sign-restricted VARs, but B1 and B2 here are anchored by the DSGE
model.

2.2 The Nature of Shocks in the Estimated MSM Model

Before we proceed to further analysis it is necessary to make clear what the constraints are
when generating any new set of impulse responses. Specifically, we will not be generating
impulse responses that produce a better match to the data. Instead, we will be generating
responses that constrain the shocks to be uncorrelated and which replicate certain hypothet-
ical results from the MSM model. In these hypothetical results the dynamic parameters of

6Fry and Pagan (2011) discuss Q matrices that have this property. The best known of them is the Givens
matrix used in the sign restriction literature by Canova and de Nicolo (2002) while Rubio-Ramirez et al
(2010) give a general way of finding a Q matrix with the requisite properties using simulation methods. We
use an adaption of that method in what follows.

7In this respect the SSVAR is distinctly different to the DSGE-VAR literature, such as Del Negro and
Schorfheide (2004).
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the model B1 and B2 are fixed at values estimated from data, while the structural shocks are
assumed to be uncorrelated. We raise this issue since it is not the case that the MSM shocks
estimated from the data are uncorrelated. Table 1 shows some of the larger correlations.8

Table 1: Correlations of Selected Shocks
from the Estimated MSM Model

Shock Pair Correlation
corr(εr, εy∗) .67
corr(εr∗ , εψ) -.36
corr(επ∗ , εψ) .44
corr(εp∗ , εr) .34
corr(εg, εΥ) -.56
corr(εr∗ , μ) -.53
corr(εf , εn) .78
corr(εm∗ , εam) .62
corr(εm, εn) .32

To understand why Table 1 can record such non-zero correlations, even though they are
assumed zero in estimation, take the two regression equations

y1t = x1tβ1 + ε1t

y2t = x2tβ2 + ε2t,

and assume that ε1t and ε2t are uncorrelated when estimating β1 and β2. Then, based on that
assumption, the maximum likelihood estimates of β1 and β2 would be the OLS estimates.
However, nothing guarantees that the residuals ε̂jt formed from these are orthogonal. For
this to be asymptotically true it would be necessary that the assumption of zero correlation
between the shocks is correct. If this assumption is not true in the data, then ε̂jt will not
be orthogonal. Of course the estimators of βj in the example above are consistent, even if
there is correlation.

The reason for the lack of orthogonality is that we have two moment conditions defining
the parameter estimates - E(xjtεjt) = 0, (j = 1, 2) and two other conditions defining the
shock variances - E(ε2jt) = σ2

j - meaning that the moment condition E(ε1tε2t) = 0 has not
been needed for estimation of the parameters. So the moment conditions deliver more than
is needed to get estimators of the parameters i.e. we have an over-identified model.

Suppose instead we had written

y1t = x1tβ1 + ε1t

y2t = x2tβ2 + γy1t + ε2t.

Then three moment conditions are needed to estimate all the unknown parameters, the
system is exactly identified, and the residuals are orthogonal.

The last scenario is a characteristic of just-identified SVAR models and it is this that
ensures shocks in such models are orthogonal. In contrast, DSGE models typically are heavily

8The symbols are as in the MSM.
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over-identified. To see this, note that even in large DSGE models often only a small number
of structural parameters are estimated. For example, in Smets and Wouters (2007), 36
parameters are estimated with 7 observed variables; a just-identified SVAR(2), in contrast,
would include 126 estimated parameters. In MSM it is even more stark; 45 parameters are
estimated, but there are 600 moment conditions. The theory built into these models results
in them often being very tightly parameterised.

In an overidentified system, not all of the moment conditions are used in estimation
or can be satisfied at once. Consequently, even though it is assumed that the shocks are
uncorrelated, this restriction may not be used in estimation and the shocks obtained from
an estimated DSGE model may well be correlated.9 This provides one explanation of the
results in Table 1.

A second, supplementary, reason involves the use of Bayesian estimation. The Bayesian
estimates of parameters can be thought of as a weighted average of the Maximum Likelihood
Estimates (MLE) and the prior. In the exactly identified case the MLE would satisfy all
moment conditions, including those that define uncorrelated shocks. However, because the
Bayesian estimates weight the MLE and the prior mean they will clearly not necessarily
satisfy the conditions which make the shocks uncorrelated. So another possible explanation
is that Table 1 reflects Bayesian estimation.10 Because the MSM is highly over-identified it
seems more likely that the results are due to that feature.

It should be said that this is not the only problem that can arise for model shocks from
over-identifying information. The restriction that the innovations to the structural shocks
have no serial correlation may not be enforced. Table 2 shows that this is clearly evident
for the MSM; for example the supposed innovation to technology growth actually has an
autocorrelation coefficient of 0.64. The phenomenon is not isolated to the innovations for
the structural shocks, but can also be true for the measurement errors. As Table 2 shows
the autocorrelation for those shocks for resource prices is particularly high (0.76). So the
shocks and the measurement errors are often very different from what has been assumed
about them. When it comes to data, assuming that they are white noise does not make
them so, as regression users learnt many years ago.

What are the consequences of the shocks being correlated? From the perspective of using
the model, it makes variance decompositions problematic, and one also really needs shocks
to be innovations in order to utilize impulse responses, for these work under a ceteris paribus
assumption that would not hold when shocks are correlated. Thus, if two shocks, say money
and technology, are correlated, then we don’t know what the common component to them
represents - is it money or technology? Decompositions of variables according to shocks are
then impossible to interpret.

9Andrle, M. (2014) has made this point as well and says - “Yet, the actually estimated ‘structural’
shocks are strongly correlated as a rule rather than exception. Correlated structural shocks are a sign of
misspecification”. As our simple example shows this need not be the case, although it is certainly inconsistent
with the statistical assumptions being made for estimation.

10We have looked at the shocks in the Smets and Wouters (2007) model and find that there the shocks
are correlated but the correlations are smaller than for the MSM, probably because the degree of over-
identification is very much smaller. Of the 21 shock correlations 4 exceed .2 in absolute value.

7



Table 2: Autocorrelation of Selected Shock Innovations
from the Estimated MSM Model

Innovation Mnemomic Autocorrelation
Technology Growth εμ .64
Investment Efficiency εΥ -.33
Resource Price εp∗z .40
Foreign Output εy∗ .64
Monetary Policy εr .59
Measurement Error
Nominal Exchange Rate .39
Foreign GDP .52
Resource Price .76

Of course we can take the estimated parameters B1, B2 as given and then ask what the
impulse responses are in this hypothetical context, that is assuming that the shocks are un-
correlated even though this assumption may not be compatible with the data. The variance
decompositions presented in Rees et al (2016) are a hypothetical experiment and relate to
consistency of the model itself, as the experiment does not represent the situation with the
estimated shocks and the data variables. Essentially they are constructing a scenario i.e.
asking what would the results be if the estimated parameter values were used for B1 and B2,
and then uncorrelated shocks are applied rather than the actual shocks found from the data.
In what follows we will adopt this same scenario, constructing models and impulse responses
which utilize the estimated B1, B2 and which reproduce the cov(et) from the experiment
they performed.

2.3 Constructing the Alternative Models in Practice

One difficulty in constructing alternative models that have the same fit as the hypothetical
MSM model, but which embody different impulse responses, is to make decisions about
which shocks should be recombined. To understand the issue consider the three variable
SSVAR given by Equations 2 to 4 that we wish to capture with an alternative model:

y1t = b111y1t−1 + b112y2t−1 + b113y3t−1 + f11η1t (2)

y2t = b121y1t−1 + b122y2t−1 + b123y3t−1 + f21η1t + f22η2t + f23η3t (3)

y3t = b131y1t−1 + b132y2t−1 + b133y3t−1 + f31η1t + f32η2t + f33η3t. (4)

In this model only one shock affects y1t. Now consider constructing new shocks η̃jt = qj1η1t+
qj2η2t + qj3η3t using a Q matrix. Then we see that all of the shocks η̃jt will have an impact
upon y1t because they are formed with η1t. However, we may not want all of the η̃jt shocks
to impact upon y1t, as this would not preserve the fact that only one of the η̃jt should have
a non-zero impact on it. Consequently a Q matrix must be designed that preserves the zero
impact of some shocks. The simplest way to do this is to set q11 = 1, q12 = 0, q13 = 0, q21 = 0
and q31 = 0. Consequently, η̃1t = η1t and η̃jt = qj2η2t + qj3η3t (j = 2, 3). This means that we
use a (3×3) Q matrix of the form
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Q =

[
1 0
0 Q2

]
,

where the (2×2) matrixQ2 has the propertiesQ
′
2Q2 = I2 = Q2Q

′
2. Clearly Q has the requisite

properties of Q′Q = I3 = QQ′.11

As an illustration of applying this methodology in the context of the MSM we note that
in it the government expenditure variable is strongly exogenous, i.e. it has the form of y1t in
(2) above but with b112 = 0, b113 = 0. So we would not want to form new shocks by combining
the government expenditure shock with others.

A similar issue arises with the external sector. The MSM has a simple New-Keynesian
representation for the foreign sector of the form

ỹ∗t = Et(ỹ
∗
t+1)− (r∗t − Et(π

∗
t+1)) + u∗yt (5)

π∗
t = βEt(π

∗
t+1) + κỹ∗t + u∗πt (6)

r∗t = ρrr
∗
t−1 + (1− ρr)(γyỹ

∗
t + γππ

∗
t ) + δΔỹ∗t + ε∗rt. (7)

Here the variables in the model are foreign ones and so are distinguished with an asterisk.
u∗yt and u

∗
πt are AR(1) shocks driven by innovations ε∗yt and ε

∗
πt, y

∗
t is the log level of foreign

output, ỹ∗t = y∗t − at, where at is the log of the level of technology, and π∗
t , r

∗
t are the foreign

inflation and interest rate. There is a separate equation, namely

Δy∗t = Δỹ∗t +Δat = Δỹ∗t + μt, (8)

where μt is the innovation into technology described in the MSM model. We will not re-
combine this technology shock μt with the other external shocks in forming new shocks.
The reason is that μt is a permanent shock and the other three are transitory. As Fry and
Pagan (2011) observed one cannot combine permanent with transitory shocks if you want
some of the final shocks η̃t to be transitory. Given that all shocks (apart from technology)
are transitory in MSM, it is not sensible to include the technology shock in the set to be
re-combined.12

Finally, we have foreign and domestic shocks. In the MSM Australia is assumed to be
a small open economy, that is, the foreign sector is strictly exogenous. However, if some
of the newly created shocks were obtained by combining the external and domestic shocks
then the small open economy assumption would be violated. Consequently, by constructing
new uncorrelated shocks from the hypothetical uncorrelated shocks of the MSM those shocks
that are not re-combined are left at the MSM estimates, and so they will be uncorrelated
with any combination of the other shocks.

The MSM external sector has a SSVAR(1) format

zt = B1zt−1 + εMSM
t ,

11Arias et. al. (2014) have another way of generating Q that preserves zero restrictions. Consequently, our
choice may not exhaust the range of possible Q matrices and alternative models that might be generated,
but that would only mean that our range is possibly smaller. Because it turns out that our range is large
this does not seem a crucial issue, but further investigation seems warranted.

12If we combined μt with the transitory shocks to create new ones η̃t, these would have permanent effects
and that would mean there is more than one supply-side shock.
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where z′t =
[
ỹ∗t π∗

t r∗t
]
. Hence, using the parameter values given by Rees et al the solution

to the external system is an SSVAR(1) of the form13

ỹ∗t = .865ỹ∗t−1 − .248π∗
t−1 + .083r∗t−1 + .003ε∗MSM

yt − .005ε∗MSM
πt − .049ε∗MSM

rt (9)

π∗
t = .108ỹ∗t−1 + .269π∗

t−1 + .123r∗t−1 + .0006ε∗MSM
yt + .013ε∗MSM

πt − .009ε∗MSM
rt (10)

r∗t = .954r∗t−1 + .005ỹ∗t−1 − .0095π∗
t−1 + .0005ε∗MSM

yt + .0005ε∗MSM
πt + .001ε∗MSM

rt . (11)

The equations (9)-(11) are identities. The shocks, such as ε∗MSM
yt , can be converted to the

corresponding unit variance shocks, η∗yt, simply by re-scaling the coefficients attached to
ε∗MSM
yt by the standard deviations of ε∗MSM

yt etc.. As an example, the interest rate equation
becomes

r∗t = .954r∗t−1 − .0095π∗
t−1 + .005ỹ∗t−1 + .000098ηr

∗
t + .0001ηπ

∗
t + .0065ηy

∗
t . (12)

Then a new set of shocks η̃∗t needs to be constructed that are linear combinations of the
original normalised shocks, η∗yt etc.. This must be done in such a way as to ensure that
they are uncorrelated with unit variance. To be clear, the new SSVAR will still have the
same dynamics i.e. B1 is fixed at the MSM estimated values, and the covariance matrix
for the hypothetical reduced-form errors will be replicated by the new set of innovations η̃∗t .
Consequently the alternative model fits the data equally well as the MSM external sector
specification. However, these new shocks η̃∗t will have different impulse responses, and it is
useful to look at the range of responses that can be generated. Of course a wider range of
impulse responses might be found that produce a superior fit by allowing changes in the
dynamics as well. Our focus here, however, is to gauge the extent of model uncertainty for
a given fit with the data.

Some of the alternative models that we generate with uncorrelated shocks might be ruled
out. This could be because they produce responses of unrealistic magnitude. A weaker
constraint is to eliminate models that do not produce the same signs for contemporaneous
impulse responses as the MSM does. Table 3 gives the latter for (positive) shocks to the
structural equations (5)-(7).

The contemporaneous impulse response functions for the new shocks will be compared
to the signs from those in the MSM given in Table 3. If they agree the impulse responses
corresponding to the new shocks are accepted. If they don’t then we draw a new Q, and
once again combine together the three MSM shocks. It is important to emphasize that we
have retained the MSM dynamics in this operation, i.e. B1 is fixed.

Generating 1000 models with uncorrelated shocks by re-combining the MSM ones we find
that 118 satisfy the sign restrictions in Table 3. Now, we will be finding impulse responses
in the alternative models to a one standard deviation perturbation. But in each model there
will be a different standard deviation for shocks such as the monetary one. Consequently
we need to re-scale these impulse responses so that they are comparable to the MSM results
(we will refer to these as the standardized shocks).14

Focussing on the results for a monetary policy shock, these are shown in Table 4. Con-
sidering first the contemporaneous impact on output, it is apparent that the MSM responses

13This was obtained using the simulation method in Pagan and Robinson (2016).
14This requires us to find the implied standard deviation of the monetary shock in the alternative models.

To do this we use the method given in Ouliaris and Pagan (2016).
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Table 3: Signs for Contemporaneous Responses
To Three Shocks in the MSM External Sector

Variable Shocks
Demand Cost Interest Rate

ỹ∗ >0 <0 <0
π∗ >0 >0 <0
r∗ >0 >0 >0

are very much at the high end of the scale for monetary effects. In fact there are only three
impulse responses of the 118 that are larger (in absolute terms) than that given by the esti-
mated MSM. Therefore, it is possible to find models that are observationally equivalent to
MSM (in the sense of replicating second moments) but which deliver a much lower impact
for monetary policy. This is the type of result that can be produced from the semi-structural
VAR approach that we believe will be of interest to policymakers when assessing the output
produced from estimated DSGE models.

Table 4: Contemporaneous Responses to a Standardized
Monetary Policy Shock in the MSM Foreign Sector

Magnitude Variables
Output Inflation

Maximum -.437 -.276
Minimum -.0004 -.0001
MSM -.346 -.066

Turning to inflation, it appears that the result predicted by MSM is less extreme. As
has been argued by Ouliaris and Pagan (2016), inter alia, it is useful to think of the average
of the maximum and minimum values as a representative value. With that choice the MSM
results are found to be about 1/2 of the representative value.15 These results suggest that
one either might need to look more closely at the specification of the New-Keynesian model
which is at the heart of the foreign sector of MSM or at least perform experiments with the
equivalent models producing the minimum and maximum responses when conducting policy
analysis. Of course based on the magnitudes of the responses one might be able to rule out
some of the range of estimates.16

15Baumeister and Hamilton (2015) pointed out that statistics such as the median of the range of outcomes
depended upon the simulation method employed and so were not especially informative. This is illustrated
in a simple way in Ouliaris and Pagan (2016).

16Regarding the foreign interest rate identity, Equation (12) shows that the foreign demand shock is the
dominant force in the evolution of the foreign interest rate. Indeed, in the variance decomposition for the
external system the foreign demand shock ηy∗ explains 99.12% of the variance of the foreign interest rate,
while the monetary shock explains virtually nothing. This seems a little odd. Furthermore, 41% of the
foreign output gap variance is due to the monetary policy shock, an impact of magnitude rarely seen in
small New-Keynesian models.
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Now it is important to emphasize that we have only considered alternative models that
have the impulse response signs of Table 3 for a limited range of variables. But the MSM
also produces impulse responses of domestic variables to these external shocks and they have
a set of signs implied by the MSM model. Hence we might reject an alternative model if
it fails to reproduce the signs of all variables, both domestic and foreign. When we do this
some of the models above will be rejected. Indeed, of the 118 models found above, only 3 are
now retained as agreeing with all the signs for impulse responses. Therefore, this requires
the generation of many more models than the 1000 used before in order to study the range of
impulse responses that are possible. Accordingly, we generated 100000 models, 77 of which
were retained as providing a complete match with the signs of the impulse responses from
the MSM (ignoring the level of government expenditure variable where there are zero effects
of all shocks). Now the biggest and smallest effects are at -.0353 and -.001, so the range has
narrowed, with the MSM output response being virtually the largest in the complete set of
alternative models. The same outcome is true of the inflation response, where the minimum
is now -.0359 and the maximum is -.1072.

Moving on to alternative domestic shocks, for the reasons given above we will only com-
bine together the domestic MSM shocks, excluding the foreign ones. A further issue is how
many shocks to combine together when forming the new shocks? We will use three of these
from the MSM - the monetary shock, the marginal efficiency of capital shock and the risk
premium shock - keeping all the others at their MSM values. One reason for using a smaller
number than the total is that, once one starts combining a large number of shocks with very
different impulse responses, it may be very hard to find models that satisfy a set of signs
for (say) monetary policy effects, and it might be necessary to simulate many millions of
models. Indeed, in the following work, 10 million models had to be simulated in order to get
a reasonable number of acceptances.

Reflecting the small-open economy assumption, the domestic shocks must have a zero
impact on foreign variables, and consequently we look at the signs of the responses of the
non-foreign variables. Table 5 shows the MSM responses to the three domestic shocks. It
is worth observing that, since the MSM shocks which are being combined all have a zero
impact upon foreign variables, then so will any combination of them. It is also true that
the shocks that are not combined must have zero correlation with any combination of those
that are, simply because they are uncorrelated with the individual shocks making up the
combination (this being the nature of the hypothetical experiment).

In assessing the response of output and inflation to a monetary shock we examine the
results when either we impose the signs on just 3 variables – GDP growth, inflation and the
interest rate – or on all 18 domestic variables (Table 6). The MSM value for the output
response is around the middle of the range obtained, in contrast to the extreme results
obtained from the foreign sector. This, however, is not so true for the inflation response,
which appears to be quite large. Little difference was found in the range of impulse responses
obtained when either 3 or 18 signs need to be matched; a benefit of the former is that it is
likely to require less draws to obtain a suitable number of acceptances. Overall, our analysis
using the SSVAR suggests that the responses obtained from the MSM for domestic monetary
policy shocks are reasonable, whereas their foreign counterparts seem extreme.
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Table 5: Signs of Impact of Three Domestic MSM Shocks
Variable Shocks

Description Mnemonic Monetary Investment Risk
Efficiency Premium

εr εΥ εψ
GDP ỹva <0 >0 <0
Inflation π <0 <0 <0
Interest rate r >0 >0 <0
Real exchange rate q <0 <0 >0
Exports:
- non-resource ỹxm >0 <0 <0
- resource exports z̃x >0 <0 >0
Consumption c̃ <0 <0 >0
Value-added:
- non-traded ỹvan <0 >0 >0
- resource ỹvaz >0 >0 <0
Inflation:
- non-traded πn <0 <0 >0
- import price πf <0 <0 >0
Investment ı̃ <0 >0 >0
Capital:

- non-traded k̃m <0 >0 <0

- resources k̃z <0 >0 >0
Tobin’s Q:
- resources λz >0 <0 <0
- non-traded λn <0 <0 <0
- non-resource exports λm >0 <0 <0
Net foreign assets to
GDP ratio b∗ >0 <0 >0
Note: ˜ denotes normalised by the level of non-stationary technology.

Table 6: Contemporaneous Responses to a Standardized
Monetary Policy Shock: Domestic Sector MSM

Magnitude Variables
Output Inflation
3 Variables All 3 Variables All

Maximum -.303 -.298 -.029 -.029
Minimum -.05 -.05 -.006 -.006
MSM -.1195 -.0196
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3 The Nature of Variables and Their Representation

3.1 The Nature of Variables

In DSGE models, particularly as they become large, many of their variables have no coun-
terpart in the data used to estimate their parameters. A useful distinction that can be made
between the variables is to separate them into the following categories: (i) observable, i.e.
data is available on them; (ii) partially observable, i.e. some data is available which contains
information about them; (iii) redundant, namely they can be substituted out as a function
of other variables, and (iv) strictly unobservable, for which there is no equivalent data.

Turning to MSM, an example of an observed variable is the interest rate rt, while sta-
tionized GDP, ỹvat , is partially observed. In total, the MSM model contains more than 80
variables, of which 55 are redundant. Consequently in the SSVAR representation of the MSM
discussed above there were 24 variables, of which 17 are observable or partially observable
and seven are unobserved. Examples of the latter are the net foreign assets to GDP ratio and
the sectoral capital stocks.17 MSM also includes 17 shocks (excluding measurement errors).

3.2 A VAR/VECM Representation of MSM Via Error-Correction
terms

Many DSGE models now include permanent shocks, such as non-stationary technology, and
therefore they feature cointegration between many of the variables. This is true of MSM.
Our objective here is to look at what the Vector Error Correction representation of it might
be. This was done theoretically for DSGE models in Christensen at al (2011), but it is much
simpler to use the simulation approach in Pagan and Robinson (2016) that we have used
earlier to construct the underlying SSVAR. Indeed what we will develop could be called a
semi-structural VECM, since the system will include changes in some variables as well as
error-correction terms.

As MSM is large, in order to demonstrate the semi-structural VECM representation we
first consider a simple example. Suppose we had a DSGE model that had three variables
that were I(1) - the logs of domestic output yt, consumption ct and foreign output y∗t . Then
these are integrated processes because of the log level of technology at being I(1). Just as
for the MSM, in this DSGE model we would have variables ỹt = yt − at, c̃t = ct − at and
ỹ∗t = y∗t − at. Imposing exogeneity of the foreign sector the SSVAR would have a form such
as

ỹ∗t = b11ỹ
∗
t−1 + εy∗t

ỹt = b21ỹ
∗
t−1 + b22ỹt−1 + b23c̃t−1 + g21εy∗t + g22εyt + g23εct

c̃t = b31ỹ
∗
t−1 + b32ỹt−1 + b33c̃t−1 + g31εy∗t + g32εyt + g33εct.

Now there are four I(1) variables here - yt, ct, y
∗
t and at - and there are three error-correction

terms - ỹt, c̃t and ỹ
∗
t . Rather than use this SSVAR form we want to rewrite the equations above

in terms of observable error-correction terms, since ỹt and c̃t are only partially observable
due to the technology shock. It should be noted, however, that it is not possible to write the

17The complete list of unobserved variables includes πf,t, b
∗
t , km,t, kz,t, λz,t, λn,t and λm,t.
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model in terms of observable error-correction (EC) terms alone. We will use two observable
ones, namely ξ1t = yt − y∗t and ξ2t = ct − yt, and one partially observable, ξ3t = ỹ∗t . The
equation for Δỹt can then be expressed as

Δỹt = b21ỹ
∗
t−1 + (b22 − 1)ỹt−1 + b23c̃t−1 + g21εy∗t + g22εyt + g23εct

= b21ỹ
∗
t−1 + (b22 + b23 − 1)ỹt−1 + b23ξ2t−1 + g21εy∗t + g22εyt + g23εct

= (b21 + b22 + b23 − 1)ỹ∗t−1 + (b22 + b23 − 1)ξ1t−1 + b23ξ2t−1 + g21εy∗t + g22εyt + g23εct

= φ21ỹ
∗
t−1 + φ22ξ1t−1 + φ23ξ2t−1 + g21εy∗t + g22εyt + g23εct.

Consequently, in terms of the observable Δyt,

Δyt = Δỹt + εat
= φ21ỹ

∗
t−1 + φ22ξ1t−1 + φ23ξ2t−1 + g21εy∗t + g22εyt + g23εct + εat. (13)

This is an identity. There will be a similar equation for c̃t. The advantage is the separation
of the EC terms into those that are observable - ξ1t, ξ2t - and only one that is partially
unobservable - ỹ∗t .

This approach can also be applied to the MSM. In it there is ỹvat = yvat − at; we would
form EC terms ξvat = yvat −y∗t , ξct = c̃t−yvat = ct−yvat , ξit = it−yvat etc. so that the domestic
variables are related to GDP while aggregate GDP depends on foreign GDP. There will then
be only one partially unobservable EC term (y∗t − at). Indeed, such a term will always exist;
it is not possible to express all the error-correction terms using observed variables alone as
there is always one latent EC term left.18 Fully unobserved variables such as a sectoral
capital stock, k̃m,u, are left in this form, as there is no point in expressing them relative to
an observed variable. The representation for domestic output growth in MSM equivalent to
Equation 18 is presented in Appendix A.

What can we learn from this representation? First, we can gauge, among the many
factors influencing GDP growth, the importance of the strictly unobservable variables.19 If
these are omitted from the regression, the R2 goes from unity (recall this representation is an
identity) to .998, so these contribute little to the explanation of GDP growth. Second, we can
also look at the importance of the innovations to the shocks. Indeed, when all innovations
εt are deleted the R2 drops to .22. Hence current shocks are the most important factors
affecting GDP growth. It is this fact that explains why recessions are so hard to predict, as
future shocks must be known in order to predict whether future growth rates are negative.
Essentially, this is an informal way to judge the likely performance of a model at forecasting.

It is also possible to examine which of these shocks is the most important. One might
expect growth in non-stationary aggregate productivity, μt, to be important, but deleting
only that shock reduces the R2 from unity to .99. Deleting the domestic industry productivity
shocks εant etc. has a much greater impact, with the R2 going from unity to .82. But by far
the most important single shock is the marginal efficiency of investment εΥt , since removing

18To see this, suppose for simplicity that we manipulate the error-correction terms so that they are relative
to domestic GDP, rather than technology. This can be done for all of the variables except domestic GDP
itself, so it would remain relative to technology and therefore partially observed.

19The unobserved variables are πf
t−1, k̃m,t−1, b

∗
t−1, b

∗
t−2, k̃m,t−2, k̃z,t−1, k̃z,t−2, λz,t−1, λn,t−1 and λm,t−1.
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it reduces the R2 to .71.20 The R2 available from the SSVAR, in this case reformulated
using error-correction terms due to the presence of a permanent shock, is a useful metric for
looking at the importance of unobserved variables or the innovations.21

The analysis above can be repeated for inflation. Removing the innovations results in
a substantial drop in the R2 to .23. Again this suggests that it will be difficult to predict
inflation. In contrast to the results for output growth, deleting the unobservable variables
from the regression results in an R2 of .55. So this points to a problem of matching data
and model variables. Indeed the first order serial correlation of inflation from the model is
.34 and the data is .48.

There are other comparisons we might make, such as comparing the statistics on the
observable EC terms in the model to the data (Table 7). Doing so, it is apparent that
the model generally produces much greater volatility than that evident in the data. With
exactly identified models the estimated model variance would match that of the data. We
return to this issue in section 5. It is also evident for many of the error-correction terms,
but particularly for investment and government expenditure.

Table 7: Volatility of Selected Error-Correction Terms from
the Estimated MSM Model

Error-Correction Mnemonic Standard Deviation
Model Data

Non-Traded GDP ξnt 1.17 0.79
GDP ξvat 1.99 1.72
Investment ξit 7.66 4.97
Government Expenditure ξgt 5.12 2.60
Consumption ξct 2.75 2.08

4 Identification Issues in the MSM

Multiple models with an equivalent fit may alternatively occur if some of the DSGE param-
eters, θ, are not well identified. In DSGE models identification issues can be a reflection
of the model solution being largely invariant to different values of the elements of θ, or the
likelihood being insensitive to the solution (see Iskrev 2010). In this section we discuss two
methods that have been applied in the literature to ascertain if weak identification exists,
practical issues that arose in their application to MSM, and how these can be handled.22

Consider the log likelihood L(θ) as a function of parameters θ. Then a second-order
approximation around the maximum likelihood estimate, θ̂ yields

L(θ) = L(θ̂) +
1

2
(θ − θ̂)′Hθθ(θ̂)(θ − θ̂) + terms, (14)

20One can see this effect as well from Rees et al.’s figure 10.
21Of course when one turns to data rather than the hypothetical scenario the shocks are actually correlated,

so that it is not possible to uniquely attribute any part of actual GDP movements to particular shocks.
22Canova and Sala (2009) demonstrate that simply comparing the prior and posterior may not detect

identification issues.
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where Hθθ is the Hessian ∂2L
∂θ∂θ′ . The omitted “terms” should be smaller than the other

elements. Hence
1

T
{L(θ)− L(θ̂)} ≈ 1

2
(θ − θ̂)′(T−1Hθθ(θ̂))(θ − θ̂). (15)

Now the lim
T→∞

− 1
T
E[Hθθ(θ)] = Iθθ, the asymptotic information matrix. Hence we might

replace the above with

1

T
{L(θ)− L(θ̂)} = −1

2
(θ − θ̂)′Iθθ(θ̂)(θ − θ̂) + op(1).

So then the magnitude of the right hand side indicates how much a change in θ̂ to another

value θ would change the log likelihood (scaled by T ). If we put θ = 0 then

√
θ̂
2

i Iii(θ̂)/2 might
be used as an index of this for the i′th parameter θ. If this is low then the likelihood does
not change much when θi values depart from zero, a characteristic of weak identification.

The quantity ln(

√
θ̂
2

i Iii(θ̂)) is the “sensitivity” index that Dynare produces to assess the

identification of the parameters - see Ratto and Iskrev (2010) - except that θ̂i in their case
is not the MLE but rather the prior mean. A difficulty with the latter choice is that, while
∂L
∂θ
(θ̂) = 0, this will not be zero at the prior mean, and so (14) has another term in it. If one

is analyzing a DSGE model that has been estimated with Bayesian methods then the Bayes
posterior mode would be a more appropriate choice.23 Fundamentally, this is a scaling issue.
Another problem is that we probably should evaluate the information matrix at θ̂ and not
at a prior mean. Again, using the Bayes mode makes sense in a Bayesian context.

Although there is no threshold value of

√
θ̂
2

i Iii(θ̂)/2 that might signal weak identification,
the relative magnitudes provide a guide to which of the parameters are likely to be weakly

identified. Using a value of

√
θ̂
2

i Iii(θ̂)/2 of less than 1.7 we find that a number of parameters
are potentially weakly identified, in particular the response of all inflation rates to marginal
cost pressures (the “slopes” of the Phillips curves).24 This suggests that one should examine
more closely the estimated slopes of the Phillips curves.

Reverting back to Equation (15), we could alternatively have used T−1Hθθ(θ̂) as our
criterion. Koop et al (2013) suggested a “learning rate indicator” for identification which
involves simulating the DSGE model with the estimated parameters, and then studying the
rate at which the precision changes. They argue that, when there is more than a single
parameter, this is a better check of identification than simply looking at the closeness of the
posterior and prior for any single parameter and observe that, in an identified model, Hθθ(θ̂)
should rise at rate T, meaning that T−1Hθθ(θ̂) will tend to a constant. In contrast, if the
parameter is weakly identified, it will rise at a slower rate, and so T−1Hθθ(θ̂) will decline.
Hence, by simulating the model and then estimating Hθθ for a range of T we can determine

23This is because the mode is the θ that maximizes C(θ) = L(θ) + log p(θ), where L is the log likelihood
and p(θ) is a prior density. Consequently the mode sets ∂C

∂θ = 0 and we could apply the same expansion as
above to C(θ) rather than L(θ). The negative of the expected value of the second derivatives of C(θ) will
be the information matrix since the prior is dominated as the sample size grows.

24In contrast, the parameter ρr∗ which is the inertia effect in the foreign interest rate rule, has the sensitivity
index at 76.
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whether there might be a weak identification problem.25 In practice, a weakly identified
model will become identified as T becomes very large, so that the index stops declining with
very large T, which can be seen in Koop et al’s tables.

The implementation of the test is not entirely straight-forward for MSM since the simu-
lated Hθθ was sometimes not negative definite.26 Consequently, we use a variant, focussing
on the identification issue with each parameter individually. Data is simulated from the
MSM using the parameters estimated by Rees et al. i.e. these are treated as the correct
ones. Then a particular parameter is selected, say θi, and it is estimated by maximum like-
lihood and Bayesian methods, with all other parameters not being estimated but set to the
true values. Designating the computed standard deviation of this estimated coefficient by σ̂i
we know that σ̂i = −(Hii )

−1/2, so that studying the rate of convergence of σ̂i should tell us
about identification. Koop et al referred to this in their work on the New Keynesian Phillips
Curve and they noted that an identified parameter had σ̂i tending to zero much faster than
for the unidentified ones. This approach circumvents the problem above and, as only one
parameter is being estimated, it is quick to implement, even with large data samples.

Estimation was performed on a simulated sample of M = 1500 data points using sub-
samples rising from 100 to 1500 observations by 100 at a time.27 It is useful to assess the
speed of convergence by regressing the resulting estimated standard deviations for the single
parameter being estimated against the sample size. Specifically, we regress ln σ̂i against a
constant and ln(M). The coefficient on lnM, γ̂, should be -.5 for an identified parameter. In
fact, the estimates for γ̂ for the Phillips curve slopes are values between -.63 (non-resource
exports) and -.91 (foreign economy), so this does suggest some weak identification issues.
By comparison a parameter which has a very high sensitivity index, namely ρr∗ , gives an
estimate of -.56, with a standard deviation of .02.

A related criterion which uses the same simulated data is to study how the simulated
data recursive estimate θ̂i changes as the sample size grows. Since all parameters except
for θi are set at the true values, i.e. those used for simulating the data, we would expect
that θ̂i should converge to its true value for strongly identified parameters, but show slow
convergence when there is weak identification. Moreover, it is often the case that with weak
identification one sees “jumps” in the estimated θ̂i as the sample size gets larger.

Figure 1 shows a plot of the estimated Phillips curve slope for the non-traded sector, κπn ,
as the sample is expanded from 100 to 1500. The true value is .2902. Two estimators are
given - unconstrained maximum likelihood and the Bayesian mode using the MSM priors.
As expected, we see that there is very little difference between all three estimators as the
sample size grows, since the prior gets dominated. Even in small samples the differences are

25The logic of this last remark comes from noting that Hθθ(θ) =
∑T

t=1
∂2Lt

∂θ∂θ′ and so E[Hθθ(θ)] =∑
E( ∂2Lt

∂θ∂θ′ ) = TE( ∂2Lt

∂θ∂θ′ ) under stationarity i.e. T−1Hθθ(θ) should converge to a constant as T → ∞.

In analyzing weak identification the local to zero approach puts E( ∂2Lt

∂θ∂θ′ ) = D√
T
. Consequently, E[Hθθ(θ)] =

TD√
T
=

√
TD, and so it grows at a slower rate than T. Under such conditions, when there is weak identification,

1
T Hθθ(θ) will decline to zero as T increases.

26The problem was also encountered by Caglar et al (2011) in their application of the Koop et al approach
to the Smets and Wouters (2007) model. Their strategy to address this was to simply vary the sample until
they got a Hθθ that was negative definite.

27In other words, we are essentially performing a recursive estimation using samples 1-100,1-200, 1-300.....
We actually simulated 10000 observations and dropped the first 8500 to eliminate any initial condition effects.

18



Figure 1: Recursive MLE and Bayesian Estimates of the Slope of the Phillips Curve for
the Non-traded sector

not great. It should be noted that there is very little evidence of convergence to the true
value of .29. This contrasts with what one sees for ρr∗ where the true value is .928 and the
estimated quantities start at .918 (for 100 observations) and finish at .93 (for 1500). We
note that there is a sample where the estimated parameter for κπn dropped to a very small
value and, as mentioned above, that type of behaviour is consistent with weak identification.
This pattern is repeated for the slope coefficients of all the Phillips curves. A difficulty
in identifying the slope of the Phillips curves is not isolated to MSM; for a discussion see
Schorfheide (2008).

In summary, if the data had been generated with the parameter values estimated by Rees
et al there would be a bias in some of the Phillips curves slopes.28 Moreover it is clear that
we could get values that are close to zero. This is despite the fact that the prior on κπn that
Rees et al used had a mean of 50. As the slope of the Phillips curve is a crucial parameter
for policy assessments and forecasting it would seem that one would need to look at a wide
range of parameter values for the slopes when conducting policy assessments, since the weak
identification analysis suggests that they are very hard to estimate.

28In the light of recent discussion about the decline in values for slopes of Phillips curves it is interesting
to note that the bias would be downward.
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5 Comparing the Model and Data Generating Pro-

cesses

It emerged from the VECM representation of MSM constructed above that the variance of
GDP growth in the model considerably exceeds that in the data used in estimation.29 What
are the implications of this?

Suppose that we had a model with two shocks and one of the variables in the model was
generated by

yM1t = d1ε1t + d2ε2t,

where the εjt are uncorrelated. Assuming that the same structure is used for estimation we
would end up with (in large samples)

yD1t = d1u1t + d2u2t,

where the ujt are the shocks found after estimation. In large samples the variances of ujt will
equal that of εjt. Then, if var(y

D
1t) < var(yM1t ), it must be that there is a negative correlation

between u1t and u2t. If it was positive then var(yD1t) > var(yM1t ). So this explains why the
negative correlations between shocks found earlier can occur, and it reflects the fact that
one of the assumptions used in estimation is incorrect. One possible response to this is to
argue that the data has measurement error in it, and that is why the model variances do not
match the data variances. The MSM model does incorporate such a feature, so we look at
the issues of bridging data and model via measurement error in Section 5.1. Then in Section
5.2 we ask whether the presence of unobservable variables in the MSM would mean that we
could not easily capture the impulse responses of the model by just using observable data.
Finally, Section 5.3 asks whether the business cycles that would be produced by the MSM
would resemble those of the Australian economy.

5.1 Bridging Data and Model via Measurement Error

One development in estimating DSGE models has been to build a bridge to the data via
measurement errors. That is, if the model variable is yMt and the data is yDt , the equation
yDt = yMt + ζt is added to the system. The implications of including measurement error ζt
were analysed in Pagan (2017); here we discuss the results for the MSM.

A ζt will exist that reconciles the data and model variables. Watson (1993) considered
this and, as he noted, some assumption has to be made about the relationship of yMt and ζt,
i.e. how do the reconciliation shocks (“measurement errors”) and the model shocks interact?
One specification is that they are uncorrelated and that is the primary assumption used in
the MSM.

There are also other decisions that need to be made. Two stand out. First, how does ζt
evolve, i.e. what is its nature? Second, do we fix or estimate the parameters of the generating
process for the ζt? The answer to the first of these questions given in the MSM was to assume
that ζt are white noise processes that are uncorrelated with one another. This means that

29This is also evident from Table 5 in Rees et al.
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the only parameters involved in the ζt processes are the variances of the shocks, and they
were set in the MSM to values that were connected to the magnitude of yDt . The motivation
for this approach seems to be that the model shocks would explain a certain percentage of
the data while the “measurement error” accounted for the rest.

5.1.1 Parameter Choices for the Measurement Error Process

To examine the consequences of fixing the variance of the shocks ζt consider the following
calculation. From Equation A27 of Rees et al (2016)

ỹvat = ω1ỹ
va
nt + ω2ỹ

va
mt + ω3ỹ

va
zt .

The left-hand side is model-based GDP and the others are the sectoral value-added mea-
sures.30 The tildes denote that the unit root technology process is subtracted from each and,
as ω1 + ω2 + ω3 = 1, this implies that

yvat = ω1y
va
nt + ω2y

va
mt + ω3y

va
zt

=⇒ Δyvat = ω1Δy
va
nt + ω2Δy

va
mt + ω3Δy

va
zt .

In MSM the data is said to differ from the model variables by measurement errors (here
“obs” indicates the observed data)

Δyva,obst = Δyvat + ζvat
Δyva,obsnt = Δyvant + ζvant
Δyva,obsmt = Δyvamt + ζvamt
Δyva,obszt = Δyvazt + ζvazt .

Hence

Δyva,obst − ζvat = ωn(Δy
va,obs
nt − ζvant) + ωm(Δy

va,obs
mt − ζvamt)

+ωz(Δy
va,obs
zt − ζvazt ),

so that

ψt ≡ Δyva,obst −Δȳva,obst = ζvat − ωnζ
va
nt − ωmζ

va
mt − ωzζ

va
zt , (16)

where Δȳva,obst ≡ (ωnΔy
va,obs
nt +ωmΔy

va,obs
mt +ωzΔy

va,obs
zt ). Consequently ψt can be constructed

from the observed data and it has a standard deviation of .49. Its standard deviation implied
by the measurement error shocks can be computed from the right-hand side of Equation
(16) as Rees et al set ωn = .64, ωm =.23, wz = .13, σn = .18, σm = .36, σz = .74, and the
std(ηvat ) = σvay to .18. This means that the implied standard deviation of ψt is√

(σvay )2 + ω2
nσ

2
n + ω2

mσ
2
m + ω2

zσ
2
z = .25.

Since the standard deviation of ψt from the data is .49, it is clear that the measurement
error shocks do not provide a reconciliation of the model with the data.

30The sectors are non traded (n), non-resource exportables (m) and resource exportables (z).
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How this can be so? One possible reason is that the standard deviations of the mea-
surement errors are being set rather than being estimated. Estimating these, however, does
not substantially change the result.31 Other possible reasons relate to the other assump-
tions being made. One assumption is that the measurement errors are uncorrelated with the
model variables. In fact, this is not the case; e.g. the correlation between the technology
shock and measurement error in resource exports is .4, that between the risk premium shock
and the nominal exchange rate measurement error is .83. Another assumption is that the
measurement error shocks are uncorrelated with each other. Again, there are actually many
substantial correlations; for example those between ηvat and the three industry GDP mea-
surement error shocks ηvant (−.79), ηvamt (−.82) and ηvazt (−.74), while the correlation between
measurement errors in investment and consumption is .7.32

5.1.2 The Interrelationship of Measurement Error Specification and Data

The nature of the ζt needed to reconcile the data and model variables may also be an issue.
The only variables exempt from measurement error in the MSM are the nominal interest
rates. To see the possible unintended consequences of including measurement error shocks
we look at the change in the real exchange rate (qt), which is defined as (from their Equation
A31)

Δqt = Δst + πt − π∗
t ,

where st is the log of the nominal exchange rate. Then the data variables are πDt = πMt +
ζπt , π

∗D
t = π∗M

t + ζπ
∗
t , where the ζt are measurement errors. Hence we have for the data

ΔqDt = ΔsDt + πDt − π∗D
t

= ΔsMt + ζΔst + πMt − π∗M
t + ζπt − ζπ

∗
t .

Cumulating these produces

qDt = sMt + PM
t − P ∗M

t +
t∑

j=1

(ζΔsj + ζπj − ζπ
∗
j ).

In the model qMt = st+P
M
t −P ∗M

t is an I(0) process since there is co-integration between
the nominal exchange rate and the relative prices. Because

∑t
j=1(ζ

Δs
j + ζπj − ζπ

∗
j ) is an I(1)

process it follows that, unless the variance of (ζΔsj + ζπj − ζπ
∗
j ) is zero, the real exchange rate

in the data is predicted to be I(1). Because in the MSM measurement errors are taken to be

31One further aspect to note is that unless these standard deviations are estimated observed GDP is
redundant. To see this, recall that the observed data for MSM consists of seventeen variables. These include
the aggregate GDP growth Δyvat and the sectoral ones Δyvajt (j = m,n, z). Given Δyvajt and the other 13

variables on can set up a likelihood to find estimates of the MSM parameters θ. Defining ΔySt =
∑

j ωjΔyvajt ,

where ωj are weights used in the MSM then we have Δyvat = ΔySt + ζt , where ζt is a reconciliation or
measurement error. So Δyvat is not used in estimating θ but would only be used to find the variance of ζt.
Hence it means that there are only 16 observable variables being used to estimate the 17 MSM shocks and
so one cannot uniquely recover the latter. This also meant that in the weak identification analysis above,
which was conducted without measurement error, observed GDP growth was omitted to avoid a singularity.

32Because the DSGE model is over-identified we can estimate these correlations.
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independent and white noise processes the variance of (ζΔsj + ζπj − ζπ
∗
j ) will not be zero. In

other words the introduction of measurement errors predicts a lack of co-integration between
the nominal exchange rate and relative prices in the data.

Similar implications extend to many other variables in the model. A noteworthy example
is that yvat and y∗t in the model co-integrate but they will be predicted to not have that
property in the data. Clearly measurement error could be a useful device to reconcile data
and model variables when there is co-integration implied by the model but it is not present
in the data. Viewed in this way ζt is best thought of as a reconciliation shock, since it aims
to reconcile the model and data, rather than measurement error.

In order for the reconciliation shocks ζt to actually achieve a reconciliation between the
model and data the way they are modelled is important. For example, if none of the error-
correction terms defined by the model are I(0) in the data, then one can choose ζt to be white
noise. However, if a model-defined error-correction term is I(0) in the data, an assumption of
white noise measurement errors is incorrect, since the data and model are already reconciled
on that dimension.

5.1.3 The Nature of the MSM-Implied Error-correction Terms in the Data

There are other aspects to reconciling the model and the data, such as the nature of de-
terministic trends and their implications for the error-correction terms. In the MSM model
the deterministic growth rates in all of the real variables are the same. However, this may
not be true in the data. To handle this problem Rees et al adopted a commonly used ap-
proach, namely they mean corrected the data growth rates and then modelled the resulting
series. Essentially this removes a different linear deterministic trend from each of the log
levels data and thereby avoids a lack of co-trending between the variables. It means that
the error-correction terms should not have any trend. However, if there are breaking trends
in the data, rather than a constant one, this can show up as a trend in the error-correction
terms. Such a breaking trend would need to be allowed for in estimation, otherwise there is
a mis-specification and the likelihood is incorrect. These issues are evident in the MSM.

Let us look at data on some of the error-correction terms implied by the model. First,
Figure 2 shows the error-correction term involving the logs of investment and aggregate
GDP. This has an ADF test of -3.597 with a 1% critical value of -3.507, so the evidence is
against there being any need for a reconciliation shock to replicate a lack of co-integration.
For the error-correction term involving GDP in the non-traded sector relative to aggregate
GDP, the ADF test is -3.463 and the 1 and 5% critical values are -3.51 and -2.90, so it is
a mixed result. Plotting the data though shows a clear trend in it. An ADF test allowing
for a trend is -4.434 with the 1% critical value of -4.07. So it would seem better to either
provide an explanation of this or to have a breaking trend.

Previously we demonstrated that the MSM’s use of white noise measurement errors im-
plies that the real exchange rate in the data would be I(1). Applying an ADF test to the
latter series (based on four lags) gives -1.58, which does seem to point to an I(1) process,
and implying that this could be handled by allowing for measurement errors in the domestic
and foreign inflation rates. Looking at the plot of the real exchange rate in Figure 3 (this is
after mean correcting the change in the nominal exchange rate and the domestic and foreign
inflation rates) it is apparent that there is a trend in the data i.e. a shift in the mean of the
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Figure 2: The MSM Implied Error Correction Term Connecting GDP in the Non-Traded
Sector to Aggregate GDP

growth rates after 2003. Kulish and Rees (2017) noted this and proposed that one allow for
such trend shifts in an MSM type model. So the incorporation of white noise measurement
errors does not provide a satisfactory solution. One needs to effect any reconciliation with
a different model. Relatedly, if a model is to be used for policy analysis one needs to make
some assumptions about the nature of the reconciliation shock into the future, as the policy
maker is ultimately interested in the implications for the actual data, rather than the model
variables.

There is an argument for re-structuring the MSM model like we did for the SSVAR and
expressing it in terms of EC terms plus y∗t − at. Then we could work with the growth rates,
error-correction terms and Δy∗t as the data, and have the reconciliation shocks placed on the
error correction terms. That enables more flexibility than placing them on the growth rate
data.

5.2 Approximating the MSM with an Observable Variables SS-
VAR

The MSM model has an SSVAR involving both observable and unobservable variables, but
what happens if one only fits an SSVAR with observable variables? This is of interest because
if it is found that the MSM can be approximated well by a SSVAR(2), then it suggests one
could obtain similar results from other models as long as they also have such a representation.
There could be advantages to working with these other models, in particular institutional
features of the Australian economy may be captured more easily with them.

Pagan and Robinson (2016) looked at this for a range of DSGE models in the literature
and found that in many cases an SSVAR(2) fitted quite well, in the sense of being able to
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Figure 3: Log of the Real Exchange Rate

generate impulse responses that were those of the underlying DSGE model. To see why this
might be the case take the ỹ∗t of the external sector of MSM and set up its connection with
observed foreign GDP growth Δy∗t

Δy∗t = Δỹ∗t +Δat = Δỹ∗t + μt. (17)

Equation (9) provides an expression for ỹ∗t above from the solution to the MSM and,
combining this with (17), we get

Δy∗t = −.248π∗
t−1 + .083r∗t−1 + {−.135ỹ∗t−1 + .003ε∗yt − .005ε∗πt − .049ε∗rt + μt}.

If the term in brackets is close to white noise then a VAR(1) in Δy∗t , π
∗
t and r∗t would

fit this equation quite well. Essentially the question of how important the approximation
error is boils down to comparing the relative variances of the omitted term −.135ỹ∗t−1 and
the disturbance .003ε∗yt − .005ε∗πt − .049ε∗rt + μt. Since var(ỹ

∗
t ) = .0001 and var(μt) = .0001,

it follows that the series in brackets will look like white noise. Indeed if one fits to it a
MA(1) process it yields a coefficient of .07. The situation differs for the π∗

t equation, where
the MA(1) is .24. So we might expect some difficulties in capturing the inflation responses.
Figures 4 and 5 below show that this seems to be true; in these figures we look at the ability
of an SSVAR(2) in observables Δy∗t , π

∗
t and r∗t to capture the monetary impulse responses

for the foreign sector of the MSM. Note that in order to study the pure approximation
error we begin the impulse responses with the values of the contemporaneous responses - the
argument for this is given in Pagan and Robinson (2016).

We can also study impulse responses for the domestic sector. Figures 6-10 give a collection
of impulse responses - inflation to monetary policy, GDP growth to technology, real exchange
rate to risk, GDP growth to the marginal efficiency of investment and the real exchange rate
to the monetary shock. Generally, the correspondence is quite good.
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Figure 4: Impulse Response of Foreign GDP Growth to a Foreign Monetary Policy Shock,
All and Just Observed Variables

Figure 5: Impulse Response of Foreign Inflation to a Foreign Monetary Policy Shock, All
and Just Observed Variables
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Figure 6: Impulse Response of Domestic Inflation to a Domestic Monetary Policy Shock,
All and Just Observed Variables

Figure 7: Impulse Response of Domestic GDP Growth to a Technology Shock, All and
Just Observed Variables
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Figure 8: Impulse Response of the Real Exchange Rate to a Risk Premium Shock, All and
Just Observed Variables

Figure 9: Impulse Response of Domestic GDP Growth to a Marginal Efficiency of Capital
Shock, All and Just Observed Variables
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Figure 10: Impulse Response of the Real Exchange Rate to a Domestic Monetary Shock,
All and Just Observed Variables

5.3 Examining Some Features of the MSM Generating Process in
Relation to Data

The excessive volatility of GDP growth in MSM has consequences for its business cycle
properties. One of these is the number of negative growth rates we would get from the
model versus that in the data. To examine this we add back the mean growth rate to the
simulated model series and then ask how many negative growth rates would be produced,
finding that there are nearly four times as many as in the data. This suggests that the
model will produce quite a lot of recessions. Of course any recession starts with a negative
growth rate, but they are often defined as having two or more. Alternatively, one can identify
recessions using the turning points in the level of the series, found with rules like those used
by the NBER to date business cycles. This literature is surveyed in Harding and Pagan
(2016). Pagan and Robinson (2014) used this to assess financial models, finding that they
were unable to produce realistic characteristics of business and financial cycles. Specifically,
we simulate GDP data from the MSM model (with uncorrelated shocks) and apply the
MBBQ algorithm to identify turning points to look at the business cycle characteristics.
These are presented below.

We see from this that the model produces a complete cycle on average every 7 years
(Table 8). This is considerably different to the recent Australian experience, as the current
expansion has lasted more than twenty years. Applying the dating algorithm to the actual
data used in the MSM estimation we also find that there were no recessions. Consequently,
it is clear that the model has an in-built feature that would predict recessions too often.
This is almost certainly the consequence of the high volatility of GDP growth given by the
model versus what is in the data.

Business cycle dating can also be used to ascertain the importance of particular shocks
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Table 8: The MSM Business Cycle Characteristics
All Shocks Omitting:
(MSM) MEI Foreign

Durations (qtrs)
Contractions 2.51 2.33 2.45
Expansions 27.26 54.50 27.49

Amplitudes (%)
Contractions -1.19 -0.80 -1.17
Expansions 25.04 46.29 25.12
Notes: Foreign shocks include: εy∗ , εr∗ , επ∗ , εp∗ and εμ.
Excludes measurement errors.

in determining the business cycle characteristics. This is simple to implement, in that it
involves simulating data from the model with that shock turned off, applying the dating
algorithm, and then comparing the cycle characteristics to those obtained with all of the
shocks. Such exercises are shown in Table 8. The relationship between this and variance
decompositions is discussed in Pagan and Robinson (2014). Table 8 shows that the charac-
teristics are dramatically altered when the marginal efficiency of investment shock is omitted
- in particular, the duration and amplitude of expansions approximately double. Using dif-
ferent methods Justiniano et al. (2011) found this shock to be important in U.S. models,
and they argue that it is proxying for financial shocks. In contrast to the MEI shocks, Table
8 shows that omitting external shocks has relatively little impact.33

6 Conclusion

The construction of the MSM is an impressive achievement. It provides a feasible way
of implementing the tradeable/non-tradeable model of a small open econom while at the
same time handling a number of sectors that are an important institutional feature of the
Australian economy.

The analysis in Rees et al suggested that the MSM did not match some characteristics of
the data. This is not surprising; ultimately all empirical macroeconomic modelling involves
making compromises along some dimensions. Our work, however, suggests that a failure to
match data on some levels can have broad implications for the nature of the shocks that are
in the data, and these may not be adequately recognized in the estimation and use of the
model. The MSM model (and many other DSGE models) are being used as if the shocks have
exactly the same properties as were assumed about them in estimation. When DSGE models
are exactly identified this is correct. However, DSGE models are typically over-identified
and, consequently, experiments being performed under the estimation assumptions about
the shocks are hypothetical, and may be contrary to the data. Such experiments may be

33See Justiniano and Preston (2010), who show that small-open economy DSGE models often attribute a
surprisingly small role to foreign disturbances.
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suitable for understanding the ways in which shocks potentially work through the Australian
economy, but whether the data-compatible shocks enter in the same way is unknown.

The essential point is that once any DSGE model is established and estimated, one needs
to spend time investigating its fit to the data. This involves more than just looking at a few
moments or (in a Bayesian context) a marginal likelihood. Simulating the model so as to
study other ways of judging adequacy, such as business cycle outcomes, often provides insight
into weaknesses that are not apparent from studying a few moments. If there is a failure along
these dimensions then the question that needs to be raised is whether something important
has been missed. In addition to investigating the fit to the data, whether parameters are
well identified or not should also be examined. In the case of MSM our analysis suggests
that the slopes of the Phillips curves in all of the sectors may only be weakly identified. This
means that when the model is used one should assume a range of scenarios with different
parameter values being used in the model.

The practice of adding measurement error into DSGE models (which has become quite
common) often leads to unintended implications that are assessable from the data. This
problem is particularly acute when such errors are associated with growth rates in variables
(as in the MSM), since then there are testable co-integration implications. This was set out
in Pagan (2017) and here it was applied in the context of the MSM. Our feeling is that it
is generally not a good idea to claim that there is measurement error. In the event that
one does, it needs to be done with great care. In particular, one should check that the
implications of doing so are valid.

Many DSGE models today, including MSM, include a unit root technology process. This
implies that co-integration exists between many of the real variables. We re-formulated
MSM as a SVAR with growth rates and error-correction terms. This had the advantage
that one could focus on error-correction terms between observable variables rather than the
unobserved technology level. Using this reformulation it was possible to easily compare the
properties of error-correction terms in the model to those in the actual data.

MSM is a policy model. It was suggested that a way of reporting results from such
a model which is potentially useful to policy makers is to present the range of impulse
responses from models that provide the same fit to the data as MSM. This is a way to
communicate the degree of model uncertainty that exists. It demonstrated, for example,
that the contemporaneous response of GDP in the external sector to a foreign monetary
policy shock is very large compared to that from many equivalent models.

Finally, we looked at whether it would be possible to approximate the MSM impulse
responses with a SVAR. Here the complication is that there are variables in the MSM that
have no counterpart in the data used in its estimation, such as foreign debt and capital
stocks in each of the sectors. We found that an SVAR(2) in just the observable variables
could do quite well in capturing the responses. This suggests that one might reproduce
many of the MSM results with alternative types of models, provided they have a SVAR(2)
representation. This might be appealing as it could be easier to incorporate institutional
features of the Australian economy into these alternative models.

In summary, in this paper we have examined ways in which a DSGE model can be
assessed after estimation, focussing particularly on the nature of shocks and what can be
learnt from alternative representations of the DSGE model.
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8 Appendix

8.1 VECM Representation of Domestic GDP Growth in MSM

The expression for the growth in domestic GDP from the MSM model, omitting variables
whose coefficient is zero, is

Δyvat = .23Δyvat−1 − .015Δy∗t−1 − .007ξzxyt−1 − .01ξyxmt−1 − .015ξyxmt−2 −
.03πt−1 + .08ξct−1 − .171ξct−2 − .25ξvat−1 + .02qt−1 + .04p∗zt−1 − .088ξvant−1

+.11r∗t−1 + .033ξvazt−1 − .02πnt−1 − .41rt−1 − .008π∗
t−1 + .006ξit−1

−043ξit−1 − .019ξgt−1{−.22ỹ∗t−1 + .02πft−1 − .169b∗t−1 + .168b∗t−2 +

086k̃m,t−1 − .063k̃m,t−2 − .082k̃z,t−1 + .062k̃z,t−2 − .094λz,t−1 +

.041λn,t−1 + .074λm,t−1} − .01εr,t − .0033εr∗t + .0005εft − .0004εmt

−.003εnt − .0015εm∗
t
+ .0004εy∗t + .0004επ∗

t
+ .0009εΥt + .0005εamt

+.0007εant − .59μt + .001εazt + .0015εgt − .0007εψt + .0002εp∗t + .0008εξc,t

The terms in the braces are the unobserved variables.
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