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1. Introduction 

Since the seminal work of Aigner, Lovell and Schmidt (1977) and Meeusen and van den 

Broeck (1977), the literature on efficiency studies has proliferated. Among the wide variety 

of stochastic production frontier efficiency models, the most important ones are those that 

consider exogenous determinants of inefficiency effects in addition to estimating firm’s 

efficiency. These inefficiency effects models are classified into two groups. The first group of 

models follow a two-step procedure in that the production frontier is first estimated and the 

technical inefficiency of each firm derived. These are subsequently regressed against a set of 

variables which are hypothesized to influence the firm’s inefficiency. This approach has been 

adopted in a range of studies (e.g. Kalijaran, 1981; Pitt and Lee, 1981). 

A problem with the two-stage procedure is the lack of consistency in assumptions about the 

distribution of inefficiencies. In the first stage, inefficiencies are assumed to be independently 

and identically distributed (i.i.d.) in order to estimate their values. However, in the second 

stage, estimated inefficiencies are assumed to be a function of a number of firm-specific 

factors, and hence are not identically distributed (Battese and Coelli, 1995).  Another problem 

is that if the production function variables and efficiency effect variables are correlated, then 

the first step of the two-step procedure is plagued by omitted variable bias (Parmeter and 

Kumbhakar, 2014).  Even if they are uncorrelated, the Monte Carlo simulations undertaken in 

Wang and Schmidt (2002) show that the second stage regression parameter estimates are 

likely to be biased downwards. 

The second group of inefficiency effects models estimate the inefficiency scores and 

exogenous effects in one step. Amongst these models, the most popular are those of 

Kumbhakar, Ghosh and McGuckin (1991), Huang and Liu (1994) and Battese and Coelli 

(1995). In order to study the exogenous influence on inefficiency, these authors parameterize 
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the mean of pre-truncated distribution. These models are further complemented by Caudill 

and Ford (1993), Caudill, Ford and Gropper (1995) and Hadri (1999) by accounting for 

potential heteroscedasticity by parameterizing the variance of the pre-truncated distribution. 

Wang (2002) proposes a more general model that combines the two strands of one-step 

models mentioned above.  

 

In this paper, we propose an alternative parametric efficiency effects model wherein the 

technical efficiency is represented by a cumulative density function of exogenous variables, 

ensuring the efficiency scores to lie in the unit interval. The existing inefficiency effects 

models contain two error terms and are estimated using maximum likelihood technique. One 

of the error terms is a symmetric random variable representing statistical noise (v) and the 

other is a one-sided random variable (u) which represents inefficiency. These models utilise a 

transformation proposed by Jondrow, Lovell, Materov and Schmidt (1982) (popularly known 

as JLMS estimator) in order to derive the technical inefficiency scores. Schmidt and Sickles 

(1984) have shown that the JLMS estimator is not consistent in the sense that the conditional 

mean or mode of the random variable representing inefficiency component (u) given the 

composite error (v-u) term, that is, u v u− never approaches u even when the number of 

cross-sectional units tends to infinity.  However, if the panel data are used, the latter 

limitation can be overcome under certain other assumptions, some of which may be less 

realistic (Parmeter and Kumbhakar, 2014). The efficiency effects model/ specification 

proposed in this paper is much simpler and distribution free as it eschews one-sided error 

term present in almost all the existing inefficiency effect models.  Our model contains only a 

statistical noise term (v), and its estimation can be done in a straight forward manner using 

non-linear least squares. Once the parameters are estimated, the efficiency scores are 

calculated directly.  
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Parmeter and Kumbhakar (2014) discuss about a distribution free inefficiency effects model 

which was first proposed in Simar, Lovell and van den Eeckaut (1994) and later explained in 

details in Wang and Schmidt (2002) and Alvarez, Amsler, Orea and Schmidt (2006). 

Parmeter, Wang and Kumbhakar (2016) non-parametrically estimate distribution free 

inefficiency effects using a partly linear model initially proposed by Robinson (1988). This 

model is similar to the one proposed by Deprins and Simar (1989a, 1989b) and extended by 

Deprins (1989). However, unlike the model proposed in this paper, these distribution free 

inefficiency effects models suffer from certain limitations which we shall discuss later in this 

paper. 

 

The rest of the paper is organized as follows. Section 2 discusses the proposed model and 

estimation procedure. This is followed by a brief discussion of the limitations of existing 

distribution free ‘inefficiency effects’ specifications. Section 3 provides an empirical 

illustration of the proposed model using the Philippines data collected by the International 

Rice Research Institute for a panel of 43 rice farms observed over 8 years from 1990 to 1997 

in the Tarlac region.  Concluding remarks are made in Section 4.   

 

 

2. Model  

The specification of our stochastic production frontier efficiency effects model is as follows. 

exp( ) ( )it it it itY x v H zβ γ= +                                                         (1) 

where the subscripts i and t respectively represent cross-sectional unit and time period, Yit is 

the quantity of output, itx  represents a ( )1 K×  vector whose values are functions of input 
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quantities and time,  β  represents the corresponding coefficient vector ( )1K ×  and itv  

represents the random noise. ( )itH z γ  represents the efficiency term and is required to lie 

between 0 and 1, that is, 0 ( ) 1itH z γ≤ ≤ . Any cumulative distribution function (cdf) will 

satisfy this property.  In this paper, we assume the efficiency term to take a probit functional 

form, that is, ( ) ( )it itH z zγ γ= Φ , where Φ  is a standard normal cdf, the vector itz  contains a 

constant 1 and exogenous variables hypothesized to influence efficiency and γ  is the 

corresponding coefficient vector.  

 

Taking logarithm on both sides of (1) we have 

( )ln( ) ln ( ) ( , , )it it it it it it it ity Y x H z v g x z vβ γ θ= = + + = +            (2) 

where ( )( , , ) ln ( )it it it itg x z x zθ β γ= + Φ  and ( ),θ β γ ′′ ′= .  Equation (2) can be estimated by 

minimizing the following sum of squared errors with respect to parameter vectorθ : 

  ( ) ( )2

1 1

( , , )
N T

N it it it
i t

Q y g x zθ θ
= =

= −∑∑    

The estimation can be done using the nonlinear least squares option available in any standard 

econometric package such as EViews.  

 

Parmeter and Kumbhakar (2014) discuss a model possessing the scaling property, which can 

be estimated without making any distributional assumptions. Their model can be written as  

 itz
it it it ity x v e uγβ= + −                                 (3) 

where itze γ is the scaling function and itu the basic distribution (such as half-normal or 

truncated normal). The conditional mean of y, given x and z is  

( ), itz
it it it itE y x z x e γβ µ= −                             (4) 
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where ( )itE uµ = . The regression model given by (3) can be re-written as 

( )it it itz z z
it it it it it ity x e v e u x eγ γ γβ µ µ β µ e= − + − − = − +       (5) 

where ( )itz
it it itv e uγe µ= − −  is independent but not identically distributed. Equation (5) can 

be estimated with nonlinear least squares by minimizing ( )2

1 1= =

− +∑∑ it

N T
z

it it
i t

y x e γβ µ . 

 

Parmeter, Wang and Kumbhakar (2016) estimate the following partly linear regression model 

initially proposed by Robinson (1988), which does not invoke the scaling property: 

          ( ) ( )( ) ( )it it it it it it it it it it it ity x v u x g z v u g z x g zβ β γ γ β γ e= + − = − + − − = − +      (6) 

where ( )( )it it it itv u g ze γ= − −  and ( ) ( ) 0it itE u g z γ= > . In order to estimate β  the following 

equation is required. 

           ( ) ( )( )it it it it it it ity E y z x E x z β e− = − +                                   (7) 

Since, ( )it itE y z and ( )it itE x z are unknown, in order to obtain a consistent estimate of β for 

the partly linear model of Robinson (1988) the conditional means are replaced with their 

nonparametric estimates. 

 

Parmeter and Kumbhakar (2014) mention that the above two models, (5) and (6), suffer from 

certain limitations. First, to avoid identification issues, z and x respectively in model (5) and 

(6) cannot contain 1 to represent the intercept. Second, in the first model as e depends on z  

through ze γ , x and z cannot contain common elements. However, Parmeter, Wang and 

Kumbhakar (2016) show that ( )x E x z− in (7) is uncorrelated with e and so the correlation 

between z and x is not an issue for them. Finally, as noted in Parmeter and Kumbhakar 

(2014), it is possible to obtain negative estimates of ( )g z  in model (6), which is inconsistent 
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with the notion that ( )g z  represents average inefficiency.  The model that we have proposed 

in this paper suffers from no such limitations.  

 

3. An Empirical Illustration with Philippines Rice Data 

 

We provide an empirical illustration of the proposed model of estimating technical efficiency 

using the Philippines data for a panel of 43 rice farms observed over 8 years from 1990 to 

1997 in the Tarlac region.  Rice is grown only in the rainy season, hence all the farms in the 

region get the same rainfall during any year. However, the rainfall varies across years. These 

data have been widely used in empirical studies such as Coelli, Rao, O’Donnell and Battese 

(2005) and Griffiths and Hajargasht (2016).      

 

The stochastic frontier efficiency model that we estimate consists of a Cobb-Douglas 

Production frontier and an efficiency effects specification.  The use of Cobb-Douglas 

function for the production frontier is in line with several other studies based on the 

Philippines data set (e.g. Griffiths and Hajargasht, 2016). For the production function, the 

output variable is tons of freshly threshed rice (Y).  Input variables are:  area planted for rice 

cultivation in hectares (AREA), person-days of hired and family labor (LABOR), kilograms of 

fertilizer (FERTILIZER) and OTHER which is a Laspeyres quantity index that combines 

inputs of seed, insecticides, herbicides, animals and tractors used during land preparation2. 

We also included year variable (t) which accounts for Hicksian neutral technological change. 

For the efficiency effects, the determinants (z) are: rainfall in mm. (RAIN), education of 

household head (EDU), age of the household head in years (AGE), and proportion of area 

classified as bantog (upland) fields which generally do not get flooded (BANRAT).   Bantog 

2 Further details on OTHER are provided in Coelli, Rao, O’Donnell and Battese (2005).   
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fields are known to be better than those low land farms (called lubog) which are flood prone 

(see Pandey, Masicat, Velasco, and Villano, 1999). We expect that rainfall, education of 

household head and proportion of area under bantog are likely to enhance the technical 

efficiency in rice farming.  However, it is difficult to predict a priori the sign of the effect of 

age of the household head on efficiency. If the younger people have better knowledge of 

farming techniques and management then the farms headed by young household heads are 

likely to be more technically efficient, other things remaining the same. On the other hand, if 

the experience gained over the years matters for farming, then farms managed by older 

household heads might be technically more efficient. Thus, the effect of age of household 

head on technical efficiency is an empirical issue.  

 

The summary statistics of data presented in Table 1 reveal that the average size of land area 

under rice cultivation is 2.14 hectares. The minimum farm size is 0.20 hectare as against the 

maximum size of 7 hectares in the sample. The rainfall varies considerably across years. The 

percentage of area classified as bantog (upland) fields is 73%.  

                                                  

Table 1: Summary Statistics of Data 

Variables    Mean  
 Std. 
Dev.   Minimum   Maximum  

Output (in tonnes)  6.54  5.10  0.37  31.10  
AREA (in hectares) 2.14  1.46  0.20  7.00  
LABOR (person-days of hired and family labor) 108.34  77.19  8.00  437.00  
FERTILIZER (in Kilograms) 189.23  169.80  10.00  1030.90  
OTHER (Laspeyres quantity index) 125.35 158.24 1.46 1083.78 
AGE (Age of Household head) (in years) 49.44  11.02  25.00  81.00  
EDU (years of schooling of household head) 7.24  1.91  6.00  14.00  
BANRAT (proportion of area classified as 
bantog (upland) fields 

0.73  
 

0.29  
 

0.00  
 

1.00  
 

RAIN (rainfall in mm.) 1166.08  312.09  700.10  1618.80  
 Note: The total number of observations on each of the above variables is 344. 
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The stochastic frontier efficiency model is specified as   

( )
( )( )

0 1 2 3 4

5 0 1 2 3 4

ln( ) ln( ) ln( ) ln( )

                   l

ln

n
it it it it it

it it it it it

AREA LABOR FERTILIZER OTHER

t AGE EDU BANRAT RAIN

Y

v

β β β β β

β γ γ γ γ γ

+ + + +

+ + + +

=

+ + +Φ

                                                                                                   (8) 

The non-linear least squares (NLS) estimates of parameters of the model are obtained using 

EVIEWS9 software package. These estimates are presented below.  

Stochastic frontier: 

�( )
( ) ( ) ( ) ( ) ( ) ( )

1.457 0.394ln( ) 0.317ln( ) 0.268ln( ) 0.002ln( ) 0.058

   0.319 0.076   0.074      0.036               0.019 0.01

n

2

l it it it it itAREA LABOR FERTILIZER OTHEY R t− + + += + +

  

Technical efficiency effects:   

� ( )
( ) ( ) ( ) ( ) ( )

0.461 0.019 0.011 0.845 0.002

  0.600  0.007   0.036 0.325     0.001
it it it it itAGE EDU BT ANRAT RAINE − − − += Φ +

   

The values within parentheses are heteroscedasticity consistent standard errors (White, 1980). 

For overall significance F-stat (10,333) = 243.04 and number of observations used in the 

regression is 344. 

 

The coefficients of AREA, LABOR, FERTILIZER and OTHER are the output elasticities in 

the production function. All the output elasticities are positive and statistically significant 

except the one with respect to OTHER which is statistically insignificant. In terms of 

magnitude of elasticities, the area under cultivation is the most important determinant of 
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output, followed by labor and fertilizer.  The coefficient on the time variable (t) indicates that 

there is significant technological progress.  

In the technical efficiency effects model, the coefficient of BANRAT and RAIN are positive 

and statistically significant implying that technical efficiency increases with rainfall and 

proportion of cultivated area classified as bantog (upland). The coefficient of AGE is negative 

and significant, implying that, cetris paribus, farms managed by younger household heads are 

more efficient than those managed by older household heads. The coefficient of EDU is 

negative but statistically insignificant. The null hypothesis that there are no efficiency effects 

( 0 0 1 2 3 4: 0H γ γ γ γ γ= = = = =  ) is rejected at the 1% significance level by the Wald test (F-

stat (5, 333) = 4.047).  

The technical efficiency levels vary from 0.526 to 0.998 across farms and years (Table 2). 

The average efficiency level of farms has turned out to be 0.881. Figure 1 indicates that the 

estimated probability density function of technical efficiency is leptokurtic and skewed to the 

left. Table 3 presents estimates of technical efficiency scores for each farm averaged over the 

period 1990- 1997.  We find that the top 5 technically efficient farms have an average score 

of 0.937. 92% of their farm area is upland (bantog) and they are managed by household heads 

whose average age is 37.5 years.  In contrast, the lowest 5 farms have average efficiency 

score of 0.814, their upland farming area is only 31% of area cultivated, and they are 

managed by household heads with an average age of 51 years.  These observations are in line 

with technical efficiency effects reported above.  

It is also worth noting that the average efficiency level of farms during 1990-1993 is higher 

than the period 1994-1997 (Table 4). The data reveal that average rainfall during the first 

period was 1425.37 mm as against 906.77 mm during the second period. It appears that 
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relatively low average efficiency of farms observed in second period could be attributed to 

low rainfalls.   

 

                   Figure 1: Estimated Probability Density Function of Technical Efficiency 
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Table 2: Summary Statistics of Estimated Technical 
Efficiency 

Mean 0.881 
Maximum 0.998 
Minimum 0.526 
Std. Dev 0.115 
Skewness -1.021 
Kurtosis 3.105 
Observations 344 
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Table 3:   Farm-Wise Estimates of Mean Technical Efficiency 
 

Farm 
 

Mean Technical Efficiency 
 

Ranking 
 

1 0.935 3 
2 0.931 4 
3 0.853 34 
4 0.860 32 
5 0.878 27 
6 0.909 14 
7 0.924 6 
8 0.904 15 
9 0.858 33 
10 0.860 30 
11 0.823 39 
12 0.827 38 
13 0.911 11 
14 0.896 18 
15 0.909 12 
16 0.881 21 
17 0.909 13 
18 0.914 9 
19 0.878 26 
20 0.880 23 
21 0.860 31 
22 0.829 37 
23 0.803 43 
24 0.812 42 
25 0.897 17 
26 0.949 1 
27 0.871 29 
28 0.880 25 
29 0.814 41 
30 0.923 7 
31 0.945 2 
32 0.887 20 
33 0.900 16 
34 0.820 40 
35 0.917 8 
36 0.839 36 
37 0.914 10 
38 0.928 5 
39 0.845 35 
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40 0.892 19 
41 0.880 24 
42 0.881 22 
43 0.876 28 

Overall Mean 0.881   
 

 

Table 4:  Year-Wise Mean Technical Efficiency   
 

1990 0.986 
1991 0.962 
1992 0.921 
1993 0.988 
1994 0.826 
1995 0.914 
1996 0.682 
1997 0.772 

1990-1993 0.964 
1994-1997 0.798 
1990-1997 0.881 

 

 

4. Conclusions   

This paper has proposed a specification for estimating technical efficiency effects in the 

stochastic production frontier model. The proposed specification eschews one-sided error 

term present in almost3 all the existing inefficiency effects models.  The efficiency effects are 

represented by a standard normal cumulative distribution function of exogenous variables, 

ensuring the efficiency scores to lie between zero and one. The efficiency effects model is 

distribution free. The efficiency scores are obtained directly once parameters of the model are 

3 Even though the model (equation 5) as proposed in Parmeter and Kumbhakar (2014) requires no distributional 
assumptions for the inefficiency term, it does invoke the scaling property in which the inefficiency term is 
initially assumed to have a basic distribution such as half or truncated normal distribution. Further, Parmeter, 
Wang and Kumbhakar (2016) make no distributional assumptions concerning the inefficiency term but the 
estimation is performed in a non-parametric framework. 
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estimated using non-linear least squares. An empirical exercise based on the Philippines data 

set of rice farms illustrates the simplicity and usefulness of the proposed methodology. 

The research presented in this paper may be extended as follows. We have represented the 

efficiency effects using the cdf of a standard normal distribution function. It would be 

interesting to see the sensitivity of results based on other cumulative distribution functions 

such as logistic and student-t.  Further, it would be worthwhile to empirically compare 

inefficiency effects based on existing distributions such as half normal, exponential, truncated 

normal and gamma with models of efficiency effects represented by a cumulative distribution 

function. 
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